Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2252. doi: 10.1107/S1600536812028450

(S)-(−)-2-(1H-Indol-3-yl)-N-(1-phenyl­eth­yl)acetamide

Johana Ramírez a, Oscar Romero a, Jorge R Juárez a, Joel L Terán a, Angel Mendoza a,*
PMCID: PMC3394039  PMID: 22798904

Abstract

In the title compound, C18H18N2O, the dihedral angle between the indole system and the phenyl ring is 17.2 (2)°. The crystal packing features two N—H⋯O hydrogen bonds, which link the mol­ecules into layers parallel to (001). The absolute configuration was determined by the synthetic procedure and was set according to the starting material.

Related literature  

For background to the synthesis of chiral non-racemic acetamide indole compounds, see: Kochanowska-Karamyan & Hamann (2010). For their use in the synthesis of nitro­gen heterocyclic compounds and indole alkaloids, see: Suárez-Castillo et al. (2006); Chiou et al. (2009).graphic file with name e-68-o2252-scheme1.jpg

Experimental  

Crystal data  

  • C18H18N2O

  • M r = 278.34

  • Orthorhombic, Inline graphic

  • a = 7.307 (4) Å

  • b = 8.559 (4) Å

  • c = 25.674 (9) Å

  • V = 1605.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.65 × 0.6 × 0.1 mm

Data collection  

  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.646, T max = 1

  • 2937 measured reflections

  • 2126 independent reflections

  • 1146 reflections with I > 2σ(I)

  • R int = 0.045

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.161

  • S = 1.05

  • 2126 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028450/bt5951sup1.cif

e-68-o2252-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028450/bt5951Isup2.hkl

e-68-o2252-Isup2.hkl (102.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028450/bt5951Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.89 (5) 2.03 (5) 2.891 (4) 163 (4)
N2—H2N⋯O1ii 0.96 (6) 1.91 (6) 2.847 (5) 164 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful for financial support by projects VIEP-BUAP and CONACyT CB-2009–01/128747. JR and OR thank CONACyT for doctoral scholarships. Special thanks go to Dr Marcos Flores-Alamo (USAI/FQ/UNAM) for useful comments.

supplementary crystallographic information

Comment

The synthesis of chiral non racemic acetamides indole compounds is an original area of interest in organic chemistry (Kochanowska-Karamyan & Hamann, 2010) because they are useful intermediates for the synthesis of diverse interesting nitrogen heterocyclic compounds and indole alkaloids derivatives and natural products (Suárez-Castillo et al., 2006; Chiou et al., 2009).

In the title compound the N1 atom in a planar conformation from the plane between C9, H1N and C1 with an r.m.s. deviation of 0.012Å. The N1—C9 [1.322 (5) Å] and C9—O1 [1.254 (4) Å] distances show electron delocalization along the N1—C9—O1 system. The indole group shows a torsion angle of 102.1 (4)° from the plane placed by N1/C9/C10/C11 and phenyl ring C2—C7 shows a torsion angle of 92.3 (4)° from plane C9/N1/C1/C2. The crystal packing is stabilized by two hydrogen bond interactions [N1—H1N···O1 and N2—H2N···O1] linking the molecules into planes parallel to (0 0 1) (Table 1).

Experimental

The title compound, C18H18N2O, was obtained dissolving indolic acid (0.96 mmol, 0.277 g) and boric acid (0.30 mmol, 0.020 g) in 88 ml of toluene under N2 atmosphere. Once the mixture was colorless, (S)-(-)-phenylethylamine was added and heated under reflux by 16 h. After that, mixture was cooled and hexane (0.5 L) was added. Finally, white solid was obtained and crystalized from an ethyl acetate/diethylether solution; m. p. 94–96 °C. [α]D25 = -45.7° (c 1.5, CH2Cl2); IR (KBr)1643 cm-1. 1H NMR (CDCl3, 400 MHz) δ (p.p.m.), J(Hz) 9.24 (s, 1H), 7.48 (d, J=8.0, 1H),7.26 (d, J=8.4, 1H), 7.17–7.05 (m, 6H),6.85 (d, J=2.4, 1H), 6.32 (d, J=8.0, 1H), 5.12 (m, 1H), 3.69 (d, J=3.2, 2H), 1.24 (d, J=7.2, 3H). 13C NMR (CDCl3,100 MHz) δ (p.p.m.) 22.2, 33.8, 49.1, 108.2,112.1, 118.8–128.8, 136.9, 143.4, 171.8.

Refinement

H atom bonded to N atoms were located in a difference Fourier map and they were isotropically refined. H atoms bonded to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or Ueq(H) = 1.5 Ueq(C) for methyl groups. In the absence of anomalous scatterers, the absolute configuration could not be determined. It was set according to the starting material and Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Molecular packing of title compound, viewed down the a axis, showing hydrogen bonds and intramolecular interaction (dashed lines).

Crystal data

C18H18N2O F(000) = 592
Mr = 278.34 Dx = 1.151 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 24 reflections
a = 7.307 (4) Å θ = 12.6–22.7°
b = 8.559 (4) Å µ = 0.07 mm1
c = 25.674 (9) Å T = 298 K
V = 1605.7 (13) Å3 Prism, colourless
Z = 4 0.65 × 0.6 × 0.1 mm

Data collection

Siemens P4 diffractometer Rint = 0.045
Graphite monochromator θmax = 27.5°, θmin = 2.5°
2θ/ω scans h = −2→9
Absorption correction: ψ scan (North et al., 1968) k = −4→11
Tmin = 0.646, Tmax = 1 l = −11→33
2937 measured reflections 3 standard reflections every 97 reflections
2126 independent reflections intensity decay: 1%
1146 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.0614P] where P = (Fo2 + 2Fc2)/3
2126 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3536 (4) 1.0472 (3) 0.73306 (10) 0.0732 (8)
C9 0.4310 (5) 0.9265 (4) 0.74986 (14) 0.0574 (9)
N1 0.5307 (5) 0.8365 (4) 0.71908 (12) 0.0630 (8)
C2 0.4248 (5) 0.7787 (4) 0.62951 (15) 0.0702 (11)
N2 −0.0448 (5) 0.6926 (4) 0.81406 (16) 0.0822 (10)
C1 0.5641 (6) 0.8626 (4) 0.66407 (15) 0.0712 (11)
H1 0.5511 0.9749 0.6576 0.085*
C3 0.2953 (5) 0.6773 (5) 0.64922 (16) 0.0714 (11)
H3 0.2874 0.6622 0.685 0.086*
C12 0.1826 (5) 0.7462 (4) 0.86932 (15) 0.0647 (10)
C11 0.2352 (5) 0.8019 (4) 0.81856 (14) 0.0594 (9)
C10 0.4134 (5) 0.8780 (4) 0.80602 (14) 0.0636 (10)
H10A 0.5117 0.8061 0.8144 0.076*
H10B 0.4278 0.9696 0.8279 0.076*
C17 0.0087 (6) 0.6788 (4) 0.86442 (18) 0.0752 (11)
C18 0.0937 (5) 0.7666 (5) 0.78644 (16) 0.0735 (11)
H18 0.0899 0.7887 0.751 0.088*
C4 0.1767 (7) 0.5977 (6) 0.6164 (2) 0.0978 (15)
H4 0.091 0.5291 0.6303 0.117*
C16 −0.0813 (7) 0.6093 (6) 0.9064 (2) 0.0980 (15)
H16 −0.1963 0.5641 0.9025 0.118*
C13 0.2681 (7) 0.7464 (5) 0.91787 (17) 0.0867 (13)
H13 0.3831 0.791 0.9223 0.104*
C7 0.4333 (8) 0.7996 (6) 0.57627 (19) 0.1064 (17)
H7 0.5194 0.867 0.5619 0.128*
C8 0.7594 (6) 0.8189 (6) 0.6517 (2) 0.0986 (15)
H8A 0.7763 0.7089 0.6572 0.148*
H8B 0.8407 0.8761 0.6741 0.148*
H8C 0.7856 0.8439 0.616 0.148*
C15 0.0072 (10) 0.6104 (7) 0.9535 (2) 0.121 (2)
H15 −0.0488 0.5643 0.9822 0.146*
C14 0.1770 (10) 0.6781 (7) 0.9594 (2) 0.1179 (18)
H14 0.2318 0.678 0.9921 0.141*
C6 0.3115 (11) 0.7186 (9) 0.5442 (2) 0.138 (2)
H6 0.3174 0.7333 0.5084 0.166*
C5 0.1852 (9) 0.6192 (9) 0.5639 (3) 0.127 (2)
H5 0.1053 0.5664 0.5419 0.153*
H1N 0.589 (6) 0.757 (6) 0.7342 (17) 0.104 (16)*
H2N −0.147 (8) 0.659 (6) 0.7935 (18) 0.130 (18)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0751 (18) 0.0429 (13) 0.1016 (18) 0.0091 (14) −0.0245 (16) 0.0040 (13)
C9 0.051 (2) 0.0402 (18) 0.080 (2) −0.0085 (19) −0.018 (2) −0.0014 (17)
N1 0.072 (2) 0.0403 (16) 0.0771 (19) 0.0031 (17) −0.0018 (18) 0.0044 (15)
C2 0.071 (3) 0.057 (2) 0.083 (3) 0.021 (2) 0.006 (2) −0.0071 (19)
N2 0.060 (2) 0.082 (2) 0.105 (3) −0.009 (2) −0.013 (2) −0.014 (2)
C1 0.084 (3) 0.0426 (19) 0.087 (3) 0.000 (2) 0.008 (2) 0.0062 (18)
C3 0.061 (2) 0.061 (2) 0.092 (3) 0.010 (2) −0.001 (2) −0.001 (2)
C12 0.064 (2) 0.050 (2) 0.080 (3) 0.003 (2) −0.006 (2) −0.0140 (19)
C11 0.055 (2) 0.0468 (18) 0.076 (2) 0.0019 (18) −0.0107 (19) −0.0103 (17)
C10 0.057 (2) 0.0533 (18) 0.081 (2) −0.0030 (19) −0.013 (2) −0.0078 (18)
C17 0.073 (3) 0.054 (2) 0.099 (3) −0.004 (2) 0.006 (3) −0.016 (2)
C18 0.062 (2) 0.076 (2) 0.083 (2) −0.007 (2) −0.013 (2) −0.004 (2)
C4 0.075 (3) 0.084 (3) 0.135 (4) 0.002 (3) −0.012 (3) −0.027 (3)
C16 0.090 (3) 0.082 (3) 0.122 (4) −0.014 (3) 0.029 (3) −0.017 (3)
C13 0.099 (3) 0.075 (3) 0.086 (3) −0.009 (3) −0.010 (3) −0.009 (2)
C7 0.120 (4) 0.113 (4) 0.086 (3) 0.000 (4) 0.020 (3) −0.018 (3)
C8 0.065 (3) 0.109 (4) 0.121 (4) −0.007 (3) 0.015 (3) 0.023 (3)
C15 0.155 (6) 0.097 (4) 0.112 (4) −0.020 (4) 0.034 (4) −0.008 (3)
C14 0.150 (5) 0.114 (4) 0.090 (3) −0.013 (5) −0.001 (4) −0.004 (3)
C6 0.148 (6) 0.181 (7) 0.085 (3) 0.015 (6) −0.009 (4) −0.037 (4)
C5 0.103 (4) 0.149 (6) 0.130 (5) 0.013 (5) −0.022 (4) −0.053 (5)

Geometric parameters (Å, º)

O1—C9 1.254 (4) C10—H10B 0.97
C9—N1 1.322 (5) C17—C16 1.395 (6)
C9—C10 1.506 (5) C18—H18 0.93
N1—C1 1.451 (5) C4—C5 1.361 (7)
N1—H1N 0.89 (5) C4—H4 0.93
C2—C3 1.380 (5) C16—C15 1.372 (7)
C2—C7 1.380 (6) C16—H16 0.93
C2—C1 1.529 (5) C13—C14 1.387 (7)
N2—C17 1.356 (5) C13—H13 0.93
N2—C18 1.388 (5) C7—C6 1.396 (8)
N2—H2N 0.96 (6) C7—H7 0.93
C1—C8 1.509 (6) C8—H8A 0.96
C1—H1 0.98 C8—H8B 0.96
C3—C4 1.388 (6) C8—H8C 0.96
C3—H3 0.93 C15—C14 1.377 (8)
C12—C13 1.394 (6) C15—H15 0.93
C12—C17 1.401 (6) C14—H14 0.93
C12—C11 1.440 (5) C6—C5 1.353 (9)
C11—C18 1.357 (5) C6—H6 0.93
C11—C10 1.491 (5) C5—H5 0.93
C10—H10A 0.97
O1—C9—N1 121.5 (4) C16—C17—C12 122.3 (5)
O1—C9—C10 121.2 (4) C11—C18—N2 110.3 (4)
N1—C9—C10 117.3 (3) C11—C18—H18 124.9
C9—N1—C1 125.8 (3) N2—C18—H18 124.9
C9—N1—H1N 116 (3) C5—C4—C3 120.4 (6)
C1—N1—H1N 118 (3) C5—C4—H4 119.8
C3—C2—C7 118.4 (4) C3—C4—H4 119.8
C3—C2—C1 122.6 (4) C15—C16—C17 117.1 (5)
C7—C2—C1 118.9 (4) C15—C16—H16 121.5
C17—N2—C18 108.5 (3) C17—C16—H16 121.5
C17—N2—H2N 136 (3) C14—C13—C12 118.2 (5)
C18—N2—H2N 115 (3) C14—C13—H13 120.9
N1—C1—C8 109.0 (4) C12—C13—H13 120.9
N1—C1—C2 112.4 (3) C2—C7—C6 119.4 (5)
C8—C1—C2 113.1 (4) C2—C7—H7 120.3
N1—C1—H1 107.4 C6—C7—H7 120.3
C8—C1—H1 107.4 C1—C8—H8A 109.5
C2—C1—H1 107.4 C1—C8—H8B 109.5
C2—C3—C4 120.9 (4) H8A—C8—H8B 109.5
C2—C3—H3 119.5 C1—C8—H8C 109.5
C4—C3—H3 119.5 H8A—C8—H8C 109.5
C13—C12—C17 119.1 (4) H8B—C8—H8C 109.5
C13—C12—C11 133.6 (4) C16—C15—C14 121.7 (6)
C17—C12—C11 107.3 (3) C16—C15—H15 119.2
C18—C11—C12 105.8 (3) C14—C15—H15 119.2
C18—C11—C10 129.2 (4) C15—C14—C13 121.6 (6)
C12—C11—C10 125.0 (3) C15—C14—H14 119.2
C11—C10—C9 113.7 (3) C13—C14—H14 119.2
C11—C10—H10A 108.8 C5—C6—C7 121.8 (6)
C9—C10—H10A 108.8 C5—C6—H6 119.1
C11—C10—H10B 108.8 C7—C6—H6 119.1
C9—C10—H10B 108.8 C6—C5—C4 119.1 (6)
H10A—C10—H10B 107.7 C6—C5—H5 120.5
N2—C17—C16 129.6 (4) C4—C5—H5 120.5
N2—C17—C12 108.1 (4)
O1—C9—N1—C1 0.1 (5) C11—C12—C17—N2 −0.5 (4)
C10—C9—N1—C1 179.8 (3) C13—C12—C17—C16 −1.0 (6)
C9—N1—C1—C8 141.5 (4) C11—C12—C17—C16 178.3 (4)
C9—N1—C1—C2 −92.3 (4) C12—C11—C18—N2 0.2 (4)
C3—C2—C1—N1 −6.3 (5) C10—C11—C18—N2 178.6 (3)
C7—C2—C1—N1 176.6 (4) C17—N2—C18—C11 −0.6 (5)
C3—C2—C1—C8 117.6 (4) C2—C3—C4—C5 −0.5 (7)
C7—C2—C1—C8 −59.5 (5) N2—C17—C16—C15 179.1 (4)
C7—C2—C3—C4 0.2 (6) C12—C17—C16—C15 0.5 (7)
C1—C2—C3—C4 −176.9 (4) C17—C12—C13—C14 0.5 (6)
C13—C12—C11—C18 179.4 (4) C11—C12—C13—C14 −178.7 (4)
C17—C12—C11—C18 0.2 (4) C3—C2—C7—C6 0.2 (7)
C13—C12—C11—C10 1.0 (6) C1—C2—C7—C6 177.4 (5)
C17—C12—C11—C10 −178.3 (3) C17—C16—C15—C14 0.5 (8)
C18—C11—C10—C9 2.6 (5) C16—C15—C14—C13 −1.0 (9)
C12—C11—C10—C9 −179.3 (3) C12—C13—C14—C15 0.5 (8)
O1—C9—C10—C11 77.6 (4) C2—C7—C6—C5 −0.3 (9)
N1—C9—C10—C11 −102.1 (4) C7—C6—C5—C4 0.0 (10)
C18—N2—C17—C16 −178.1 (4) C3—C4—C5—C6 0.4 (9)
C18—N2—C17—C12 0.7 (4) C11—C10—C9—N1 −102.1 (4)
C13—C12—C17—N2 −179.9 (4) C2—C1—N1—C9 −92.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.89 (5) 2.03 (5) 2.891 (4) 163 (4)
N2—H2N···O1ii 0.96 (6) 1.91 (6) 2.847 (5) 164 (4)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5951).

References

  1. Chiou, W.-H., Lin, G.-H., Hsu, C.-C., Chaterpaul, S. & Ojima, I. (2009). Org. Lett. 11, 2659–2662. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kochanowska-Karamyan, A. J. & Hamann, M. T. (2010). Chem. Rev. 110, 4489–4497. [DOI] [PMC free article] [PubMed]
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1994). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Suárez-Castillo, O. R., Sánchez-Zavala, M., Meléndez-Rodríguez, M., Castelán-Duarte, L. E., Morales-Ríos, M. S. & Joseph-Nathan, P. (2006). Tetrahedron, 62, 3040–3051.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028450/bt5951sup1.cif

e-68-o2252-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028450/bt5951Isup2.hkl

e-68-o2252-Isup2.hkl (102.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028450/bt5951Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES