Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2257. doi: 10.1107/S1600536812028528

5-Chloro-3,6-dimethyl-1-phenyl-1H,4H-pyrano[2,3-c]pyrazol-4-one

Abdullah M Asiri a,b,, Hassan M Faidallah b, Khalid A Alamry a,b, Seik Weng Ng c, Edward R T Tiekink c,*
PMCID: PMC3394042  PMID: 22798907

Abstract

In the title compound, C14H11ClN2O2, two independent mol­ecules (A and B) comprise the asymmetric unit with the main difference between them being the relative orientation of the pendent phenyl ring with respect to the fused-ring system [dihedral angles = 8.32 (8)° (A) and 28.32 (8)° (B)]. In the crystal, the A mol­ecules are connected into a linear supra­molecular chain along the a axis via C—H⋯O inter­actions and linked to this via C—H⋯Cl inter­actions are the B mol­ecules. The chains are connected into layers in the ab plane by π–π inter­actions between pyrazole (A) and pyran (B) rings, and between pyrazole (B) and pyran (A) rings [centroid–centroid distances = 3.5442 (11) and 3.4022 (10) Å, respectively].

Related literature  

For the analgesic and anti-inflammatory activity of pyrano[2,3-c]pyrazole derivatives, see: Kuo et al. (1984). For the synthesis, see: Gelin et al. (1983). For the structure of the derivative without a chloro substituent, see: Asiri et al. (2012).graphic file with name e-68-o2257-scheme1.jpg

Experimental  

Crystal data  

  • C14H11ClN2O2

  • M r = 274.70

  • Orthorhombic, Inline graphic

  • a = 11.8864 (4) Å

  • b = 13.6276 (5) Å

  • c = 31.0273 (10) Å

  • V = 5025.9 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.817, T max = 1.000

  • 17994 measured reflections

  • 5796 independent reflections

  • 4522 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.117

  • S = 1.03

  • 5796 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028528/su2466sup1.cif

e-68-o2257-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028528/su2466Isup2.hkl

e-68-o2257-Isup2.hkl (283.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028528/su2466Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.32 3.203 (2) 154
C14—H14⋯Cl2i 0.95 2.74 3.448 (2) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In connection with reports that pyrano[2,3-c]pyrazole derivatives possess analgesic and anti-inflammatory activities (Kuo et al., 1984), the title compound (I) was synthesized, following a literature procedure (Gelin et al., 1983), and its crystal and molecular structure are reported on herein.

In (I), Fig. 1, two independent molecules comprise the asymmetric unit. As seen from the overlay diagram, Fig. 2, these are virtually super-imposable. The primary difference between the molecules relates to the relative orientation of the pendent phenyl ring with respect to the fused-ring system [r.m.s. deviations = 0.024 and 0.021 Å, respectively] as seen in the dihedral angles of 8.32 (8) and 28.32 (8)°, respectively. In the structure of the derivative without a chloro substituent, the molecule is planar with the r.m.s. of all non-hydrogen atoms being 0.038 Å (Asiri et al., 2012).

In the crystal, the Cl1-containing molecules are connected into a linear supramolecular chain along the a axis via C—H···O interactions and linked to this via C—H···Cl interactions are the Cl2-containing molecules, Fig. 3 and Table 1. Chains are connected into layers in the ab plane by π—π interactions with the closest of these occurring between the five-membered and six-membered in an alternating sequence of the independent molecules [ring centroid(N1-pyrazole)···(O3-pyrano)i = 3.5442 (11) Å, angle of inclination = 2.29 (11)° for i: -x+1, -y, -z+1; ring centroid(N3-pyrazole)···(O1-pyrano)ii = 3.4022 (10) Å, angle of inclination = 5.38 (8)° for ii: x+1/2, -y+1/2, -z+1]. The layers stack along the c axis with no specific intermolecular interactions between them, Fig. 4.

Experimental

To a solution of 4-(acetoacetyl)-3-methyl-1-phenyl-2-pyrazolin-5-one (0.01 M), made following a literature procedure (Gelin et al., 1983), in dry methylene chloride (20 ml) was added drop-wise sulfuryl chloride (1.35 g, 0.01 M). The mixture was allowed to stand at room temperature for 2 h and then poured into a 10% aqueous K2CO3 solution (50 ml) with stirring for 5 min. The aqueous layer was acidified with 10% HCl and extracted with chloroform. The combined organic extracts were washed with water and dried (Na2SO4). Removal of the solvent gave 4-(aceto-chloroacetyl)-3-methyl-1-phenyl-2-pyrazolin-5-one. Concentrated sulfuric acid (1 ml) was then added drop-wise. After 4 h at room temperature, the mixture was poured into ice-water (200 ml). The precipitate was extracted with chloroform. The chloroform layer was washed with 5% aqueous K2CO3 solution, dried and evaporated to give the title compound which was recrystallized from ethanol. M.p: 413–415 K cf. Lit. M.p. 413 K (Gelin et al., 1983). Yield: 68%.

Refinement

C-bound H-atoms were placed in calculated positions and included in the refinement in the riding model approximation: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the two independent molecules of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Super-imposition of the fused-ring systems of the two independent molecules in (I). The Cl1 and and Cl2-containing molecules are shown as red and blue images, respectively.

Fig. 3.

Fig. 3.

A view of the supramolecular chain along the a axis in (I) mediated by C—H···O and C—H···Cl interactions shown as orange and blue dashed lines, respectively.

Fig. 4.

Fig. 4.

A view in projection down the a axis of the unit-cell contents of (I) highlighting the stacks of supramolecular layers along the c axis. The C—H···O, C—H···Cl and π—π interactions are shown as orange, blue and purple dashed lines, respectively.

Crystal data

C14H11ClN2O2 F(000) = 2272
Mr = 274.70 Dx = 1.452 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5991 reflections
a = 11.8864 (4) Å θ = 2.3–27.5°
b = 13.6276 (5) Å µ = 0.30 mm1
c = 31.0273 (10) Å T = 100 K
V = 5025.9 (3) Å3 Prism, colourless
Z = 16 0.40 × 0.20 × 0.20 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 5796 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4522 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.041
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −14→15
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −17→10
Tmin = 0.817, Tmax = 1.000 l = −23→40
17994 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 1.8272P] where P = (Fo2 + 2Fc2)/3
5796 reflections (Δ/σ)max = 0.001
347 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.47784 (4) 0.10807 (4) 0.536902 (15) 0.02329 (13)
Cl2 0.02904 (4) 0.13031 (4) 0.482067 (16) 0.02722 (14)
O1 0.80047 (10) 0.08977 (9) 0.56939 (4) 0.0182 (3)
O2 0.49310 (11) 0.08983 (10) 0.63216 (5) 0.0250 (3)
O3 0.10832 (10) 0.18078 (9) 0.36014 (4) 0.0182 (3)
O4 0.27633 (11) 0.13467 (10) 0.47565 (4) 0.0241 (3)
N1 0.87843 (13) 0.06692 (12) 0.63947 (5) 0.0173 (3)
N2 0.83780 (13) 0.05555 (11) 0.68112 (5) 0.0190 (3)
N3 0.29023 (13) 0.18475 (11) 0.32886 (5) 0.0187 (3)
N4 0.40146 (12) 0.17885 (12) 0.34252 (5) 0.0204 (3)
C1 0.72337 (17) 0.10797 (16) 0.49990 (6) 0.0240 (4)
H1A 0.6531 0.1003 0.4837 0.036*
H1B 0.7769 0.0573 0.4909 0.036*
H1C 0.7553 0.1730 0.4942 0.036*
C2 0.70039 (15) 0.09791 (13) 0.54658 (6) 0.0186 (4)
C3 0.59974 (15) 0.09712 (14) 0.56689 (6) 0.0192 (4)
C4 0.58537 (15) 0.08820 (13) 0.61417 (6) 0.0186 (4)
C5 0.69231 (15) 0.07793 (13) 0.63565 (6) 0.0168 (4)
C6 0.79054 (15) 0.07976 (13) 0.61251 (6) 0.0164 (4)
C7 0.65511 (17) 0.05340 (15) 0.71804 (6) 0.0237 (4)
H7A 0.7022 0.0369 0.7429 0.035*
H7B 0.5990 0.0017 0.7136 0.035*
H7C 0.6169 0.1160 0.7233 0.035*
C8 0.72680 (15) 0.06198 (13) 0.67899 (6) 0.0184 (4)
C9 0.99726 (15) 0.06552 (13) 0.63192 (6) 0.0172 (4)
C10 1.06841 (16) 0.04123 (15) 0.66587 (6) 0.0221 (4)
H10 1.0387 0.0267 0.6936 0.027*
C11 1.18377 (16) 0.03853 (16) 0.65855 (7) 0.0256 (4)
H11 1.2330 0.0215 0.6815 0.031*
C12 1.22826 (16) 0.06032 (15) 0.61829 (7) 0.0235 (4)
H12 1.3072 0.0582 0.6136 0.028*
C13 1.15581 (16) 0.08529 (15) 0.58498 (7) 0.0240 (4)
H13 1.1856 0.1008 0.5574 0.029*
C14 1.04043 (16) 0.08789 (15) 0.59154 (6) 0.0221 (4)
H14 0.9913 0.1048 0.5686 0.027*
C15 −0.07309 (16) 0.17796 (15) 0.39208 (6) 0.0216 (4)
H15A −0.1128 0.1366 0.4130 0.032*
H15B −0.0929 0.1574 0.3628 0.032*
H15C −0.0949 0.2466 0.3963 0.032*
C16 0.05018 (16) 0.16775 (13) 0.39842 (6) 0.0181 (4)
C17 0.10543 (16) 0.15005 (14) 0.43572 (6) 0.0189 (4)
C18 0.22949 (16) 0.14778 (13) 0.44089 (6) 0.0176 (4)
C19 0.28413 (15) 0.16257 (13) 0.39974 (6) 0.0177 (4)
C20 0.22119 (15) 0.17546 (13) 0.36295 (6) 0.0169 (4)
C21 0.50367 (16) 0.15383 (15) 0.41053 (7) 0.0240 (4)
H21A 0.5689 0.1630 0.3916 0.036*
H21B 0.5061 0.0880 0.4232 0.036*
H21C 0.5053 0.2030 0.4336 0.036*
C22 0.39769 (15) 0.16529 (13) 0.38481 (6) 0.0187 (4)
C23 0.26647 (16) 0.19886 (13) 0.28403 (6) 0.0186 (4)
C24 0.34540 (16) 0.24761 (14) 0.25905 (6) 0.0213 (4)
H24 0.4129 0.2716 0.2716 0.026*
C25 0.32434 (17) 0.26094 (15) 0.21537 (6) 0.0257 (4)
H25 0.3779 0.2940 0.1979 0.031*
C26 0.22545 (17) 0.22611 (15) 0.19720 (6) 0.0264 (5)
H26 0.2114 0.2355 0.1673 0.032*
C27 0.14728 (17) 0.17781 (15) 0.22247 (6) 0.0234 (4)
H27 0.0796 0.1542 0.2099 0.028*
C28 0.16698 (16) 0.16358 (15) 0.26614 (6) 0.0218 (4)
H28 0.1134 0.1303 0.2835 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0166 (2) 0.0292 (3) 0.0240 (3) 0.00225 (19) −0.00503 (18) −0.0020 (2)
Cl2 0.0242 (3) 0.0396 (3) 0.0178 (2) −0.0002 (2) 0.00323 (18) 0.0053 (2)
O1 0.0145 (6) 0.0254 (7) 0.0146 (7) 0.0014 (5) −0.0003 (5) −0.0012 (5)
O2 0.0145 (7) 0.0334 (8) 0.0270 (8) 0.0006 (6) 0.0026 (6) −0.0034 (6)
O3 0.0147 (6) 0.0240 (7) 0.0161 (7) 0.0002 (5) −0.0003 (5) 0.0024 (5)
O4 0.0233 (7) 0.0314 (8) 0.0178 (7) 0.0013 (6) −0.0047 (5) 0.0031 (6)
N1 0.0139 (7) 0.0234 (8) 0.0146 (8) −0.0006 (6) 0.0011 (6) −0.0014 (6)
N2 0.0179 (8) 0.0240 (8) 0.0150 (8) −0.0006 (7) 0.0027 (6) −0.0019 (6)
N3 0.0155 (8) 0.0240 (8) 0.0165 (8) 0.0009 (6) −0.0017 (6) 0.0012 (6)
N4 0.0155 (8) 0.0241 (8) 0.0215 (9) −0.0006 (7) −0.0035 (6) 0.0019 (7)
C1 0.0196 (10) 0.0339 (11) 0.0184 (10) 0.0001 (9) −0.0028 (7) −0.0002 (8)
C2 0.0164 (9) 0.0207 (9) 0.0187 (9) 0.0021 (8) −0.0039 (7) −0.0016 (8)
C3 0.0158 (9) 0.0207 (9) 0.0212 (10) 0.0018 (8) −0.0041 (7) −0.0031 (8)
C4 0.0171 (9) 0.0179 (9) 0.0209 (10) −0.0010 (7) −0.0010 (7) −0.0025 (7)
C5 0.0154 (9) 0.0187 (9) 0.0164 (9) −0.0006 (7) 0.0016 (7) −0.0025 (7)
C6 0.0169 (9) 0.0165 (9) 0.0159 (9) −0.0005 (7) 0.0007 (7) −0.0023 (7)
C7 0.0213 (10) 0.0313 (11) 0.0184 (10) −0.0020 (8) 0.0042 (8) −0.0025 (8)
C8 0.0188 (9) 0.0186 (9) 0.0177 (10) −0.0006 (7) −0.0009 (7) −0.0014 (7)
C9 0.0129 (9) 0.0189 (9) 0.0197 (10) −0.0001 (7) 0.0006 (7) −0.0040 (7)
C10 0.0175 (9) 0.0316 (11) 0.0172 (10) −0.0002 (8) −0.0008 (7) −0.0026 (8)
C11 0.0179 (10) 0.0354 (11) 0.0237 (11) 0.0016 (9) −0.0085 (8) −0.0047 (9)
C12 0.0129 (9) 0.0293 (11) 0.0283 (11) −0.0003 (8) −0.0010 (8) −0.0071 (9)
C13 0.0200 (10) 0.0310 (11) 0.0209 (10) −0.0020 (8) 0.0022 (8) −0.0007 (8)
C14 0.0196 (10) 0.0287 (10) 0.0182 (10) 0.0007 (8) −0.0012 (7) 0.0009 (8)
C15 0.0183 (9) 0.0263 (10) 0.0201 (10) −0.0006 (8) −0.0008 (7) 0.0027 (8)
C16 0.0189 (9) 0.0180 (9) 0.0174 (9) −0.0007 (7) 0.0013 (7) −0.0008 (7)
C17 0.0204 (10) 0.0197 (9) 0.0167 (9) −0.0009 (8) 0.0018 (7) 0.0011 (7)
C18 0.0203 (9) 0.0160 (8) 0.0166 (9) 0.0008 (7) −0.0012 (7) 0.0001 (7)
C19 0.0177 (9) 0.0174 (9) 0.0180 (9) 0.0002 (7) −0.0025 (7) 0.0008 (7)
C20 0.0163 (9) 0.0163 (8) 0.0182 (9) 0.0012 (7) 0.0005 (7) 0.0002 (7)
C21 0.0182 (10) 0.0300 (11) 0.0239 (11) −0.0017 (8) −0.0047 (8) 0.0028 (9)
C22 0.0174 (9) 0.0184 (9) 0.0202 (10) −0.0014 (7) −0.0008 (7) 0.0016 (7)
C23 0.0217 (9) 0.0194 (9) 0.0147 (9) 0.0046 (8) −0.0012 (7) 0.0005 (7)
C24 0.0201 (10) 0.0232 (9) 0.0207 (10) 0.0016 (8) −0.0002 (7) −0.0022 (8)
C25 0.0272 (11) 0.0319 (11) 0.0181 (10) 0.0012 (9) 0.0058 (8) 0.0018 (8)
C26 0.0318 (11) 0.0321 (11) 0.0153 (10) 0.0069 (9) 0.0001 (8) 0.0002 (8)
C27 0.0216 (10) 0.0287 (10) 0.0197 (10) 0.0040 (8) −0.0033 (8) −0.0020 (8)
C28 0.0200 (10) 0.0268 (10) 0.0185 (10) 0.0013 (8) 0.0001 (7) 0.0022 (8)

Geometric parameters (Å, º)

Cl1—C3 1.7285 (19) C10—H10 0.9500
Cl2—C17 1.7218 (19) C11—C12 1.389 (3)
O1—C6 1.350 (2) C11—H11 0.9500
O1—C2 1.389 (2) C12—C13 1.388 (3)
O2—C4 1.231 (2) C12—H12 0.9500
O3—C20 1.346 (2) C13—C14 1.387 (3)
O3—C16 1.386 (2) C13—H13 0.9500
O4—C18 1.227 (2) C14—H14 0.9500
N1—C6 1.350 (2) C15—C16 1.485 (3)
N1—N2 1.388 (2) C15—H15A 0.9800
N1—C9 1.432 (2) C15—H15B 0.9800
N2—C8 1.324 (2) C15—H15C 0.9800
N3—C20 1.345 (2) C16—C17 1.352 (3)
N3—N4 1.391 (2) C17—C18 1.484 (3)
N3—C23 1.432 (2) C18—C19 1.447 (3)
N4—C22 1.326 (2) C19—C20 1.376 (2)
C1—C2 1.480 (3) C19—C22 1.428 (3)
C1—H1A 0.9800 C21—C22 1.499 (3)
C1—H1B 0.9800 C21—H21A 0.9800
C1—H1C 0.9800 C21—H21B 0.9800
C2—C3 1.352 (3) C21—H21C 0.9800
C3—C4 1.482 (3) C23—C24 1.386 (3)
C4—C5 1.442 (3) C23—C28 1.392 (3)
C5—C6 1.371 (2) C24—C25 1.390 (3)
C5—C8 1.423 (3) C24—H24 0.9500
C7—C8 1.486 (3) C25—C26 1.387 (3)
C7—H7A 0.9800 C25—H25 0.9500
C7—H7B 0.9800 C26—C27 1.382 (3)
C7—H7C 0.9800 C26—H26 0.9500
C9—C14 1.388 (3) C27—C28 1.389 (3)
C9—C10 1.391 (3) C27—H27 0.9500
C10—C11 1.390 (3) C28—H28 0.9500
C6—O1—C2 115.99 (14) C14—C13—H13 119.6
C20—O3—C16 115.74 (14) C12—C13—H13 119.6
C6—N1—N2 108.79 (14) C13—C14—C9 119.50 (18)
C6—N1—C9 131.59 (16) C13—C14—H14 120.2
N2—N1—C9 119.60 (14) C9—C14—H14 120.2
C8—N2—N1 107.03 (15) C16—C15—H15A 109.5
C20—N3—N4 109.56 (15) C16—C15—H15B 109.5
C20—N3—C23 131.01 (16) H15A—C15—H15B 109.5
N4—N3—C23 119.42 (15) C16—C15—H15C 109.5
C22—N4—N3 106.12 (15) H15A—C15—H15C 109.5
C2—C1—H1A 109.5 H15B—C15—H15C 109.5
C2—C1—H1B 109.5 C17—C16—O3 120.95 (16)
H1A—C1—H1B 109.5 C17—C16—C15 127.54 (17)
C2—C1—H1C 109.5 O3—C16—C15 111.49 (15)
H1A—C1—H1C 109.5 C16—C17—C18 125.37 (17)
H1B—C1—H1C 109.5 C16—C17—Cl2 119.11 (15)
C3—C2—O1 121.32 (17) C18—C17—Cl2 115.51 (14)
C3—C2—C1 128.32 (17) O4—C18—C19 126.34 (18)
O1—C2—C1 110.36 (15) O4—C18—C17 123.30 (17)
C2—C3—C4 124.33 (17) C19—C18—C17 110.36 (16)
C2—C3—Cl1 119.35 (15) C20—C19—C22 103.99 (16)
C4—C3—Cl1 116.32 (14) C20—C19—C18 120.39 (17)
O2—C4—C5 125.28 (18) C22—C19—C18 135.59 (17)
O2—C4—C3 123.38 (17) O3—C20—N3 123.50 (16)
C5—C4—C3 111.33 (16) O3—C20—C19 127.05 (17)
C6—C5—C8 104.63 (16) N3—C20—C19 109.44 (16)
C6—C5—C4 120.46 (17) C22—C21—H21A 109.5
C8—C5—C4 134.88 (17) C22—C21—H21B 109.5
O1—C6—N1 124.03 (16) H21A—C21—H21B 109.5
O1—C6—C5 126.54 (16) C22—C21—H21C 109.5
N1—C6—C5 109.41 (16) H21A—C21—H21C 109.5
C8—C7—H7A 109.5 H21B—C21—H21C 109.5
C8—C7—H7B 109.5 N4—C22—C19 110.89 (16)
H7A—C7—H7B 109.5 N4—C22—C21 120.85 (17)
C8—C7—H7C 109.5 C19—C22—C21 128.26 (17)
H7A—C7—H7C 109.5 C24—C23—C28 121.18 (17)
H7B—C7—H7C 109.5 C24—C23—N3 118.27 (17)
N2—C8—C5 110.14 (16) C28—C23—N3 120.55 (17)
N2—C8—C7 121.71 (17) C23—C24—C25 119.05 (18)
C5—C8—C7 128.14 (17) C23—C24—H24 120.5
C14—C9—C10 120.74 (17) C25—C24—H24 120.5
C14—C9—N1 120.63 (16) C26—C25—C24 120.27 (19)
C10—C9—N1 118.63 (17) C26—C25—H25 119.9
C11—C10—C9 118.84 (18) C24—C25—H25 119.9
C11—C10—H10 120.6 C27—C26—C25 120.13 (19)
C9—C10—H10 120.6 C27—C26—H26 119.9
C12—C11—C10 121.11 (18) C25—C26—H26 119.9
C12—C11—H11 119.4 C26—C27—C28 120.43 (19)
C10—C11—H11 119.4 C26—C27—H27 119.8
C11—C12—C13 119.08 (18) C28—C27—H27 119.8
C11—C12—H12 120.5 C27—C28—C23 118.95 (18)
C13—C12—H12 120.5 C27—C28—H28 120.5
C14—C13—C12 120.71 (19) C23—C28—H28 120.5
C6—N1—N2—C8 −0.26 (19) C10—C9—C14—C13 0.4 (3)
C9—N1—N2—C8 178.57 (16) N1—C9—C14—C13 −179.52 (17)
C20—N3—N4—C22 0.45 (19) C20—O3—C16—C17 −0.6 (2)
C23—N3—N4—C22 −179.61 (16) C20—O3—C16—C15 178.27 (15)
C6—O1—C2—C3 0.9 (2) O3—C16—C17—C18 3.4 (3)
C6—O1—C2—C1 −179.75 (15) C15—C16—C17—C18 −175.20 (18)
O1—C2—C3—C4 0.3 (3) O3—C16—C17—Cl2 −177.84 (13)
C1—C2—C3—C4 −178.98 (18) C15—C16—C17—Cl2 3.5 (3)
O1—C2—C3—Cl1 179.71 (13) C16—C17—C18—O4 177.47 (18)
C1—C2—C3—Cl1 0.5 (3) Cl2—C17—C18—O4 −1.3 (2)
C2—C3—C4—O2 178.32 (18) C16—C17—C18—C19 −2.8 (3)
Cl1—C3—C4—O2 −1.1 (2) Cl2—C17—C18—C19 178.44 (13)
C2—C3—C4—C5 −1.5 (3) O4—C18—C19—C20 179.30 (18)
Cl1—C3—C4—C5 179.05 (13) C17—C18—C19—C20 −0.4 (2)
O2—C4—C5—C6 −178.18 (18) O4—C18—C19—C22 1.6 (3)
C3—C4—C5—C6 1.6 (2) C17—C18—C19—C22 −178.2 (2)
O2—C4—C5—C8 4.2 (3) C16—O3—C20—N3 178.86 (16)
C3—C4—C5—C8 −176.02 (19) C16—O3—C20—C19 −2.8 (3)
C2—O1—C6—N1 177.20 (16) N4—N3—C20—O3 178.15 (15)
C2—O1—C6—C5 −0.7 (3) C23—N3—C20—O3 −1.8 (3)
N2—N1—C6—O1 −177.71 (15) N4—N3—C20—C19 −0.4 (2)
C9—N1—C6—O1 3.6 (3) C23—N3—C20—C19 179.65 (17)
N2—N1—C6—C5 0.5 (2) C22—C19—C20—O3 −178.29 (17)
C9—N1—C6—C5 −178.13 (18) C18—C19—C20—O3 3.3 (3)
C8—C5—C6—O1 177.63 (16) C22—C19—C20—N3 0.2 (2)
C4—C5—C6—O1 −0.6 (3) C18—C19—C20—N3 −178.16 (16)
C8—C5—C6—N1 −0.5 (2) N3—N4—C22—C19 −0.3 (2)
C4—C5—C6—N1 −178.81 (16) N3—N4—C22—C21 178.95 (16)
N1—N2—C8—C5 −0.1 (2) C20—C19—C22—N4 0.1 (2)
N1—N2—C8—C7 −179.79 (16) C18—C19—C22—N4 178.07 (19)
C6—C5—C8—N2 0.4 (2) C20—C19—C22—C21 −179.13 (18)
C4—C5—C8—N2 178.28 (19) C18—C19—C22—C21 −1.1 (3)
C6—C5—C8—C7 −179.94 (18) C20—N3—C23—C24 152.03 (19)
C4—C5—C8—C7 −2.0 (3) N4—N3—C23—C24 −27.9 (2)
C6—N1—C9—C14 6.0 (3) C20—N3—C23—C28 −28.5 (3)
N2—N1—C9—C14 −172.56 (16) N4—N3—C23—C28 151.54 (17)
C6—N1—C9—C10 −173.99 (18) C28—C23—C24—C25 −0.2 (3)
N2—N1—C9—C10 7.5 (2) N3—C23—C24—C25 179.24 (17)
C14—C9—C10—C11 −0.8 (3) C23—C24—C25—C26 0.2 (3)
N1—C9—C10—C11 179.18 (17) C24—C25—C26—C27 −0.1 (3)
C9—C10—C11—C12 0.5 (3) C25—C26—C27—C28 −0.1 (3)
C10—C11—C12—C13 0.1 (3) C26—C27—C28—C23 0.1 (3)
C11—C12—C13—C14 −0.5 (3) C24—C23—C28—C27 0.0 (3)
C12—C13—C14—C9 0.2 (3) N3—C23—C28—C27 −179.40 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2i 0.95 2.32 3.203 (2) 154
C14—H14···Cl2i 0.95 2.74 3.448 (2) 132

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2466).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Faidallah, H. M., Hameed, S. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1120. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.
  6. Kuo, S.-C., Huang, L.-J. & Nakamura, H. (1984). J. Med. Chem. 27, 539–544. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028528/su2466sup1.cif

e-68-o2257-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028528/su2466Isup2.hkl

e-68-o2257-Isup2.hkl (283.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028528/su2466Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES