Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2258–o2259. doi: 10.1107/S1600536812028474

4-(3-Phenyl-3,3a,4,5-tetra­hydro-2H-benzo[g]indazol-2-yl)benzene­sulfonamide ethanol monosolvate

Abdullah M Asiri a,b,, Hassan M Faidallah b, Khalid A Alamry a,b, Seik Weng Ng c, Edward R T Tiekink c,*
PMCID: PMC3394043  PMID: 22798908

Abstract

In the title compound ethanol monosolvate, C23H21N3O2S·C2H5OH, the dihydro­pyrazole ring is twisted about the Csp 3—Csp 3 bond. Nevertheless, the ring approximates a plane (r.m.s. deviation for the fitted atoms = 0.132 Å) and forms dihedral angles of 5.80 (13) and 12.29 (12)°, respectively, with the fused- and sulfonamide-benzene rings. As the dihydro­pyrazole C-bound phenyl group is roughly perpendicular to the dihydro­pyrazole ring [dihedral angle = 74.04 (15)°; the amino group is orientated to the same side of the mol­ecule], to a first approximation, the mol­ecule has a stunted T-shape. The cyclo­hexene ring adopts a half-chair conformation with the methyl­ene C atom connected to the dihydro­pyrazole ring lying 0.665 (4) Å out of the plane of the five remaining atoms (r.m.s. deviation = 0.050 Å). The components of the asymmetric unit are connected by an O—H⋯O hydrogen bond. Further links between mol­ecules leading to a three-dimensional architecture are of the type N—H⋯O.

Related literature  

For a previous synthesis, see: Faidallah & Makki (1994). For the biological activity of related compounds, see: Faidallah et al. (2011). For the structure of the methyl analogue, see: Asiri et al. (2011).graphic file with name e-68-o2258-scheme1.jpg

Experimental  

Crystal data  

  • C23H21N3O2S·C2H6O

  • M r = 449.56

  • Monoclinic, Inline graphic

  • a = 15.7556 (9) Å

  • b = 9.1789 (4) Å

  • c = 16.7515 (10) Å

  • β = 111.718 (7)°

  • V = 2250.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.761, T max = 1.000

  • 15054 measured reflections

  • 5196 independent reflections

  • 3971 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.156

  • S = 1.04

  • 5196 reflections

  • 301 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028474/xu5573sup1.cif

e-68-o2258-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028474/xu5573Isup2.hkl

e-68-o2258-Isup2.hkl (254.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028474/xu5573Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O1 0.84 (1) 2.04 (1) 2.875 (2) 175 (3)
N3—H1n⋯O3i 0.87 (1) 2.02 (1) 2.894 (3) 176 (3)
N3—H2n⋯O2ii 0.88 (1) 2.16 (1) 3.007 (3) 163 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound, (I), reported previously in the literature (Faidallah & Makki, 1994), comprises a benzenesulfonamide unit which is grafted to a chemotherapeutic heterocycle pyrazole derivative, and therefore is a compound which is anticipated to exhibit enhanced activities (Faidallah et al., 2011).

In (I), Fig. 1, pyrazole ring is twisted about the C10—C11 bond (r.m.s. deviation for the fitted atoms = 0.132 Å). The cyclohexene ring adopts a half-chair conformation with the C9 atom lying 0.665 (4) Å out of the plane of the five remaining atoms (r.m.s. deviation = 0.050 Å). The fused-ring- and sulfonamide-benzene rings form dihedral angles of 5.80 (13) and 12.29 (12)°, respectively, with the least-squares plane through the pyrazole ring. By contrast, the pyrazole-C-bound phenyl group is almost perpendicular to the pyrazole ring, forming a dihedral angle of 74.04 (15)°, so that to a first approximation, the molecule has a stunted T-shape. The sulfonamide-amino group is orientated to the same side of the molecule as the pyrazole-C-bound benzene ring. While the sulfonamide-O1 atom is almost co-planar with the benzene ring, the O1—S1—C21—C20 torsion angle is -168.51 (17)°, the O2 atom is somewhat splayed [O2—S1—C21—C20 = -38.9 (2)°]. In the structure of the compound where the pyrazole-C-bound substituent is methyl rather than phenyl, the molecule has a shallow bowl-shaped conformation (Asiri et al., 2011).

The asymmetric unit comprises the organic molecule and a ethanol molecule of solvation with the primary connection between them being a O—H···O hydrogen bond, Table 1. Each amino-H forms a hydrogen bond to an oxygen atom so that each oxygen atom in the structure functions as an acceptor, Table 1, and that a three-dimensional architecture results, Fig. 2.

Experimental

A solution of 2-benzylidene-3,4-dihydro-2H-naphthalen-1-one (2.3 g, 0.01 M) in ethanol (50 ml) was refluxed with 4-hydrazinobenzenesulfonamide hydrochloride (2.2 g, 0.01 M) for 4 h. The reaction mixture was allowed to cool. The formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. M.pt: 508–510 K cf. Lit. M.pt: 508 K (Faidallah & Makki, 1994). Yield: 70%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The oxygen- and nitrogen-bound H-atom were located in a difference Fourier map and was refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å; the Uiso values were refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents of (I). The O—H···O and N—H···O hydrogen are shown as orange and blue dashed lines, respectively.

Crystal data

C23H21N3O2S·C2H6O F(000) = 952
Mr = 449.56 Dx = 1.327 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4495 reflections
a = 15.7556 (9) Å θ = 2.5–27.5°
b = 9.1789 (4) Å µ = 0.18 mm1
c = 16.7515 (10) Å T = 100 K
β = 111.718 (7)° Prsim, light-brown
V = 2250.6 (2) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 5196 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3971 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.036
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.6°
ω scan h = −20→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −11→11
Tmin = 0.761, Tmax = 1.000 l = −17→21
15054 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0701P)2 + 1.7118P] where P = (Fo2 + 2Fc2)/3
5196 reflections (Δ/σ)max = 0.001
301 parameters Δρmax = 0.81 e Å3
3 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56232 (4) 0.84182 (6) 0.60754 (4) 0.02401 (16)
O1 0.62832 (11) 0.73972 (19) 0.66013 (11) 0.0328 (4)
O2 0.52421 (11) 0.82084 (18) 0.51577 (10) 0.0295 (4)
O3 0.78024 (13) 0.5436 (2) 0.69624 (13) 0.0455 (5)
N1 0.17020 (12) 0.91470 (19) 0.67783 (11) 0.0199 (4)
N2 0.25282 (13) 0.8494 (2) 0.72722 (12) 0.0251 (4)
N3 0.61120 (13) 0.9993 (2) 0.62362 (14) 0.0275 (4)
C1 0.11176 (15) 0.8807 (3) 0.71164 (14) 0.0243 (5)
C2 0.01730 (15) 0.9315 (2) 0.68075 (14) 0.0220 (5)
C3 −0.02015 (15) 1.0140 (2) 0.60582 (14) 0.0235 (5)
H3 0.0168 1.0402 0.5743 0.028*
C4 −0.10982 (16) 1.0577 (3) 0.57728 (16) 0.0283 (5)
H4 −0.1348 1.1142 0.5264 0.034*
C5 −0.16410 (16) 1.0184 (3) 0.62350 (17) 0.0315 (5)
H5 −0.2264 1.0472 0.6037 0.038*
C6 −0.12745 (17) 0.9380 (3) 0.69772 (17) 0.0310 (5)
H6 −0.1652 0.9116 0.7284 0.037*
C7 −0.03598 (16) 0.8944 (3) 0.72900 (16) 0.0272 (5)
C8 0.00372 (18) 0.8092 (3) 0.81182 (17) 0.0358 (6)
H8A −0.0152 0.7060 0.8002 0.043*
H8B −0.0223 0.8472 0.8532 0.043*
C9 0.10743 (18) 0.8158 (3) 0.85304 (17) 0.0360 (6)
H9A 0.1270 0.9154 0.8749 0.043*
H9B 0.1295 0.7473 0.9021 0.043*
C10 0.14749 (17) 0.7754 (3) 0.78660 (16) 0.0302 (5)
H10 0.1262 0.6752 0.7650 0.036*
C11 0.25155 (16) 0.7839 (3) 0.80769 (15) 0.0262 (5)
H11 0.2768 0.6828 0.8135 0.031*
C12 0.30768 (16) 0.8718 (2) 0.88630 (15) 0.0263 (5)
C13 0.3217 (2) 1.0205 (3) 0.88187 (17) 0.0360 (6)
H13 0.2957 1.0694 0.8283 0.043*
C14 0.3723 (2) 1.0976 (3) 0.95360 (19) 0.0465 (7)
H14 0.3820 1.1990 0.9492 0.056*
C15 0.4096 (2) 1.0290 (3) 1.0325 (2) 0.0509 (8)
H15 0.4447 1.0828 1.0822 0.061*
C16 0.3952 (2) 0.8806 (3) 1.03832 (19) 0.0480 (7)
H16 0.4194 0.8330 1.0924 0.058*
C17 0.34566 (19) 0.8023 (3) 0.96556 (17) 0.0363 (6)
H17 0.3375 0.7004 0.9696 0.044*
C18 0.32543 (14) 0.8521 (2) 0.70087 (14) 0.0192 (4)
C19 0.31803 (14) 0.9196 (2) 0.62303 (14) 0.0208 (4)
H19 0.2631 0.9679 0.5895 0.025*
C20 0.39002 (15) 0.9158 (2) 0.59542 (14) 0.0223 (5)
H20 0.3844 0.9610 0.5427 0.027*
C21 0.47139 (14) 0.8456 (2) 0.64448 (14) 0.0210 (4)
C22 0.48012 (15) 0.7814 (2) 0.72190 (15) 0.0236 (5)
H22 0.5356 0.7347 0.7556 0.028*
C23 0.40790 (15) 0.7853 (2) 0.75024 (14) 0.0236 (5)
H23 0.4145 0.7420 0.8037 0.028*
C24 0.7520 (3) 0.4101 (4) 0.6419 (2) 0.0558 (8)
H24A 0.8069 0.3642 0.6373 0.067*
H24B 0.7250 0.3397 0.6706 0.067*
C25 0.6861 (3) 0.4394 (4) 0.5558 (3) 0.0666 (10)
H25A 0.6701 0.3481 0.5234 0.100*
H25B 0.7128 0.5071 0.5264 0.100*
H25C 0.6309 0.4829 0.5597 0.100*
H1n 0.6416 (19) 1.014 (4) 0.6783 (8) 0.054 (10)*
H2n 0.5739 (14) 1.066 (2) 0.5919 (14) 0.028 (7)*
H3o 0.7383 (16) 0.605 (3) 0.687 (2) 0.054 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0220 (3) 0.0289 (3) 0.0241 (3) 0.0055 (2) 0.0119 (2) −0.0008 (2)
O1 0.0288 (9) 0.0381 (9) 0.0339 (10) 0.0136 (7) 0.0143 (8) 0.0045 (8)
O2 0.0310 (9) 0.0369 (9) 0.0238 (9) 0.0034 (7) 0.0139 (7) −0.0061 (7)
O3 0.0360 (10) 0.0508 (12) 0.0452 (12) 0.0167 (9) 0.0099 (9) 0.0101 (10)
N1 0.0223 (9) 0.0203 (9) 0.0189 (9) −0.0011 (7) 0.0099 (8) −0.0027 (7)
N2 0.0226 (9) 0.0339 (10) 0.0204 (10) 0.0037 (8) 0.0099 (8) 0.0090 (8)
N3 0.0221 (10) 0.0343 (11) 0.0283 (12) 0.0009 (9) 0.0119 (9) 0.0002 (9)
C1 0.0266 (11) 0.0293 (11) 0.0203 (11) −0.0045 (9) 0.0125 (9) −0.0027 (9)
C2 0.0235 (11) 0.0227 (10) 0.0236 (11) −0.0061 (9) 0.0131 (9) −0.0055 (9)
C3 0.0234 (10) 0.0259 (11) 0.0237 (12) −0.0062 (9) 0.0115 (9) −0.0047 (9)
C4 0.0258 (11) 0.0299 (12) 0.0283 (13) −0.0035 (10) 0.0088 (10) −0.0022 (10)
C5 0.0230 (11) 0.0333 (12) 0.0415 (15) −0.0031 (10) 0.0155 (11) −0.0056 (11)
C6 0.0302 (12) 0.0310 (12) 0.0409 (15) −0.0044 (10) 0.0236 (12) −0.0030 (11)
C7 0.0313 (12) 0.0257 (11) 0.0318 (13) −0.0033 (10) 0.0201 (11) −0.0033 (10)
C8 0.0378 (14) 0.0435 (14) 0.0380 (15) 0.0015 (12) 0.0276 (13) 0.0073 (12)
C9 0.0399 (14) 0.0433 (14) 0.0336 (14) 0.0112 (12) 0.0239 (12) 0.0132 (12)
C10 0.0352 (13) 0.0294 (12) 0.0313 (13) 0.0011 (10) 0.0187 (11) 0.0038 (10)
C11 0.0290 (12) 0.0305 (11) 0.0229 (12) 0.0030 (10) 0.0141 (10) 0.0065 (9)
C12 0.0333 (12) 0.0255 (11) 0.0243 (12) 0.0089 (10) 0.0158 (10) 0.0044 (9)
C13 0.0557 (17) 0.0276 (12) 0.0300 (14) 0.0099 (12) 0.0220 (13) 0.0045 (10)
C14 0.071 (2) 0.0300 (13) 0.0424 (17) −0.0030 (14) 0.0262 (16) −0.0046 (12)
C15 0.068 (2) 0.0465 (17) 0.0341 (16) −0.0026 (15) 0.0144 (15) −0.0128 (13)
C16 0.064 (2) 0.0488 (17) 0.0250 (14) 0.0069 (15) 0.0094 (14) 0.0021 (12)
C17 0.0504 (16) 0.0290 (12) 0.0283 (13) 0.0059 (12) 0.0132 (12) 0.0062 (10)
C18 0.0219 (10) 0.0179 (10) 0.0195 (11) −0.0021 (8) 0.0095 (9) −0.0024 (8)
C19 0.0193 (10) 0.0249 (11) 0.0171 (11) 0.0006 (8) 0.0056 (9) 0.0003 (8)
C20 0.0234 (11) 0.0264 (11) 0.0182 (11) 0.0006 (9) 0.0088 (9) 0.0012 (9)
C21 0.0207 (10) 0.0217 (10) 0.0215 (11) 0.0011 (8) 0.0090 (9) −0.0030 (8)
C22 0.0228 (10) 0.0220 (10) 0.0256 (12) 0.0038 (9) 0.0083 (9) 0.0023 (9)
C23 0.0265 (11) 0.0246 (11) 0.0204 (11) 0.0040 (9) 0.0095 (9) 0.0048 (9)
C24 0.071 (2) 0.0537 (19) 0.052 (2) 0.0154 (17) 0.0332 (18) −0.0003 (15)
C25 0.067 (2) 0.071 (2) 0.064 (3) −0.0048 (19) 0.027 (2) −0.0164 (19)

Geometric parameters (Å, º)

S1—O1 1.4345 (17) C10—C11 1.546 (3)
S1—O2 1.4414 (17) C10—H10 1.0000
S1—N3 1.613 (2) C11—C12 1.518 (3)
S1—C21 1.759 (2) C11—H11 1.0000
O3—C24 1.493 (4) C12—C17 1.393 (3)
O3—H3o 0.839 (10) C12—C13 1.389 (3)
N1—C1 1.285 (3) C13—C14 1.368 (4)
N1—N2 1.393 (3) C13—H13 0.9500
N2—C18 1.370 (3) C14—C15 1.384 (4)
N2—C11 1.483 (3) C14—H14 0.9500
N3—H1n 0.873 (10) C15—C16 1.390 (4)
N3—H2n 0.877 (10) C15—H15 0.9500
C1—C2 1.459 (3) C16—C17 1.381 (4)
C1—C10 1.518 (3) C16—H16 0.9500
C2—C3 1.396 (3) C17—H17 0.9500
C2—C7 1.406 (3) C18—C23 1.398 (3)
C3—C4 1.373 (3) C18—C19 1.409 (3)
C3—H3 0.9500 C19—C20 1.375 (3)
C4—C5 1.397 (3) C19—H19 0.9500
C4—H4 0.9500 C20—C21 1.398 (3)
C5—C6 1.375 (4) C20—H20 0.9500
C5—H5 0.9500 C21—C22 1.384 (3)
C6—C7 1.398 (3) C22—C23 1.386 (3)
C6—H6 0.9500 C22—H22 0.9500
C7—C8 1.512 (3) C23—H23 0.9500
C8—C9 1.522 (4) C24—C25 1.457 (5)
C8—H8A 0.9900 C24—H24A 0.9900
C8—H8B 0.9900 C24—H24B 0.9900
C9—C10 1.515 (3) C25—H25A 0.9800
C9—H9A 0.9900 C25—H25B 0.9800
C9—H9B 0.9900 C25—H25C 0.9800
O1—S1—O2 119.27 (10) N2—C11—C10 100.52 (18)
O1—S1—N3 106.86 (11) C12—C11—C10 116.95 (19)
O2—S1—N3 106.42 (11) N2—C11—H11 109.0
O1—S1—C21 107.25 (10) C12—C11—H11 109.0
O2—S1—C21 107.81 (10) C10—C11—H11 109.0
N3—S1—C21 108.93 (10) C17—C12—C13 118.7 (2)
C24—O3—H3o 114 (2) C17—C12—C11 119.3 (2)
C1—N1—N2 107.35 (18) C13—C12—C11 121.9 (2)
C18—N2—N1 120.57 (17) C14—C13—C12 120.9 (2)
C18—N2—C11 126.45 (18) C14—C13—H13 119.5
N1—N2—C11 112.97 (16) C12—C13—H13 119.5
S1—N3—H1n 111 (2) C13—C14—C15 120.5 (3)
S1—N3—H2n 110.5 (17) C13—C14—H14 119.8
H1n—N3—H2n 121 (3) C15—C14—H14 119.8
N1—C1—C2 124.7 (2) C14—C15—C16 119.4 (3)
N1—C1—C10 114.3 (2) C14—C15—H15 120.3
C2—C1—C10 120.91 (19) C16—C15—H15 120.3
C3—C2—C7 120.3 (2) C17—C16—C15 120.1 (3)
C3—C2—C1 121.89 (19) C17—C16—H16 119.9
C7—C2—C1 117.8 (2) C15—C16—H16 119.9
C4—C3—C2 120.6 (2) C16—C17—C12 120.4 (3)
C4—C3—H3 119.7 C16—C17—H17 119.8
C2—C3—H3 119.7 C12—C17—H17 119.8
C3—C4—C5 119.6 (2) N2—C18—C23 120.35 (19)
C3—C4—H4 120.2 N2—C18—C19 120.88 (19)
C5—C4—H4 120.2 C23—C18—C19 118.76 (19)
C6—C5—C4 120.1 (2) C20—C19—C18 120.3 (2)
C6—C5—H5 120.0 C20—C19—H19 119.9
C4—C5—H5 120.0 C18—C19—H19 119.9
C5—C6—C7 121.5 (2) C19—C20—C21 120.4 (2)
C5—C6—H6 119.3 C19—C20—H20 119.8
C7—C6—H6 119.3 C21—C20—H20 119.8
C6—C7—C2 117.9 (2) C22—C21—C20 119.90 (19)
C6—C7—C8 120.8 (2) C22—C21—S1 120.66 (17)
C2—C7—C8 121.4 (2) C20—C21—S1 119.44 (16)
C7—C8—C9 113.95 (19) C21—C22—C23 120.0 (2)
C7—C8—H8A 108.8 C21—C22—H22 120.0
C9—C8—H8A 108.8 C23—C22—H22 120.0
C7—C8—H8B 108.8 C22—C23—C18 120.6 (2)
C9—C8—H8B 108.8 C22—C23—H23 119.7
H8A—C8—H8B 107.7 C18—C23—H23 119.7
C10—C9—C8 109.0 (2) C25—C24—O3 113.2 (3)
C10—C9—H9A 109.9 C25—C24—H24A 108.9
C8—C9—H9A 109.9 O3—C24—H24A 108.9
C10—C9—H9B 109.9 C25—C24—H24B 108.9
C8—C9—H9B 109.9 O3—C24—H24B 108.9
H9A—C9—H9B 108.3 H24A—C24—H24B 107.7
C9—C10—C1 108.90 (19) C24—C25—H25A 109.5
C9—C10—C11 121.0 (2) C24—C25—H25B 109.5
C1—C10—C11 101.19 (17) H25A—C25—H25B 109.5
C9—C10—H10 108.4 C24—C25—H25C 109.5
C1—C10—H10 108.4 H25A—C25—H25C 109.5
C11—C10—H10 108.4 H25B—C25—H25C 109.5
N2—C11—C12 111.94 (19)
C1—N1—N2—C18 172.3 (2) C9—C10—C11—C12 −16.4 (3)
C1—N1—N2—C11 −8.9 (2) C1—C10—C11—C12 103.9 (2)
N2—N1—C1—C2 177.9 (2) N2—C11—C12—C17 −153.5 (2)
N2—N1—C1—C10 −4.5 (3) C10—C11—C12—C17 91.3 (3)
N1—C1—C2—C3 5.3 (3) N2—C11—C12—C13 27.2 (3)
C10—C1—C2—C3 −172.2 (2) C10—C11—C12—C13 −88.0 (3)
N1—C1—C2—C7 −174.8 (2) C17—C12—C13—C14 0.5 (4)
C10—C1—C2—C7 7.8 (3) C11—C12—C13—C14 179.8 (2)
C7—C2—C3—C4 −1.3 (3) C12—C13—C14—C15 −1.0 (4)
C1—C2—C3—C4 178.6 (2) C13—C14—C15—C16 0.1 (5)
C2—C3—C4—C5 −0.3 (3) C14—C15—C16—C17 1.3 (5)
C3—C4—C5—C6 0.8 (4) C15—C16—C17—C12 −1.8 (5)
C4—C5—C6—C7 0.3 (4) C13—C12—C17—C16 0.9 (4)
C5—C6—C7—C2 −1.9 (4) C11—C12—C17—C16 −178.5 (2)
C5—C6—C7—C8 178.5 (2) N1—N2—C18—C23 −179.40 (19)
C3—C2—C7—C6 2.3 (3) C11—N2—C18—C23 2.0 (3)
C1—C2—C7—C6 −177.6 (2) N1—N2—C18—C19 −0.6 (3)
C3—C2—C7—C8 −178.0 (2) C11—N2—C18—C19 −179.3 (2)
C1—C2—C7—C8 2.1 (3) N2—C18—C19—C20 −177.0 (2)
C6—C7—C8—C9 −159.6 (2) C23—C18—C19—C20 1.8 (3)
C2—C7—C8—C9 20.8 (3) C18—C19—C20—C21 −0.3 (3)
C7—C8—C9—C10 −51.6 (3) C19—C20—C21—C22 −0.9 (3)
C8—C9—C10—C1 58.8 (3) C19—C20—C21—S1 179.81 (17)
C8—C9—C10—C11 175.3 (2) O1—S1—C21—C22 12.3 (2)
N1—C1—C10—C9 143.4 (2) O2—S1—C21—C22 141.86 (18)
C2—C1—C10—C9 −38.9 (3) N3—S1—C21—C22 −103.05 (19)
N1—C1—C10—C11 14.9 (3) O1—S1—C21—C20 −168.51 (17)
C2—C1—C10—C11 −167.4 (2) O2—S1—C21—C20 −38.9 (2)
C18—N2—C11—C12 71.2 (3) N3—S1—C21—C20 76.2 (2)
N1—N2—C11—C12 −107.5 (2) C20—C21—C22—C23 0.7 (3)
C18—N2—C11—C10 −163.9 (2) S1—C21—C22—C23 179.98 (17)
N1—N2—C11—C10 17.4 (2) C21—C22—C23—C18 0.7 (3)
C9—C10—C11—N2 −137.8 (2) N2—C18—C23—C22 176.8 (2)
C1—C10—C11—N2 −17.5 (2) C19—C18—C23—C22 −2.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3o···O1 0.84 (1) 2.04 (1) 2.875 (2) 175 (3)
N3—H1n···O3i 0.87 (1) 2.02 (1) 2.894 (3) 176 (3)
N3—H2n···O2ii 0.88 (1) 2.16 (1) 3.007 (3) 163 (2)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5573).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Makki, M. S. I. T. & Ng, S. W. (2011). Acta Cryst. E67, o2441. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluorine Chem. 132, 131–137.
  5. Faidallah, H. M. & Makki, M. S. I. (1994). J. Chin. Chem. Soc. 41, 585–589.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812028474/xu5573sup1.cif

e-68-o2258-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028474/xu5573Isup2.hkl

e-68-o2258-Isup2.hkl (254.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028474/xu5573Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES