Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2272–o2273. doi: 10.1107/S1600536812029017

1,6-Bis[(2,2′:6′,2′′-terpyridin-4′-yl)­oxy]hexa­ne

Varvara I Nikolayenko a,*, Matthew P Akerman a, Craig D Grimmer a, Desigan Reddy a
PMCID: PMC3394054  PMID: 22798919

Abstract

The mol­ecule of the title compound, C36H32N6O2, lies about an inversion center, located at the mid-point of the central C—C bond of the diether bridge. The terminal pyridine rings form dihedral angles of 4.67 (7) and 26.23 (7)° with the central ring. In the crystal, weak C—H⋯N and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature  

For the structure of the unsubstituted 2,2′:6′,2"-terpyridine, see: Bessel et al. (1992). For the structure of the precursor to the title compound, 4′-chloro-2,2′:6′,2"-terpyridine, see: Beves et al. (2006). For the structure of the 1,4-bis­[(2,2′:6′,2"-terpyridin-4′-yl)­oxy]-butane, see: Akerman et al. (2011). For a full review of functionalized 2,2′:6′,2"-terpyridine complexes, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive summary of platinum(II) terpyridine complexes, see: Newkome et al. (2008). For the structure of bis­(2,2′:6′,2"-terpyrid­yl)ether, see: Constable et al. (1995). For the structure of related bis­(terpyridine) compounds, linked by an alk­oxy spacer, see: Constable et al. (2006). For the synthetic procedure, see: Constable et al. (2005); Van der Schilden (2006).graphic file with name e-68-o2272-scheme1.jpg

Experimental  

Crystal data  

  • C36H32N6O2

  • M r = 580.7

  • Orthorhombic, Inline graphic

  • a = 15.139 (5) Å

  • b = 11.428 (5) Å

  • c = 16.760 (5) Å

  • V = 2899.6 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.967, T max = 0.983

  • 20354 measured reflections

  • 2859 independent reflections

  • 2098 reflections with I > 2σ(I)

  • R int = 0.064

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.100

  • S = 0.94

  • 2859 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029017/yk2063sup1.cif

e-68-o2272-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029017/yk2063Isup2.hkl

e-68-o2272-Isup2.hkl (137.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029017/yk2063Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Short intermolecular contacts (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Oi 0.95 2.65 3.575 (2) 164
C1—H1⋯N3ii 0.95 2.71 3.654 (2) 174
C4—H4⋯N1iii 0.95 2.65 3.402 (2) 136
C2—H2⋯Oii 0.95 2.69 3.627 (2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We wish to thank the Univeristy of Kwazulu-Natal for supporting this research by providing both funding and facilities.

supplementary crystallographic information

Comment

The title compound is the second in a series of ligands developed in an effort to harness multifunctional activity. Coordination of these ligands to platinum(II) should enable covalent binding of DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the orthorhombic space group Pbca, with a half molecule in the asymmetric unit and Z = 4. Crystallographically imposed inversion symmetry relates two halves of the ligand. The inversion center is located at the mid-point of the diol linkage. The three pyridine rings adopt a trans, trans conformation. The same configuration is observed in the parent 4'-chloro-2,2': 6',2''- terpyridine (Beves et al., 2006) and is a common feature of uncoordinated terpyridine ligands in general (Akerman et al., 2011; Bessel et al., 1992).

The central pyridine ring of the terpyridine fragment lie in the same plane as the bridging chain. The terminal pyridine rings are, however, canted relative to the central ring. The C7–C6–C5–N1 torsion angle is -25.8 (2)°, while the C9–C10–C11–N3 torsion angle is 4.9 (2)° (Fig. 1). The large torsion angle formed by one of terminal pyridine groups with the central ring is seemingly to allow for interaction between the pyridine N1 atom and the hydrogen atom H4 of an adjacent molecule, with the distance of 2.65 Å. There are also other short contacts C—H···O and C—H···N, ranging from 2.65 to 2.71 Å. These contacts link the molecules into a herringbone pattern (Figure 2). There is no indication of meaningful π··· π or C–H··· π interactions in the lattice, which are often observed in terpyridine structures (Beves et al. 2006).

Experimental

The title compound was prepared by an adaptation of a previously described method (Van der Schilden, 2006; Constable et al., 2005). Hexanediol (1.13 mmol) was added to a suspension of ground potassium hydroxide (6.69 mmol) in DMSO (30 ml). The solution was heated to reflux for 1 h after which 4'-chloro-2,2':6',2''-terpyridine (2.23 mmol) was added. The mixture was again brought to reflux for an additional 24 h. After cooling to room temperature, the brown mixture was added to cold water (100 ml). The resulting off-white precipitate was filtered, rinsed with cold ethanol and air dried. Single crystals were grown by slow liquid diffusion of n-hexane into a chloroform solution of the compound.

Refinement

All non-hydrogen atoms were located in the difference Fourier map and refined anisotropically. The positions of all hydrogen atoms were calculated using the riding model with C—H(aromatic) and C—H(methylene) distances of 0.93 Å and Uiso = 1.2 Ueq.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Intermolecular C—H···O and C—H···N contacts responsible for the three-dimensional network in crystals of the title compound, viewed down the b axis.

Crystal data

C36H32N6O2 F(000) = 1224
Mr = 580.7 Dx = 1.330 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2098 reflections
a = 15.139 (5) Å θ = 3.2–26.0°
b = 11.428 (5) Å µ = 0.09 mm1
c = 16.760 (5) Å T = 100 K
V = 2899.6 (18) Å3 Needle, colourless
Z = 4 0.40 × 0.20 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur 2 CCD diffractometer 2859 independent reflections
Radiation source: fine-focus sealed tube 2098 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
ω scans at fixed θ angles θmax = 26.1°, θmin = 3.2°
Absorption correction: multi-scan (Blessing, 1995) h = −18→18
Tmin = 0.967, Tmax = 0.983 k = −12→14
20354 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.P] where P = (Fo2 + 2Fc2)/3
2859 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.33229 (9) 0.02089 (12) 0.29739 (9) 0.0207 (3)
H1 0.3600 −0.0452 0.2738 0.025*
C2 0.34439 (10) 0.13004 (12) 0.26216 (9) 0.0251 (4)
H2 0.3790 0.1379 0.2152 0.030*
C3 0.30541 (10) 0.22649 (12) 0.29648 (9) 0.0242 (3)
H3 0.3124 0.3019 0.2734 0.029*
C4 0.25569 (9) 0.21180 (12) 0.36541 (8) 0.0203 (3)
H4 0.2288 0.2770 0.3907 0.024*
C5 0.24615 (9) 0.10061 (12) 0.39646 (8) 0.0168 (3)
C6 0.19174 (9) 0.07961 (12) 0.46867 (8) 0.0165 (3)
C7 0.15172 (9) −0.02860 (12) 0.48099 (8) 0.0176 (3)
H7 0.1608 −0.0915 0.4448 0.021*
C8 0.09834 (9) −0.04198 (12) 0.54744 (8) 0.0171 (3)
C9 0.08764 (9) 0.05263 (12) 0.59918 (8) 0.0181 (3)
H9 0.0506 0.0462 0.6447 0.022*
C10 0.13161 (9) 0.15523 (12) 0.58311 (8) 0.0169 (3)
C11 0.12409 (9) 0.25867 (12) 0.63712 (8) 0.0183 (3)
C12 0.16340 (10) 0.36471 (12) 0.61690 (9) 0.0210 (3)
H12 0.1964 0.3725 0.5690 0.025*
C13 0.15333 (10) 0.45889 (13) 0.66836 (9) 0.0249 (4)
H13 0.1788 0.5327 0.6559 0.030*
C14 0.10571 (10) 0.44385 (13) 0.73784 (9) 0.0251 (4)
H14 0.0972 0.5071 0.7738 0.030*
C15 0.07083 (10) 0.33492 (13) 0.75376 (9) 0.0248 (4)
H15 0.0398 0.3245 0.8025 0.030*
C16 0.06992 (9) −0.24153 (11) 0.51510 (9) 0.0194 (3)
H16A 0.1330 −0.2642 0.5175 0.023*
H16B 0.0554 −0.2212 0.4592 0.023*
C17 0.01309 (10) −0.34175 (11) 0.54245 (9) 0.0197 (3)
H17A −0.0499 −0.3192 0.5396 0.024*
H17B 0.0272 −0.3612 0.5986 0.024*
C18 0.02948 (9) −0.44830 (11) 0.48956 (9) 0.0194 (3)
H18A 0.0192 −0.4263 0.4332 0.023*
H18B 0.0920 −0.4722 0.4948 0.023*
N1 0.28336 (8) 0.00494 (10) 0.36295 (7) 0.0196 (3)
N2 0.18298 (8) 0.17077 (9) 0.51806 (7) 0.0176 (3)
N3 0.07781 (8) 0.24306 (10) 0.70493 (7) 0.0205 (3)
O 0.05447 (6) −0.14203 (8) 0.56613 (6) 0.0204 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0226 (8) 0.0216 (8) 0.0178 (7) −0.0008 (6) 0.0034 (6) −0.0049 (6)
C2 0.0274 (9) 0.0297 (9) 0.0183 (8) −0.0054 (6) 0.0059 (6) −0.0001 (7)
C3 0.0310 (8) 0.0187 (7) 0.0230 (8) −0.0061 (6) 0.0010 (7) 0.0019 (6)
C4 0.0230 (8) 0.0180 (7) 0.0198 (7) −0.0019 (6) −0.0002 (6) −0.0025 (6)
C5 0.0176 (7) 0.0190 (7) 0.0137 (7) −0.0016 (6) −0.0026 (6) −0.0010 (6)
C6 0.0175 (7) 0.0164 (7) 0.0155 (7) 0.0008 (5) −0.0018 (6) 0.0011 (6)
C7 0.0202 (8) 0.0157 (7) 0.0168 (7) 0.0005 (5) −0.0006 (6) −0.0014 (6)
C8 0.0175 (7) 0.0149 (7) 0.0189 (7) −0.0013 (5) −0.0029 (6) 0.0024 (6)
C9 0.0203 (8) 0.0199 (7) 0.0141 (7) 0.0011 (6) −0.0001 (6) 0.0000 (6)
C10 0.0173 (7) 0.0184 (7) 0.0150 (7) 0.0019 (5) −0.0017 (6) 0.0000 (6)
C11 0.0185 (7) 0.0194 (7) 0.0172 (7) 0.0015 (6) −0.0016 (6) −0.0023 (6)
C12 0.0228 (8) 0.0210 (8) 0.0191 (8) −0.0016 (6) 0.0006 (6) −0.0015 (6)
C13 0.0268 (8) 0.0179 (8) 0.0299 (8) −0.0012 (6) −0.0026 (7) −0.0035 (6)
C14 0.0265 (8) 0.0243 (8) 0.0246 (8) 0.0020 (6) −0.0016 (7) −0.0090 (7)
C15 0.0251 (8) 0.0284 (8) 0.0209 (8) 0.0028 (7) 0.0015 (7) −0.0047 (7)
C16 0.0237 (7) 0.0146 (7) 0.0198 (7) −0.0008 (6) 0.0020 (6) −0.0018 (6)
C17 0.0228 (8) 0.0164 (7) 0.0199 (8) −0.0006 (6) 0.0014 (6) −0.0002 (6)
C18 0.0212 (8) 0.0163 (7) 0.0208 (7) −0.0008 (6) 0.0023 (6) −0.0004 (6)
N1 0.0215 (6) 0.0190 (6) 0.0184 (6) 0.0003 (5) 0.0008 (5) −0.0016 (5)
N2 0.0205 (6) 0.0165 (6) 0.0159 (6) 0.0007 (5) −0.0010 (5) −0.0004 (5)
N3 0.0226 (6) 0.0214 (6) 0.0175 (6) 0.0001 (5) 0.0023 (5) −0.0025 (5)
O 0.0262 (6) 0.0146 (5) 0.0203 (5) −0.0041 (4) 0.0044 (4) −0.0012 (4)

Geometric parameters (Å, º)

C1—N1 1.3374 (18) C10—N2 1.3508 (18)
C1—C2 1.392 (2) C10—C11 1.4934 (19)
C2—C3 1.377 (2) C11—N3 1.3467 (18)
C3—C4 1.389 (2) C11—C12 1.391 (2)
C4—C5 1.380 (2) C12—C13 1.388 (2)
C5—N1 1.3527 (18) C13—C14 1.380 (2)
C5—C6 1.4833 (19) C14—C15 1.378 (2)
C6—N2 1.3374 (18) C15—N3 1.3354 (18)
C6—C7 1.3917 (19) C16—O 1.4422 (17)
C7—C8 1.3845 (19) C16—C17 1.5031 (19)
C8—O 1.3581 (17) C17—C18 1.527 (2)
C8—C9 1.395 (2) C18—C18i 1.521 (3)
C9—C10 1.374 (2)
N1—C1—C2 122.88 (13) N2—C10—C11 115.45 (12)
C3—C2—C1 118.96 (14) C9—C10—C11 121.29 (12)
C2—C3—C4 118.91 (13) N3—C11—C12 122.87 (13)
C5—C4—C3 118.73 (13) N3—C11—C10 116.54 (12)
N1—C5—C4 122.98 (13) C12—C11—C10 120.59 (13)
N1—C5—C6 116.09 (12) C13—C12—C11 118.48 (14)
C4—C5—C6 120.91 (12) C14—C13—C12 119.06 (14)
N2—C6—C7 123.83 (13) C15—C14—C13 118.38 (14)
N2—C6—C5 115.77 (12) N3—C15—C14 124.12 (14)
C7—C6—C5 120.39 (12) O—C16—C17 109.06 (11)
C8—C7—C6 118.09 (13) C16—C17—C18 109.71 (12)
O—C8—C7 124.28 (12) C18i—C18—C17 112.98 (15)
O—C8—C9 116.87 (12) C1—N1—C5 117.52 (12)
C7—C8—C9 118.86 (13) C6—N2—C10 117.06 (11)
C10—C9—C8 118.87 (13) C15—N3—C11 117.05 (12)
N2—C10—C9 123.26 (13) C8—O—C16 116.58 (11)
N1—C1—C2—C3 0.8 (2) N3—C11—C12—C13 −1.0 (2)
C1—C2—C3—C4 0.4 (2) C10—C11—C12—C13 178.92 (12)
C2—C3—C4—C5 −0.9 (2) C11—C12—C13—C14 0.7 (2)
C3—C4—C5—N1 0.3 (2) C12—C13—C14—C15 0.7 (2)
C3—C4—C5—C6 −178.31 (13) C13—C14—C15—N3 −2.1 (2)
N1—C5—C6—N2 155.72 (12) O—C16—C17—C18 −179.36 (11)
C4—C5—C6—N2 −25.62 (19) C16—C17—C18—C18i −176.75 (15)
N1—C5—C6—C7 −25.77 (19) C2—C1—N1—C5 −1.4 (2)
C4—C5—C6—C7 152.89 (13) C4—C5—N1—C1 0.9 (2)
N2—C6—C7—C8 1.3 (2) C6—C5—N1—C1 179.51 (12)
C5—C6—C7—C8 −177.08 (12) C7—C6—N2—C10 −0.4 (2)
C6—C7—C8—O 179.13 (13) C5—C6—N2—C10 178.08 (12)
C6—C7—C8—C9 −0.5 (2) C9—C10—N2—C6 −1.4 (2)
O—C8—C9—C10 179.26 (12) C11—C10—N2—C6 179.51 (12)
C7—C8—C9—C10 −1.1 (2) C14—C15—N3—C11 1.8 (2)
C8—C9—C10—N2 2.1 (2) C12—C11—N3—C15 −0.2 (2)
C8—C9—C10—C11 −178.83 (12) C10—C11—N3—C15 179.86 (12)
N2—C10—C11—N3 −175.94 (12) C7—C8—O—C16 3.91 (19)
C9—C10—C11—N3 4.92 (19) C9—C8—O—C16 −176.42 (12)
N2—C10—C11—C12 4.17 (19) C17—C16—O—C8 −177.42 (11)
C9—C10—C11—C12 −174.98 (14)

Symmetry code: (i) −x, −y−1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···Oii 0.95 2.65 3.575 (2) 164
C1—H1···N3iii 0.95 2.71 3.654 (2) 174
C4—H4···N1iv 0.95 2.65 3.402 (2) 136
C2—H2···Oiii 0.95 2.69 3.627 (2) 168

Symmetry codes: (ii) −x, y+1/2, −z+3/2; (iii) −x+1/2, −y, z−1/2; (iv) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2063).

References

  1. Akerman, M. P., Grimmer, C. D., Nikolayenko, V. I. & Reddy, D. (2011). Acta Cryst. E67, o3478–o3479. [DOI] [PMC free article] [PubMed]
  2. Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.
  3. Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497–o2498. [DOI] [PubMed]
  4. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  5. Constable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831–1843.
  6. Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259–2267. [DOI] [PubMed]
  7. Constable, E. C., Thompson, A. M., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360–367.
  8. Fallahpour, R. A. (2003). Synthesis, 2, 155–184.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. 6, 947–961.
  11. Newkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834–1895. [DOI] [PubMed]
  12. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Van der Schilden, K. (2006). PhD thesis, Leiden University, The Netherlands.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029017/yk2063sup1.cif

e-68-o2272-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029017/yk2063Isup2.hkl

e-68-o2272-Isup2.hkl (137.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029017/yk2063Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES