Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2274. doi: 10.1107/S1600536812028334

5-Hy­droxy-6-[(E)-2-phenyl­ethen­yl]-5,6-dihydro-2H-pyran-2-one isolated from Goniothalamus ridleyi

Samsiah Jusoh a, Laily B Din a, Zuriati Zakaria a, Hamid Khaledi b,*
PMCID: PMC3394055  PMID: 22798920

Abstract

In the title compound, C13H12O3, the pyran ring adopts a half-chair conformation with a C atom deviating from the least-squares plane of the remaining ring atoms by 0.606 (2) Å. This plane and that of the benzene ring make a dihedral angle of 44.18 (6)°. In the crystal, mol­ecules are linked through O—H⋯O hydrogen bonds into infinite chains along the b axis, and these chains are cross-linked by C—H⋯O hydrogen bonded into sheets lying parallel to the bc plane. The layers are further connected via C—H⋯π inter­actions to form a three-dimensional supra­molecular structure.

Related literature  

For spectroscopic characterization of the 5β-hy­droxy­goniothalamin, see: Goh et al. (1995). For the crystal structures of some similar compounds, see: Fun et al. (1995); Tuchinda et al. (2006).graphic file with name e-68-o2274-scheme1.jpg

Experimental  

Crystal data  

  • C13H12O3

  • M r = 216.23

  • Monoclinic, Inline graphic

  • a = 6.5442 (8) Å

  • b = 11.0267 (14) Å

  • c = 8.0991 (10) Å

  • β = 111.402 (2)°

  • V = 544.14 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.18 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.973, T max = 0.994

  • 2559 measured reflections

  • 1250 independent reflections

  • 1220 reflections with I > 2σ(I)

  • R int = 0.012

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.069

  • S = 1.08

  • 1250 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028334/pv2562sup1.cif

e-68-o2274-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028334/pv2562Isup2.hkl

e-68-o2274-Isup2.hkl (61.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028334/pv2562Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.87 (3) 1.95 (3) 2.8026 (19) 170 (2)
C12—H12⋯O1ii 0.95 2.53 3.427 (2) 157
C9—H9⋯Cg ii 1.00 2.97 3.747 (2) 135
C10—H10⋯Cg iii 1.00 2.80 3.6561 (18) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was financially supported by UKM grant (grant No. UKM-DLP-2012–033). We are grateful to Dr Shamsul Khamis for the assistance in identifying plant material.

supplementary crystallographic information

Comment

The title compound was isolated from the roots of Goniothalamus ridleyi and found to be the same styrylpyrone isolated from the stem bark of Goniothalamus dolichocarpus (Goh et al., 1995). In agreement with the structures of similar molecules (Fun et al., 1995; Tuchinda et al., 2006), the pyran ring in the title molecule adopts a half-chair conformation with C9 displaced by 0.606 (2) Å from the plane of the remaining ring atoms (C10/C11/C12/C13/O3). This plane and the benzene ring make a dihedral angle of 44.18 (6)°. The crystal packing comprises three dimensional network formed by O—H···O, C—H···O and C—H···π interactions (Table 1, Fig. 2).

Experimental

Samples of the roots of G. ridleyi were collected from Post Brooke, Gua Musang, Kelantan, Malaysia. The roots were dried in an oven (323 K), ground and extracted using cool extraction. The extraction using three types of solvents i. e., hexane, chloroform and methanol gave three crude extracts. The chloroform crude extract (9.57 g) was separated using vacuum liquid chromatography (VLC). A mixture solvent of ethyl acetate and methanol as eluent solvent gave 12 fractions. TLC profiles showed fractions 1–3 were identical. Therefore, these fractions has been selected for further separation using column chromatography (CC) with eluent solvents hexane and ethyl acetate; 178 vials were collected and vials 157–165 have been selected for preparative TLC (PTLC) using hexane:ethyl acetate (9:11). GRAB 6 (0.0617 g) with Rf 0.46 in solvent system hexane: ethyl acetate (5:5) was crystallized from a mixture of ethyl acetate and n-hexane (1:1) at room temperature.

Refinement

The C-bound hydrogen atoms were located in the calculated positions and refined in a riding mode with C—H distances of 0.95 (Csp2) and 1.000 (Csp3) Å. The O-bound H atom was found in a difference Fourier map and refined freely. For all hydrogen atoms, Uiso were set to 1.2Ueq(carrier atom). In the absence of significant anomalous scattering effects Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the O—H···O, C—H···O and C—H···π interactions in the structure. Hydrogen atoms, except those involved in hydrogen bonding, are ommited. Symmetry codes: ' = -x + 1, y - 1/2; '' = x - 1, y, z; ''' = -x + 2, y - 1/2, -z + 1.

Crystal data

C13H12O3 F(000) = 228
Mr = 216.23 Dx = 1.320 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1643 reflections
a = 6.5442 (8) Å θ = 2.7–29.6°
b = 11.0267 (14) Å µ = 0.09 mm1
c = 8.0991 (10) Å T = 100 K
β = 111.402 (2)° Plate, colorless
V = 544.14 (12) Å3 0.30 × 0.18 × 0.06 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 1250 independent reflections
Radiation source: fine-focus sealed tube 1220 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.012
φ and ω scans θmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.973, Tmax = 0.994 k = −12→14
2559 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.0929P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1250 reflections Δρmax = 0.18 e Å3
148 parameters Δρmin = −0.18 e Å3
1 restraint Absolute structure: 749 Friedel pairs were merged
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6604 (2) 0.26455 (12) −0.01641 (17) 0.0203 (3)
H1A 0.720 (4) 0.194 (2) −0.012 (3) 0.024*
O2 0.12430 (19) 0.53996 (12) −0.04165 (17) 0.0225 (3)
O3 0.46365 (18) 0.48046 (11) 0.10232 (16) 0.0185 (3)
C1 1.2436 (3) 0.59025 (18) 0.3976 (2) 0.0217 (4)
H1 1.1293 0.6247 0.2994 0.026*
C2 1.4539 (3) 0.63794 (18) 0.4495 (2) 0.0248 (4)
H2 1.4827 0.7041 0.3862 0.030*
C3 1.6224 (3) 0.58916 (18) 0.5938 (3) 0.0237 (4)
H3 1.7666 0.6215 0.6292 0.028*
C4 1.5782 (3) 0.49275 (18) 0.6858 (2) 0.0221 (4)
H4 1.6928 0.4591 0.7846 0.027*
C5 1.3677 (3) 0.44522 (17) 0.6346 (2) 0.0187 (3)
H5 1.3388 0.3801 0.6997 0.022*
C6 1.1977 (3) 0.49255 (16) 0.4877 (2) 0.0173 (3)
C7 0.9754 (3) 0.43928 (17) 0.4324 (2) 0.0191 (3)
H7 0.9309 0.4056 0.5219 0.023*
C8 0.8338 (3) 0.43534 (17) 0.2661 (2) 0.0186 (3)
H8 0.8795 0.4654 0.1752 0.022*
C9 0.6060 (3) 0.38607 (15) 0.2147 (2) 0.0172 (3)
H9 0.5705 0.3771 0.3242 0.021*
C10 0.5697 (2) 0.26443 (16) 0.1191 (2) 0.0176 (3)
H10 0.6423 0.1994 0.2070 0.021*
C11 0.3265 (3) 0.23880 (16) 0.0389 (2) 0.0200 (4)
H11 0.2771 0.1573 0.0154 0.024*
C12 0.1802 (3) 0.32814 (17) 0.0004 (2) 0.0203 (4)
H12 0.0282 0.3092 −0.0406 0.024*
C13 0.2497 (3) 0.45594 (16) 0.0204 (2) 0.0179 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0233 (6) 0.0155 (6) 0.0254 (6) 0.0005 (5) 0.0130 (5) −0.0002 (5)
O2 0.0178 (6) 0.0187 (6) 0.0302 (7) 0.0013 (5) 0.0079 (5) 0.0025 (5)
O3 0.0136 (5) 0.0159 (6) 0.0237 (6) −0.0004 (4) 0.0040 (4) 0.0009 (5)
C1 0.0229 (8) 0.0214 (9) 0.0180 (8) 0.0008 (7) 0.0042 (6) 0.0000 (7)
C2 0.0290 (9) 0.0222 (9) 0.0257 (9) −0.0061 (8) 0.0130 (8) −0.0031 (8)
C3 0.0175 (7) 0.0268 (10) 0.0282 (9) −0.0057 (7) 0.0099 (7) −0.0106 (8)
C4 0.0189 (8) 0.0226 (9) 0.0217 (8) 0.0044 (7) 0.0035 (6) −0.0045 (7)
C5 0.0197 (8) 0.0184 (8) 0.0180 (8) 0.0023 (7) 0.0068 (6) −0.0011 (7)
C6 0.0160 (7) 0.0180 (8) 0.0180 (7) 0.0004 (7) 0.0062 (6) −0.0035 (7)
C7 0.0182 (8) 0.0184 (8) 0.0217 (8) 0.0001 (7) 0.0084 (7) −0.0003 (7)
C8 0.0162 (7) 0.0177 (8) 0.0224 (8) −0.0008 (7) 0.0078 (6) −0.0008 (7)
C9 0.0161 (8) 0.0175 (8) 0.0179 (8) 0.0010 (6) 0.0059 (6) 0.0021 (6)
C10 0.0171 (7) 0.0154 (8) 0.0208 (8) −0.0001 (6) 0.0075 (6) 0.0022 (7)
C11 0.0205 (8) 0.0163 (8) 0.0230 (8) −0.0046 (7) 0.0077 (7) −0.0006 (7)
C12 0.0128 (7) 0.0220 (9) 0.0241 (8) −0.0039 (7) 0.0044 (7) 0.0003 (7)
C13 0.0153 (7) 0.0195 (9) 0.0204 (8) −0.0005 (7) 0.0081 (6) 0.0005 (7)

Geometric parameters (Å, º)

O1—C10 1.426 (2) C5—H5 0.9500
O1—H1A 0.87 (3) C6—C7 1.479 (2)
O2—C13 1.218 (2) C7—C8 1.328 (2)
O3—C13 1.3399 (19) C7—H7 0.9500
O3—C9 1.470 (2) C8—C9 1.496 (2)
C1—C2 1.387 (2) C8—H8 0.9500
C1—C6 1.394 (3) C9—C10 1.523 (2)
C1—H1 0.9500 C9—H9 1.0000
C2—C3 1.390 (3) C10—C11 1.510 (2)
C2—H2 0.9500 C10—H10 1.0000
C3—C4 1.388 (3) C11—C12 1.329 (2)
C3—H3 0.9500 C11—H11 0.9500
C4—C5 1.388 (2) C12—C13 1.471 (2)
C4—H4 0.9500 C12—H12 0.9500
C5—C6 1.400 (2)
C10—O1—H1A 106.0 (15) C7—C8—H8 118.3
C13—O3—C9 118.37 (13) C9—C8—H8 118.3
C2—C1—C6 120.93 (16) O3—C9—C8 104.91 (13)
C2—C1—H1 119.5 O3—C9—C10 111.27 (13)
C6—C1—H1 119.5 C8—C9—C10 114.59 (14)
C1—C2—C3 120.21 (18) O3—C9—H9 108.6
C1—C2—H2 119.9 C8—C9—H9 108.6
C3—C2—H2 119.9 C10—C9—H9 108.6
C4—C3—C2 119.41 (16) O1—C10—C11 109.78 (13)
C4—C3—H3 120.3 O1—C10—C9 111.02 (14)
C2—C3—H3 120.3 C11—C10—C9 109.15 (14)
C3—C4—C5 120.46 (16) O1—C10—H10 109.0
C3—C4—H4 119.8 C11—C10—H10 109.0
C5—C4—H4 119.8 C9—C10—H10 109.0
C4—C5—C6 120.50 (16) C12—C11—C10 121.20 (16)
C4—C5—H5 119.8 C12—C11—H11 119.4
C6—C5—H5 119.8 C10—C11—H11 119.4
C1—C6—C5 118.47 (15) C11—C12—C13 121.12 (14)
C1—C6—C7 121.66 (15) C11—C12—H12 119.4
C5—C6—C7 119.87 (15) C13—C12—H12 119.4
C8—C7—C6 124.42 (16) O2—C13—O3 118.41 (16)
C8—C7—H7 117.8 O2—C13—C12 123.25 (15)
C6—C7—H7 117.8 O3—C13—C12 118.22 (14)
C7—C8—C9 123.36 (16)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1-C6 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2i 0.87 (3) 1.95 (3) 2.8026 (19) 170 (2)
C12—H12···O1ii 0.95 2.53 3.427 (2) 157
C9—H9···Cgii 1.00 2.97 3.747 (2) 135
C10—H10···Cgiii 1.00 2.80 3.6561 (18) 144

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2562).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Sivakumar, K., Ang, H.-B., Sam, T.-W. & Gan, E.-K. (1995). Acta Cryst. C51, 1330–1333.
  4. Goh, S. H., Ee, G. C. L. & Chuah, C. H. (1995). Nat. Prod. Lett. 5, 255–259.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tuchinda, P., Munyoo, B., Pohmakotr, M., Thinapong, P., Sophasan, S., Santisuk, T. & Reutrakul, V. (2006). J. Nat. Prod. 69, 1728–1733. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812028334/pv2562sup1.cif

e-68-o2274-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812028334/pv2562Isup2.hkl

e-68-o2274-Isup2.hkl (61.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812028334/pv2562Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES