Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2282. doi: 10.1107/S1600536812026888

1-(2-Meth­oxy­phen­yl)-1H-pyrrole-2,5-dione

Muhammad Sirajuddin a, Saqib Ali a, M Nawaz Tahir b,*
PMCID: PMC3394061  PMID: 22798926

Abstract

In the title compound, C11H9NO3, the dihedral angle between the meth­oxy­benzene and 1H-pyrrole-2,5-dione rings is 75.60 (10)°. The C atom of the meth­oxy group is close to coplanar with its attached ring [deviation = 0.208 (2) Å]. In the crystal, weak aromatic π–π stacking [centroid–centroid separation = 3.8563 (13) Å] occurs between inversion-related pairs of benzene rings.

Related literature  

For a related structure, see: Carroll et al., (2011).graphic file with name e-68-o2282-scheme1.jpg

Experimental  

Crystal data  

  • C11H9NO3

  • M r = 203.19

  • Monoclinic, Inline graphic

  • a = 12.7018 (15) Å

  • b = 10.2689 (12) Å

  • c = 7.4695 (8) Å

  • β = 101.067 (7)°

  • V = 956.16 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.23 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.969, T max = 0.977

  • 7388 measured reflections

  • 1887 independent reflections

  • 1267 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.112

  • S = 1.01

  • 1887 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026888/hb6853sup1.cif

e-68-o2282-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026888/hb6853Isup2.hkl

e-68-o2282-Isup2.hkl (91KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026888/hb6853Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) is present as a fragment of the crystal structure of 4-(2-methoxyphenyl)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (Carroll et al., 2011).

In (I) the methoxybenzene A (C1—C7/O1) and 1H-pyrrole-2,5-dione B (C8—C11/N1/O2/O3) are close to planar with r.m.s. deviation of 0.0461 and 0.0201 Å, respectively. The dihedral angle between A/B is 78.22 (5)°.

Experimental

Equimolar quantities of 2-methoxyaniline and furan-2,5-dione (maleic anhydride) were stirred in acetic acid for 2 h. The solution was kept at room temperature which afforded light yellow prisms after two days.

Refinement

Twin was found in the data with twin matrix [1, 0, 0.653: 0, -1, 0: 0, 0, -1]. Using the standard techniques, the twin was removed with Basf = 0.07458.

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C11H9NO3 F(000) = 424
Mr = 203.19 Dx = 1.412 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1267 reflections
a = 12.7018 (15) Å θ = 1.6–26.0°
b = 10.2689 (12) Å µ = 0.10 mm1
c = 7.4695 (8) Å T = 296 K
β = 101.067 (7)° Prism, light yellow
V = 956.16 (19) Å3 0.30 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1887 independent reflections
Radiation source: fine-focus sealed tube 1267 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 8.00 pixels mm-1 θmax = 26.0°, θmin = 1.9°
ω scans h = −12→15
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→9
Tmin = 0.969, Tmax = 0.977 l = −9→9
7388 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1053P] where P = (Fo2 + 2Fc2)/3
1887 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20496 (11) 0.44118 (13) −0.18267 (18) 0.0604 (4)
O2 0.08846 (11) 0.44793 (14) 0.1941 (2) 0.0692 (5)
O3 0.28200 (11) 0.79126 (14) 0.0549 (2) 0.0724 (5)
N1 0.20700 (11) 0.59539 (14) 0.11254 (19) 0.0438 (4)
C1 0.29485 (14) 0.51130 (17) 0.1042 (3) 0.0447 (4)
C2 0.29351 (15) 0.43286 (17) −0.0476 (3) 0.0476 (5)
C3 0.38002 (18) 0.35292 (19) −0.0525 (3) 0.0619 (6)
H3 0.3800 0.2986 −0.1522 0.074*
C4 0.46654 (18) 0.3536 (2) 0.0903 (4) 0.0708 (7)
H4 0.5250 0.3001 0.0854 0.085*
C5 0.46810 (18) 0.4312 (2) 0.2383 (3) 0.0698 (7)
H5 0.5271 0.4308 0.3338 0.084*
C6 0.38151 (16) 0.5103 (2) 0.2455 (3) 0.0577 (5)
H6 0.3818 0.5633 0.3465 0.069*
C7 0.2079 (2) 0.3746 (2) −0.3493 (3) 0.0789 (7)
H7A 0.2684 0.4044 −0.3978 0.118*
H7B 0.1430 0.3920 −0.4355 0.118*
H7C 0.2142 0.2827 −0.3267 0.118*
C8 0.11142 (15) 0.55756 (19) 0.1598 (2) 0.0478 (5)
C9 0.04849 (15) 0.6775 (2) 0.1639 (3) 0.0556 (5)
H9 −0.0208 0.6816 0.1871 0.067*
C10 0.10532 (15) 0.7772 (2) 0.1297 (3) 0.0560 (5)
H10 0.0840 0.8639 0.1280 0.067*
C11 0.20922 (15) 0.72958 (18) 0.0941 (2) 0.0489 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0631 (9) 0.0606 (9) 0.0594 (9) 0.0035 (7) 0.0164 (7) −0.0146 (7)
O2 0.0603 (9) 0.0562 (9) 0.0953 (12) −0.0116 (7) 0.0252 (8) 0.0111 (8)
O3 0.0643 (9) 0.0516 (9) 0.1068 (12) −0.0081 (8) 0.0303 (9) 0.0103 (8)
N1 0.0435 (8) 0.0362 (8) 0.0552 (9) −0.0021 (7) 0.0183 (7) −0.0045 (7)
C1 0.0419 (10) 0.0386 (10) 0.0578 (12) 0.0002 (8) 0.0198 (9) 0.0032 (8)
C2 0.0498 (11) 0.0381 (10) 0.0600 (12) 0.0010 (9) 0.0232 (10) 0.0045 (8)
C3 0.0695 (14) 0.0451 (12) 0.0814 (15) 0.0089 (11) 0.0403 (13) 0.0056 (10)
C4 0.0571 (14) 0.0572 (15) 0.107 (2) 0.0192 (11) 0.0393 (14) 0.0293 (14)
C5 0.0532 (13) 0.0739 (16) 0.0824 (17) 0.0082 (12) 0.0137 (12) 0.0250 (14)
C6 0.0539 (12) 0.0576 (13) 0.0621 (13) −0.0011 (10) 0.0125 (10) 0.0076 (10)
C7 0.0974 (18) 0.0750 (16) 0.0687 (15) −0.0085 (14) 0.0271 (13) −0.0231 (12)
C8 0.0437 (11) 0.0507 (12) 0.0504 (11) −0.0071 (9) 0.0129 (9) −0.0012 (9)
C9 0.0436 (10) 0.0657 (14) 0.0598 (12) 0.0055 (10) 0.0155 (9) −0.0050 (10)
C10 0.0547 (12) 0.0471 (12) 0.0665 (13) 0.0090 (10) 0.0123 (10) −0.0067 (9)
C11 0.0497 (11) 0.0431 (11) 0.0546 (11) −0.0018 (9) 0.0121 (9) −0.0012 (9)

Geometric parameters (Å, º)

O1—C2 1.362 (2) C4—H4 0.9300
O1—C7 1.426 (2) C5—C6 1.377 (3)
O2—C8 1.203 (2) C5—H5 0.9300
O3—C11 1.202 (2) C6—H6 0.9300
N1—C8 1.383 (2) C7—H7A 0.9600
N1—C11 1.386 (2) C7—H7B 0.9600
N1—C1 1.422 (2) C7—H7C 0.9600
C1—C6 1.371 (3) C8—C9 1.471 (3)
C1—C2 1.388 (3) C9—C10 1.307 (3)
C2—C3 1.378 (3) C9—H9 0.9300
C3—C4 1.377 (3) C10—C11 1.479 (3)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.360 (3)
C2—O1—C7 117.40 (17) C1—C6—H6 119.9
C8—N1—C11 109.89 (15) C5—C6—H6 119.9
C8—N1—C1 125.12 (15) O1—C7—H7A 109.5
C11—N1—C1 124.64 (15) O1—C7—H7B 109.5
C6—C1—C2 120.45 (18) H7A—C7—H7B 109.5
C6—C1—N1 119.44 (17) O1—C7—H7C 109.5
C2—C1—N1 120.10 (17) H7A—C7—H7C 109.5
O1—C2—C3 124.53 (18) H7B—C7—H7C 109.5
O1—C2—C1 116.59 (16) O2—C8—N1 125.28 (18)
C3—C2—C1 118.9 (2) O2—C8—C9 128.61 (18)
C4—C3—C2 119.9 (2) N1—C8—C9 106.09 (16)
C4—C3—H3 120.1 C10—C9—C8 109.24 (17)
C2—C3—H3 120.1 C10—C9—H9 125.4
C5—C4—C3 121.2 (2) C8—C9—H9 125.4
C5—C4—H4 119.4 C9—C10—C11 108.73 (17)
C3—C4—H4 119.4 C9—C10—H10 125.6
C4—C5—C6 119.4 (2) C11—C10—H10 125.6
C4—C5—H5 120.3 O3—C11—N1 125.41 (17)
C6—C5—H5 120.3 O3—C11—C10 128.60 (18)
C1—C6—C5 120.3 (2) N1—C11—C10 105.98 (16)
C8—N1—C1—C6 −100.8 (2) N1—C1—C6—C5 −178.87 (17)
C11—N1—C1—C6 71.7 (2) C4—C5—C6—C1 −0.3 (3)
C8—N1—C1—C2 80.5 (2) C11—N1—C8—O2 −176.12 (18)
C11—N1—C1—C2 −107.0 (2) C1—N1—C8—O2 −2.7 (3)
C7—O1—C2—C3 −8.0 (3) C11—N1—C8—C9 2.25 (19)
C7—O1—C2—C1 172.00 (17) C1—N1—C8—C9 175.70 (16)
C6—C1—C2—O1 −179.12 (16) O2—C8—C9—C10 175.7 (2)
N1—C1—C2—O1 −0.4 (2) N1—C8—C9—C10 −2.6 (2)
C6—C1—C2—C3 0.9 (3) C8—C9—C10—C11 1.9 (2)
N1—C1—C2—C3 179.59 (15) C8—N1—C11—O3 179.57 (19)
O1—C2—C3—C4 178.86 (17) C1—N1—C11—O3 6.1 (3)
C1—C2—C3—C4 −1.1 (3) C8—N1—C11—C10 −1.15 (19)
C2—C3—C4—C5 0.7 (3) C1—N1—C11—C10 −174.64 (16)
C3—C4—C5—C6 0.1 (3) C9—C10—C11—O3 178.7 (2)
C2—C1—C6—C5 −0.1 (3) C9—C10—C11—N1 −0.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6853).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carroll, W. R., Zhao, C., Smith, M. D., Pellechia, P. J. & Shimizu, K. D. (2011). Org. Lett. 13, 4320–4323. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026888/hb6853sup1.cif

e-68-o2282-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026888/hb6853Isup2.hkl

e-68-o2282-Isup2.hkl (91KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026888/hb6853Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES