Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2291–o2292. doi: 10.1107/S160053681202836X

8-Methyl-2-oxo-4-(thio­phen-2-yl)-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbonitrile

Abdullah M Asiri a,b,, Hassan M Faidallah a, Alaa Anwar Ahmad Saqer a,b, Seik Weng Ng c, Edward R T Tiekink c,*
PMCID: PMC3394069  PMID: 22798934

Abstract

In the title compound, C15H14N2OS, the pyridinone ring in the fused-ring system is nearly planar (r.m.s. deviation = 0.011 Å) and the cyclo­hexene ring has a twisted half-boat conformation with the methyl­ene C atom adjacent to the methine C atom deviating by 0.592 (7) Å from the plane defined by the remaining five atoms (r.m.s. deviation = 0.108 Å). The thienyl ring is disordered over two almost coplanar positions of opposite orientation in a 0.649 (4):0.351 (4) ratio, and forms dihedral angles of 51.4 (3) (major component) and 54.2 (3)°, respectively, with the pyridinone ring. In the crystal, inversion-related mol­ecules associate via an eight-membered {⋯HNCO}2 synthon and these are linked into a linear supra­molecular chain along the a axis by weak π–π inter­actions that occur between centrosymmetrically related pyridinone rings [centroid–centroid distance = 3.889 (2) Å].

Related literature  

For background to the cardiotonic and anti-inflammatory properties of this class of compounds, see: Behit & Baraka (2005); Girgis et al. (2007). For a related structure, see: Asiri et al. (2011).graphic file with name e-68-o2291-scheme1.jpg

Experimental  

Crystal data  

  • C15H14N2OS

  • M r = 270.34

  • Triclinic, Inline graphic

  • a = 7.6443 (3) Å

  • b = 9.6909 (5) Å

  • c = 9.9852 (5) Å

  • α = 67.003 (5)°

  • β = 80.869 (4)°

  • γ = 76.108 (4)°

  • V = 659.26 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.798, T max = 1.000

  • 9707 measured reflections

  • 3041 independent reflections

  • 2356 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.088

  • wR(F 2) = 0.230

  • S = 1.07

  • 3041 reflections

  • 185 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202836X/xu5572sup1.cif

e-68-o2291-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202836X/xu5572Isup2.hkl

e-68-o2291-Isup2.hkl (149.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202836X/xu5572Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 1.94 2.801 (4) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to King Abdulaziz University for providing the research facilities. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound (I) is a member of a series of cyano-pyridinones that have been evaluated for their cardiotonic (Behit & Baraka, 2005) and anti-inflammatory (Girgis et al., (2007) properties. Herein, the crystal and molecular structures of (I) are described.

In (I), Fig. 1, the pyridyl ring in the fused ring system is planar [r.m.s. deviation = 0.011 Å] and the cyclohexene ring has a twisted half-boat conformation with the methylene-C3 atom lying -0.592 (7) Å above the plane defined by the remaining five atoms [r.m.s. deviation = 0.108 Å]. There are two orientations of the thienyl ring [co-planar, with a dihedral angle of 4.4 (4)°, and of opposite orientations] both of which are inclined with respect to the pyridyl ring, forming dihedral angles of 51.4 (3)° [major component] and 54.2 (3)°, respectively. The molecular structure of (I) resembles that found in a literature structure with the exception of the C2—C3 conformation which is fused to a benzene ring (Asiri et al., 2011).

The familiar eight-membered centrosymmetric amide {···HNCO}2 synthon is observed in the crystal packing, Table 1. These are connected into a linear supramolecular chain along the a axis by π—π interactions that occur between centrosymmetrically related pyridyl rings [inter-centroid distance = 3.889 (2) Å for symmetry operation 1 - x, 1 - y, 1 - z], Fig. 2. Chains assemble into layers in the ab plane and stack along the c axis being separated by hydrophobic interactions, Fig. 3.

Experimental

A mixture of the thiophene-2-carboxaldehyde (1.1 g, 0.01 M), 2-methylcyclohexanone (1.12 g, 0.01 M), ethyl cyanoacetate (1.1 g, 0.01 M) and ammonium acetate (6.2 g, 0.08 M) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool. The formed precipitate was filtered, washed with water, dried and recrystallized from ethanol as yellow crystals, M. pt: 525–527 K. Yield: 72%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atom was treated similarly with N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(N). The thienyl ring is disordered over two positions [co-planar and opposite orientation] in a 0.649 (4):0.351 (4) ratio. Pairs of 1,2-related distances were restrained to within 0.01 Å of each other, and the rings were restrained to be within 0.01 Å of a plane. The anisotropic displacement parameters, restrained to be nearly isotropic, of the primed atoms were set to those of the unprimed ones. The maximum and minimum residual electron density peaks of 1.02 and -0.78 e Å-3, respectively, were located 0.14 Å and 0.39 Å from the C15' and C13 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain along the a axis in (I) mediated by N—H···O and π—π interactions, shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents of (I). The N—H···O and π—π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C15H14N2OS Z = 2
Mr = 270.34 F(000) = 284
Triclinic, P1 Dx = 1.362 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6443 (3) Å Cell parameters from 3729 reflections
b = 9.6909 (5) Å θ = 2.3–27.5°
c = 9.9852 (5) Å µ = 0.24 mm1
α = 67.003 (5)° T = 100 K
β = 80.869 (4)° Plate, yellow
γ = 76.108 (4)° 0.30 × 0.20 × 0.05 mm
V = 659.26 (5) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3041 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2356 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.3°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −12→12
Tmin = 0.798, Tmax = 1.000 l = −12→12
9707 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0899P)2 + 1.5187P] where P = (Fo2 + 2Fc2)/3
3041 reflections (Δ/σ)max = 0.001
185 parameters Δρmax = 1.02 e Å3
33 restraints Δρmin = −0.78 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.8432 (4) 0.6552 (5) 0.4105 (4) 0.0607 (13)
N1 0.7871 (4) 0.4615 (4) 0.6240 (4) 0.0359 (9)
H1n 0.8984 0.4118 0.6160 0.043*
N2 0.4540 (5) 0.9325 (4) 0.3270 (4) 0.0359 (9)
C1 0.9207 (6) 0.2563 (6) 0.9181 (5) 0.0405 (11)
H1A 1.0051 0.3102 0.8423 0.061*
H1B 0.9847 0.1546 0.9765 0.061*
H1C 0.8702 0.3144 0.9813 0.061*
C2 0.7691 (5) 0.2402 (5) 0.8473 (4) 0.0303 (9)
H2 0.8246 0.1755 0.7884 0.036*
C3 0.6307 (6) 0.1585 (5) 0.9600 (5) 0.0337 (10)
H3A 0.5668 0.1120 0.9147 0.040*
H3B 0.6941 0.0752 1.0422 0.040*
C4 0.4947 (6) 0.2674 (5) 1.0173 (5) 0.0361 (10)
H4A 0.5584 0.3154 1.0611 0.043*
H4B 0.4121 0.2101 1.0945 0.043*
C5 0.3854 (5) 0.3914 (5) 0.8953 (4) 0.0300 (9)
H5A 0.3015 0.3458 0.8667 0.036*
H5B 0.3120 0.4703 0.9318 0.036*
C6 0.5042 (5) 0.4659 (4) 0.7629 (4) 0.0219 (7)
C7 0.6793 (5) 0.3935 (4) 0.7432 (4) 0.0244 (8)
C8 0.7363 (5) 0.6006 (5) 0.5159 (5) 0.0367 (11)
C9 0.5537 (5) 0.6763 (4) 0.5364 (4) 0.0252 (8)
C10 0.4413 (5) 0.6133 (4) 0.6569 (4) 0.0204 (7)
C11 0.4972 (5) 0.8193 (5) 0.4214 (4) 0.0258 (8)
C12 0.2592 (5) 0.7030 (4) 0.6738 (4) 0.0311 (9)
S1 0.0646 (2) 0.6528 (2) 0.7033 (2) 0.0426 (7) 0.649 (4)
S1' 0.2014 (7) 0.8647 (5) 0.6683 (4) 0.043* 0.351 (4)
C13 0.260 (2) 0.8772 (14) 0.6570 (7) 0.069 (4) 0.649 (4)
H13 0.3559 0.9306 0.6399 0.082* 0.649 (4)
C13' 0.079 (2) 0.627 (2) 0.6905 (12) 0.069* 0.351 (4)
H13' 0.0714 0.5285 0.6971 0.082* 0.351 (4)
C14 0.0544 (12) 0.9255 (9) 0.6783 (8) 0.0461 (18) 0.649 (4)
H14 0.0031 1.0261 0.6752 0.055* 0.649 (4)
C14' −0.072 (2) 0.7647 (18) 0.6921 (14) 0.046* 0.351 (4)
H14' −0.1961 0.7600 0.6992 0.055* 0.351 (4)
C15 −0.0505 (11) 0.8293 (9) 0.7006 (7) 0.0432 (18) 0.649 (4)
H15 −0.1783 0.8545 0.7141 0.052* 0.649 (4)
C15' −0.0217 (15) 0.8881 (17) 0.6833 (11) 0.043* 0.351 (4)
H15' −0.1023 0.9788 0.6852 0.052* 0.351 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0203 (15) 0.071 (3) 0.0354 (18) 0.0116 (15) 0.0094 (13) 0.0234 (17)
N1 0.0157 (15) 0.041 (2) 0.0255 (18) 0.0083 (14) 0.0040 (13) 0.0050 (15)
N2 0.0270 (18) 0.035 (2) 0.0275 (18) 0.0013 (15) −0.0005 (14) 0.0029 (15)
C1 0.026 (2) 0.045 (3) 0.031 (2) −0.0043 (18) −0.0045 (17) 0.0055 (19)
C2 0.026 (2) 0.027 (2) 0.025 (2) 0.0028 (15) −0.0006 (15) −0.0016 (16)
C3 0.031 (2) 0.0230 (19) 0.032 (2) −0.0038 (16) −0.0018 (17) 0.0049 (16)
C4 0.030 (2) 0.034 (2) 0.025 (2) −0.0049 (17) 0.0056 (16) 0.0047 (17)
C5 0.0189 (18) 0.030 (2) 0.029 (2) −0.0054 (15) 0.0050 (15) 0.0000 (16)
C6 0.0180 (17) 0.0239 (18) 0.0205 (17) −0.0050 (13) −0.0003 (13) −0.0046 (14)
C7 0.0197 (17) 0.0267 (19) 0.0202 (17) −0.0022 (14) 0.0012 (13) −0.0039 (15)
C8 0.0157 (18) 0.045 (2) 0.024 (2) 0.0044 (16) 0.0023 (14) 0.0071 (18)
C9 0.0174 (17) 0.0285 (19) 0.0209 (18) −0.0013 (14) −0.0021 (13) −0.0013 (15)
C10 0.0151 (16) 0.0236 (17) 0.0213 (17) −0.0047 (13) −0.0007 (13) −0.0067 (14)
C11 0.0164 (17) 0.031 (2) 0.0221 (18) −0.0023 (14) 0.0006 (13) −0.0034 (16)
C12 0.0238 (19) 0.035 (2) 0.0189 (18) 0.0049 (16) 0.0027 (14) −0.0018 (16)
S1 0.0090 (7) 0.0483 (10) 0.0447 (10) −0.0033 (6) −0.0002 (5) 0.0084 (7)
C13 0.069 (4) 0.069 (4) 0.068 (4) −0.0132 (15) −0.0044 (13) −0.0250 (18)
C14 0.046 (2) 0.045 (2) 0.043 (2) −0.0018 (12) 0.0006 (12) −0.0171 (13)
C15 0.040 (2) 0.042 (2) 0.041 (2) −0.0030 (12) 0.0010 (12) −0.0128 (13)

Geometric parameters (Å, º)

O1—C8 1.246 (5) C6—C10 1.429 (5)
N1—C7 1.366 (5) C8—C9 1.436 (5)
N1—C8 1.371 (5) C9—C10 1.381 (5)
N1—H1n 0.8800 C9—C11 1.433 (5)
N2—C11 1.148 (5) C10—C12 1.477 (5)
C1—C2 1.516 (6) C12—S1' 1.503 (5)
C1—H1A 0.9800 C12—S1 1.622 (4)
C1—H1B 0.9800 C12—C13 1.632 (13)
C1—H1C 0.9800 C12—C13' 1.668 (17)
C2—C7 1.513 (5) S1—C15 1.717 (8)
C2—C3 1.530 (5) S1'—C15' 1.656 (11)
C2—H2 1.0000 C13—C14 1.537 (15)
C3—C4 1.510 (6) C13—H13 0.9500
C3—H3A 0.9900 C13'—C14' 1.541 (18)
C3—H3B 0.9900 C13'—H13' 0.9500
C4—C5 1.524 (6) C14—C15 1.304 (12)
C4—H4A 0.9900 C14—H14 0.9500
C4—H4B 0.9900 C14'—C15' 1.309 (15)
C5—C6 1.511 (5) C14'—H14' 0.9500
C5—H5A 0.9900 C15—H15 0.9500
C5—H5B 0.9900 C15'—H15' 0.9500
C6—C7 1.377 (5)
C7—N1—C8 125.4 (3) O1—C8—N1 121.6 (4)
C7—N1—H1n 117.3 O1—C8—C9 124.0 (4)
C8—N1—H1n 117.3 N1—C8—C9 114.4 (3)
C2—C1—H1A 109.5 C10—C9—C11 123.1 (3)
C2—C1—H1B 109.5 C10—C9—C8 122.1 (3)
H1A—C1—H1B 109.5 C11—C9—C8 114.9 (3)
C2—C1—H1C 109.5 C9—C10—C6 119.8 (3)
H1A—C1—H1C 109.5 C9—C10—C12 118.5 (3)
H1B—C1—H1C 109.5 C6—C10—C12 121.7 (3)
C7—C2—C1 111.3 (4) N2—C11—C9 178.5 (4)
C7—C2—C3 111.3 (3) C10—C12—S1' 130.3 (4)
C1—C2—C3 112.2 (4) C10—C12—S1 129.1 (3)
C7—C2—H2 107.3 S1'—C12—S1 100.5 (3)
C1—C2—H2 107.3 C10—C12—C13 113.3 (6)
C3—C2—H2 107.3 S1—C12—C13 117.5 (6)
C4—C3—C2 111.4 (3) C10—C12—C13' 119.2 (8)
C4—C3—H3A 109.4 S1'—C12—C13' 110.3 (8)
C2—C3—H3A 109.4 C13—C12—C13' 127.1 (11)
C4—C3—H3B 109.4 C12—S1—C15 92.6 (4)
C2—C3—H3B 109.4 C12—S1'—C15' 102.2 (6)
H3A—C3—H3B 108.0 C14—C13—C12 95.8 (9)
C3—C4—C5 110.8 (4) C14—C13—H13 132.1
C3—C4—H4A 109.5 C12—C13—H13 132.1
C5—C4—H4A 109.5 C14'—C13'—C12 99.6 (13)
C3—C4—H4B 109.5 C14'—C13'—H13' 130.2
C5—C4—H4B 109.5 C12—C13'—H13' 130.2
H4A—C4—H4B 108.1 C15—C14—C13 120.5 (8)
C6—C5—C4 112.3 (3) C15—C14—H14 119.8
C6—C5—H5A 109.2 C13—C14—H14 119.8
C4—C5—H5A 109.2 C15'—C14'—C13' 117.0 (15)
C6—C5—H5B 109.2 C15'—C14'—H14' 121.5
C4—C5—H5B 109.2 C13'—C14'—H14' 121.5
H5A—C5—H5B 107.9 C14—C15—S1 113.6 (6)
C7—C6—C10 118.1 (3) C14—C15—H15 123.2
C7—C6—C5 120.2 (3) S1—C15—H15 123.2
C10—C6—C5 121.7 (3) C14'—C15'—S1' 110.9 (12)
N1—C7—C6 120.2 (3) C14'—C15'—H15' 124.6
N1—C7—C2 114.9 (3) S1'—C15'—H15' 124.6
C6—C7—C2 124.9 (3)
C7—C2—C3—C4 −42.7 (5) C9—C10—C12—S1' −51.3 (6)
C1—C2—C3—C4 82.7 (5) C6—C10—C12—S1' 127.3 (4)
C2—C3—C4—C5 62.8 (5) C9—C10—C12—S1 128.4 (4)
C3—C4—C5—C6 −49.6 (5) C6—C10—C12—S1 −52.9 (5)
C4—C5—C6—C7 19.3 (6) C9—C10—C12—C13 −50.5 (4)
C4—C5—C6—C10 −159.4 (4) C6—C10—C12—C13 128.2 (4)
C8—N1—C7—C6 −0.6 (7) C9—C10—C12—C13' 123.6 (5)
C8—N1—C7—C2 −179.4 (4) C6—C10—C12—C13' −57.7 (5)
C10—C6—C7—N1 −0.8 (6) C10—C12—S1—C15 −178.7 (4)
C5—C6—C7—N1 −179.5 (4) S1'—C12—S1—C15 1.1 (3)
C10—C6—C7—C2 177.8 (4) C13—C12—S1—C15 0.15 (17)
C5—C6—C7—C2 −1.0 (6) C13'—C12—S1—C15 −155 (3)
C1—C2—C7—N1 65.3 (5) C10—C12—S1'—C15' 175.7 (5)
C3—C2—C7—N1 −168.7 (4) S1—C12—S1'—C15' −4.1 (4)
C1—C2—C7—C6 −113.3 (5) C13—C12—S1'—C15' 173.1 (11)
C3—C2—C7—C6 12.6 (6) C13'—C12—S1'—C15' 0.42 (19)
C7—N1—C8—O1 179.8 (5) C10—C12—C13—C14 178.9 (4)
C7—N1—C8—C9 0.7 (7) S1'—C12—C13—C14 −3.2 (10)
O1—C8—C9—C10 −178.3 (5) S1—C12—C13—C14 −0.1 (2)
N1—C8—C9—C10 0.8 (7) C13'—C12—C13—C14 5.4 (5)
O1—C8—C9—C11 3.1 (7) C10—C12—C13'—C14' −175.7 (4)
N1—C8—C9—C11 −177.9 (4) S1'—C12—C13'—C14' 0.2 (2)
C11—C9—C10—C6 176.3 (4) S1—C12—C13'—C14' 25 (3)
C8—C9—C10—C6 −2.2 (6) C13—C12—C13'—C14' −2.5 (5)
C11—C9—C10—C12 −5.0 (6) C12—C13—C14—C15 0.0 (4)
C8—C9—C10—C12 176.4 (4) C12—C13'—C14'—C15' −1.0 (5)
C7—C6—C10—C9 2.2 (5) C13—C14—C15—S1 0.1 (6)
C5—C6—C10—C9 −179.1 (4) C12—S1—C15—C14 −0.2 (4)
C7—C6—C10—C12 −176.4 (4) C13'—C14'—C15'—S1' 1.3 (6)
C5—C6—C10—C12 2.3 (6) C12—S1'—C15'—C14' −1.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1n···O1i 0.88 1.94 2.801 (4) 168

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5572).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2472. [DOI] [PMC free article] [PubMed]
  3. Behit, A. A. & Baraka, A. M. (2005). Eur. J. Med. Chem. 40, 1405–1413. [DOI] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Girgis, A. S., Mishriky, N., Ellithey, M., Hosni, H. M. & Farag, H. (2007). Bioorg. Med. Chem. 15, 2403–2413. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681202836X/xu5572sup1.cif

e-68-o2291-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681202836X/xu5572Isup2.hkl

e-68-o2291-Isup2.hkl (149.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681202836X/xu5572Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES