Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2298. doi: 10.1107/S1600536812029169

(2E)-2-(Thio­phen-2-yl­methyl­idene)-1,2,3,4-tetra­hydro­naphthalen-1-one

Abdullah M Asiri a,b,, Hassan M Faidallah b, Khalid A Alamry a,b, Seik Weng Ng c, Edward R T Tiekink c,*
PMCID: PMC3394074  PMID: 22798939

Abstract

In the title compound, C15H12OS, the cyclo­hexene ring has a twisted boat conformation with the C atom between the ketone and methyl­ene atom and this methyl­ene C atom lying 0.280 (3) and 0.760 (3) Å, respectively, from the plane through the remaining four atoms (r.m.s. deviation = 0.004 Å). The dihedral angle between the benzene and thio­phene rings [21.64 (9)°] indicates an overall twist in the mol­ecule. The thio­phene S and ketone O atoms are anti, an orientation that allows the close approach of these atoms [3.3116 (17) Å] in the crystal structure and which leads to the formation of helical supra­molecular chains along the c axis.

Related literature  

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009). For a related structure, see: Asiri et al. (2012).graphic file with name e-68-o2298-scheme1.jpg

Experimental  

Crystal data  

  • C15H12OS

  • M r = 240.31

  • Orthorhombic, Inline graphic

  • a = 24.7989 (10) Å

  • b = 3.9976 (2) Å

  • c = 11.3163 (5) Å

  • V = 1121.85 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.812, T max = 1.000

  • 7054 measured reflections

  • 2528 independent reflections

  • 2383 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.097

  • S = 1.03

  • 2528 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 1171 Friedel pairs

  • Flack parameter: 0.07 (10)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029169/gg2087sup1.cif

e-68-o2298-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029169/gg2087Isup2.hkl

e-68-o2298-Isup2.hkl (124.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029169/gg2087Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In continuation of structural studies on tetrahydronaphthalen-1-one derivatives (Asiri et al., 2012), the crystal and molecular structure of the title compound, 2-thiophen-2-ylmethylene-3,4-dihydro-2H-naphthalen-1-one (I), was investigated. Interest in this class of compound stems from their putative activity against Chagas disease (Vera-DiVaio et al., 2009).

In (I), Fig. 1, the cyclohexene ring has a twisted boat conformation with the C6 and C15 atoms lying, respectively, 0.280 (3) and 0.760 (3) Å from the plane through the remaining four atoms which have a r.m.s. deviation = 0.004 Å. Overall, the molecule is twisted with the dihedral angle between the benzene and thiophen-2-yl rings being 21.64 (9)°. The conformation about the exocyclic methylidene C5═C6 [1.349 (3) Å] is E. The thiophen-2-yl-S and ketone-O atoms are anti.

In the crystal packing, weak π—π interactions are noted between translationally related benzene rings, i.e. inter-centroid distance = 3.9976 (11) Å (symmetry operation x, 1 + y, z) which lead to stacks along the b axis. Other than these, the most prominent interactions appear to be of the type S···O, i.e. S1···O1i = 3.3116 (17) Å for i: 1 - x, 1 - y, 1/2 + z. The result is the formation of helical supramolecular chains along the c axis, Fig. 2.

Experimental

A solution of the 2-thiophen-2-carboxaldehyde (1.1 g, 0.01 M) in ethanol (20 ml) was added to a stirred solution of 1-tetralone (1.46 g,0.0 1M) in ethanolic KOH (20 ml, 20%). Stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from its ethanol solution. M.pt: 351–352 K. Yield: 92%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, one reflection, i.e. (6 3 - 3), was omitted from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain along the c axis in (I) mediated by S···O interactions shown as orange dashed lines.

Crystal data

C15H12OS Dx = 1.423 Mg m3
Mr = 240.31 Melting point: 351 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3882 reflections
a = 24.7989 (10) Å θ = 2.4–27.5°
b = 3.9976 (2) Å µ = 0.27 mm1
c = 11.3163 (5) Å T = 100 K
V = 1121.85 (9) Å3 Prism, light-brown
Z = 4 0.35 × 0.30 × 0.25 mm
F(000) = 504

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2528 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2383 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −32→23
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −5→4
Tmin = 0.812, Tmax = 1.000 l = −14→14
7054 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.206P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2528 reflections Δρmax = 0.32 e Å3
154 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 1171 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.07 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.538955 (17) 0.26862 (11) 0.50161 (7) 0.01740 (13)
O1 0.36843 (6) 0.5071 (4) 0.19698 (15) 0.0251 (4)
C1 0.59800 (8) 0.0731 (5) 0.4638 (2) 0.0201 (4)
H1 0.6276 0.0445 0.5161 0.024*
C2 0.59738 (8) −0.0357 (5) 0.3506 (2) 0.0201 (4)
H2 0.6268 −0.1480 0.3143 0.024*
C3 0.54817 (8) 0.0355 (5) 0.2914 (2) 0.0173 (4)
H3 0.5412 −0.0249 0.2117 0.021*
C4 0.51135 (8) 0.2025 (5) 0.36246 (19) 0.0153 (4)
C5 0.45890 (8) 0.3086 (5) 0.32082 (19) 0.0152 (4)
H5 0.4519 0.2571 0.2403 0.018*
C6 0.41829 (8) 0.4681 (4) 0.37662 (18) 0.0149 (4)
C7 0.36964 (8) 0.5503 (5) 0.30417 (19) 0.0157 (4)
C8 0.32189 (8) 0.6897 (4) 0.36676 (19) 0.0149 (4)
C9 0.27955 (8) 0.8271 (5) 0.3005 (2) 0.0170 (4)
H9 0.2824 0.8382 0.2168 0.020*
C10 0.23379 (8) 0.9464 (5) 0.35577 (19) 0.0177 (4)
H10 0.2053 1.0389 0.3103 0.021*
C11 0.22952 (8) 0.9309 (5) 0.47876 (19) 0.0179 (4)
H11 0.1979 1.0100 0.5171 0.022*
C12 0.27162 (9) 0.7996 (5) 0.5445 (2) 0.0176 (4)
H12 0.2688 0.7920 0.6282 0.021*
C13 0.31817 (7) 0.6783 (4) 0.4900 (2) 0.0140 (4)
C14 0.36339 (8) 0.5298 (5) 0.56230 (18) 0.0149 (4)
H14A 0.3570 0.2872 0.5728 0.018*
H14B 0.3637 0.6348 0.6415 0.018*
C15 0.41813 (7) 0.5824 (4) 0.5033 (2) 0.0150 (4)
H15A 0.4276 0.8228 0.5064 0.018*
H15B 0.4460 0.4573 0.5477 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0148 (2) 0.0213 (2) 0.0160 (2) 0.00044 (16) −0.0005 (2) −0.0013 (2)
O1 0.0217 (9) 0.0398 (9) 0.0137 (8) 0.0081 (6) −0.0021 (6) −0.0022 (7)
C1 0.0132 (9) 0.0204 (9) 0.0267 (12) −0.0002 (7) −0.0007 (8) 0.0033 (8)
C2 0.0145 (10) 0.0212 (10) 0.0247 (12) 0.0020 (7) 0.0048 (9) 0.0030 (9)
C3 0.0195 (10) 0.0168 (9) 0.0156 (10) −0.0027 (7) −0.0009 (8) 0.0041 (8)
C4 0.0174 (10) 0.0145 (8) 0.0139 (10) −0.0021 (7) −0.0012 (8) 0.0017 (8)
C5 0.0164 (10) 0.0178 (9) 0.0113 (10) −0.0016 (7) −0.0012 (7) 0.0011 (8)
C6 0.0162 (9) 0.0147 (9) 0.0137 (10) −0.0011 (7) −0.0007 (8) 0.0028 (8)
C7 0.0156 (10) 0.0168 (9) 0.0147 (10) 0.0009 (7) −0.0004 (8) 0.0008 (8)
C8 0.0143 (9) 0.0138 (8) 0.0167 (10) −0.0021 (7) −0.0014 (8) 0.0012 (8)
C9 0.0182 (10) 0.0175 (9) 0.0153 (10) −0.0021 (8) −0.0019 (8) 0.0016 (8)
C10 0.0130 (9) 0.0177 (9) 0.0226 (12) −0.0019 (7) −0.0046 (8) 0.0028 (8)
C11 0.0150 (9) 0.0172 (9) 0.0216 (12) −0.0008 (7) 0.0035 (8) 0.0002 (7)
C12 0.0173 (10) 0.0186 (10) 0.0169 (10) −0.0033 (7) 0.0032 (8) 0.0012 (8)
C13 0.0155 (9) 0.0119 (8) 0.0147 (10) −0.0029 (6) −0.0001 (8) 0.0007 (8)
C14 0.0166 (9) 0.0152 (9) 0.0129 (10) −0.0012 (7) 0.0010 (8) 0.0001 (8)
C15 0.0138 (8) 0.0187 (8) 0.0125 (9) 0.0005 (7) −0.0006 (9) −0.0001 (9)

Geometric parameters (Å, º)

S1—C1 1.714 (2) C8—C9 1.403 (3)
S1—C4 1.737 (2) C9—C10 1.381 (3)
O1—C7 1.226 (3) C9—H9 0.9500
C1—C2 1.353 (3) C10—C11 1.397 (3)
C1—H1 0.9500 C10—H10 0.9500
C2—C3 1.421 (3) C11—C12 1.385 (3)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.388 (3) C12—C13 1.396 (3)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.447 (3) C13—C14 1.510 (3)
C5—C6 1.349 (3) C14—C15 1.527 (3)
C5—H5 0.9500 C14—H14A 0.9900
C6—C7 1.495 (3) C14—H14B 0.9900
C6—C15 1.504 (3) C15—H15A 0.9900
C7—C8 1.488 (3) C15—H15B 0.9900
C8—C13 1.399 (3)
C1—S1—C4 92.35 (10) C10—C9—H9 119.7
C2—C1—S1 111.91 (16) C8—C9—H9 119.7
C2—C1—H1 124.0 C9—C10—C11 119.89 (19)
S1—C1—H1 124.0 C9—C10—H10 120.1
C1—C2—C3 113.1 (2) C11—C10—H10 120.1
C1—C2—H2 123.5 C12—C11—C10 119.65 (19)
C3—C2—H2 123.5 C12—C11—H11 120.2
C4—C3—C2 112.9 (2) C10—C11—H11 120.2
C4—C3—H3 123.6 C11—C12—C13 121.2 (2)
C2—C3—H3 123.6 C11—C12—H12 119.4
C3—C4—C5 122.9 (2) C13—C12—H12 119.4
C3—C4—S1 109.82 (15) C12—C13—C8 118.9 (2)
C5—C4—S1 127.21 (16) C12—C13—C14 120.8 (2)
C6—C5—C4 131.1 (2) C8—C13—C14 120.26 (17)
C6—C5—H5 114.5 C13—C14—C15 111.67 (17)
C4—C5—H5 114.5 C13—C14—H14A 109.3
C5—C6—C7 116.72 (18) C15—C14—H14A 109.3
C5—C6—C15 126.27 (18) C13—C14—H14B 109.3
C7—C6—C15 116.97 (16) C15—C14—H14B 109.3
O1—C7—C8 120.28 (18) H14A—C14—H14B 107.9
O1—C7—C6 122.11 (18) C6—C15—C14 112.16 (16)
C8—C7—C6 117.60 (18) C6—C15—H15A 109.2
C13—C8—C9 119.78 (19) C14—C15—H15A 109.2
C13—C8—C7 121.00 (18) C6—C15—H15B 109.2
C9—C8—C7 119.20 (19) C14—C15—H15B 109.2
C10—C9—C8 120.5 (2) H15A—C15—H15B 107.9
C4—S1—C1—C2 0.54 (16) C6—C7—C8—C9 168.28 (17)
S1—C1—C2—C3 −0.5 (2) C13—C8—C9—C10 −1.1 (3)
C1—C2—C3—C4 0.2 (3) C7—C8—C9—C10 177.44 (17)
C2—C3—C4—C5 178.49 (17) C8—C9—C10—C11 0.1 (3)
C2—C3—C4—S1 0.2 (2) C9—C10—C11—C12 0.8 (3)
C1—S1—C4—C3 −0.40 (15) C10—C11—C12—C13 −0.8 (3)
C1—S1—C4—C5 −178.62 (18) C11—C12—C13—C8 −0.2 (3)
C3—C4—C5—C6 179.2 (2) C11—C12—C13—C14 −178.85 (17)
S1—C4—C5—C6 −2.8 (3) C9—C8—C13—C12 1.1 (3)
C4—C5—C6—C7 177.95 (19) C7—C8—C13—C12 −177.36 (16)
C4—C5—C6—C15 0.4 (3) C9—C8—C13—C14 179.76 (16)
C5—C6—C7—O1 −7.2 (3) C7—C8—C13—C14 1.3 (3)
C15—C6—C7—O1 170.53 (18) C12—C13—C14—C15 −150.02 (17)
C5—C6—C7—C8 172.98 (17) C8—C13—C14—C15 31.4 (2)
C15—C6—C7—C8 −9.3 (2) C5—C6—C15—C14 −140.98 (19)
O1—C7—C8—C13 166.95 (18) C7—C6—C15—C14 41.5 (2)
C6—C7—C8—C13 −13.2 (3) C13—C14—C15—C6 −51.7 (2)
O1—C7—C8—C9 −11.5 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2087).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Faidallah, H. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2190. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029169/gg2087sup1.cif

e-68-o2298-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029169/gg2087Isup2.hkl

e-68-o2298-Isup2.hkl (124.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029169/gg2087Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES