Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2300. doi: 10.1107/S1600536812029200

1-(2-Chloro­benz­yl)-3-methyl-2,6-diphenyl­piperidine

Chennan Ramalingan a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3394076  PMID: 22798941

Abstract

In the title compound, C25H26ClN, the piperidine ring has a chair conformation with all ring substituents in equatorial positions. The dihedral angle formed between the chloro­benzene ring and the flanking phenyl rings are 74.91 (18) and 47.86 (17)°. The chloro substituent is anti to the piperidine N atom. In the crystal, centrosymmetrically related mol­ecules aggregate via π–π inter­actions occurring between chloro­benzene rings [centroid–centroid distance = 3.778 (2) Å] and these are linked into linear supra­molecular chains along the a axis by C—H⋯π inter­actions occurring between the phenyl rings.

Related literature  

For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Ramachandran et al. (2011). For a related structure, see: Ramalingan et al. (2012).graphic file with name e-68-o2300-scheme1.jpg

Experimental  

Crystal data  

  • C25H26ClN

  • M r = 375.92

  • Triclinic, Inline graphic

  • a = 10.0878 (7) Å

  • b = 10.2837 (5) Å

  • c = 11.3583 (7) Å

  • α = 94.150 (5)°

  • β = 107.713 (6)°

  • γ = 111.065 (5)°

  • V = 1025.32 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.03 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.495, T max = 1.000

  • 7033 measured reflections

  • 4678 independent reflections

  • 2850 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.185

  • S = 1.03

  • 4678 reflections

  • 244 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029200/hb6872sup1.cif

e-68-o2300-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029200/hb6872Isup2.hkl

e-68-o2300-Isup2.hkl (229.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029200/hb6872Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.83 3.692 (4) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful for facilities provided by the Chairman/Management of Kalasalingam University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

Piperidine derivatives are an important class of heterocyclic compounds with potential applications in medicinal chemistry as these can be frequently recognized in the structures of various synthetic targets as well as naturally occurring alkaloids (Ramalingan et al., 2004; Ramachandran et al., 2011). The title compound, (I), was designed and synthesized to evaluate its biological properties. The crystal structure determination was undertaken in order to establish conformational details.

In (I), Fig. 1, the piperidine ring has a chair conformation and all ring-substituents occupy equatorial positions. The dihedral angle formed between the C1–C6 benzene ring and the flanking C14–C19 and C20–C25 phenyl rings are 74.91 (18) and 47.86 (17)°, respectively; the dihedral angle between the phenyl rings is 58.93 (18)°. In a comparable molecule, having an extra C-bound methyl group (Ramalingan et al., 2012), these substituents were found to occupy the same positions. The chloro substituent is anti to the piperidine-N atom.

In the crystal packing, centrosymmetrically related molecules aggregate viaπ—π interactions occurring between chlorobenzene rings [inter-centroid distance = 3.778 (2) Å for symmetry operation 2 - x, 1 - y, 1 - z]. These are linked into linear supramolecular chains along the a axis by C—H···π interactions whereby a phenyl-H17 atom associates with the C20—C25 ring, Fig. 2 and Table 1. Chains aggregate into layers in the ab plane without specific intermolecular interactions between them, Fig. 3.

Experimental

A starting material, 3-methyl-2,6-diphenylpiperidine, was synthesized from benzaldehyde, 2-butanone and ammonium acetate through a Mannich-type reaction (for a typical synthesis, see Ramalingan et al. (2004)) followed by standard Wolff-Kishner reduction using hydrazine hydrate in diethylene glycol. 1-(2-Chlorobenzyl)-3-methyl-2,6-diphenylpiperidine was then synthesized as follows. To a DMF solution (15 ml) of 3-methyl-2,6-diphenylpiperidine (1.26 g, 0.005 mol) was added potassium tert-butoxide (0.67 g, 0.006 mol). The mixture was stirred for 30 minutes and 2-chlorobenzyl bromide (0.78 ml, 0.006 mol) was added drop-wise. Stirring was continued overnight before aqueous work-up. Extraction with diethyl ether followed by column chromatography separation using n-hexane/ethyl acetate (100:4) as an eluent eventually provided the pure title compound as a white solid. Re-crystallization was performed by slow evaporation of its ethanolic solution which afforded colourless plates. M.pt: 352–353 K. Yield: 83%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The anisotropic displacement parameters for the C3 and C4 atoms were constrained to be nearly isotropic.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain in (I) sustained by C—H···π and π—π interactions which are shown as orange and purple dashed lines, respectively

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents for (I). The C—H···π and π—π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C25H26ClN Z = 2
Mr = 375.92 F(000) = 400
Triclinic, P1 Dx = 1.218 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.0878 (7) Å Cell parameters from 1908 reflections
b = 10.2837 (5) Å θ = 2.4–27.5°
c = 11.3583 (7) Å µ = 0.20 mm1
α = 94.150 (5)° T = 100 K
β = 107.713 (6)° Plate, colourless
γ = 111.065 (5)° 0.25 × 0.15 × 0.03 mm
V = 1025.32 (11) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4678 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2850 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −13→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −13→13
Tmin = 0.495, Tmax = 1.000 l = −13→14
7033 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.0947P] where P = (Fo2 + 2Fc2)/3
4678 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.72 e Å3
12 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.71459 (12) 0.30264 (9) 0.23928 (9) 0.0512 (3)
C1 0.8802 (4) 0.4580 (4) 0.3038 (3) 0.0395 (8)
C2 1.0149 (5) 0.4438 (5) 0.3581 (3) 0.0522 (10)
H2 1.0170 0.3523 0.3591 0.063*
C3 1.1464 (5) 0.5651 (6) 0.4110 (4) 0.0622 (12)
H3 1.2396 0.5560 0.4494 0.075*
C4 1.1470 (4) 0.7006 (5) 0.4099 (3) 0.0482 (10)
H4 1.2386 0.7836 0.4462 0.058*
C5 1.0061 (4) 0.7099 (4) 0.3528 (3) 0.0395 (8)
H5 1.0039 0.8013 0.3505 0.047*
C6 0.8716 (3) 0.5909 (3) 0.3004 (3) 0.0284 (7)
N1 0.7224 (3) 0.7408 (2) 0.2310 (2) 0.0260 (6)
C7 0.7188 (3) 0.5974 (3) 0.2470 (3) 0.0287 (7)
H7A 0.6623 0.5315 0.1637 0.034*
H7B 0.6614 0.5625 0.3032 0.034*
C8 0.6816 (4) 0.7457 (3) 0.0938 (3) 0.0308 (7)
H8 0.5797 0.6671 0.0471 0.037*
C9 0.6704 (4) 0.8861 (3) 0.0710 (3) 0.0390 (8)
H9A 0.6383 0.8849 −0.0207 0.047*
H9B 0.7715 0.9652 0.1128 0.047*
C10 0.5567 (4) 0.9107 (4) 0.1226 (3) 0.0386 (8)
H10A 0.5526 1.0033 0.1086 0.046*
H10B 0.4542 0.8349 0.0773 0.046*
C11 0.6033 (4) 0.9101 (3) 0.2629 (3) 0.0367 (8)
H11 0.7050 0.9898 0.3071 0.044*
C12 0.6174 (4) 0.7696 (3) 0.2865 (3) 0.0289 (7)
H12 0.5145 0.6903 0.2462 0.035*
C13 0.4882 (5) 0.9353 (4) 0.3160 (3) 0.0508 (10)
H13A 0.4819 1.0256 0.2998 0.076*
H13B 0.5220 0.9390 0.4072 0.076*
H13C 0.3880 0.8573 0.2747 0.076*
C14 0.6717 (3) 0.7731 (3) 0.4273 (3) 0.0257 (6)
C15 0.8186 (4) 0.8583 (3) 0.5027 (3) 0.0373 (8)
H15 0.8873 0.9119 0.4653 0.045*
C16 0.8687 (4) 0.8678 (4) 0.6320 (3) 0.0425 (9)
H16 0.9714 0.9261 0.6822 0.051*
C17 0.7699 (4) 0.7930 (4) 0.6883 (3) 0.0430 (9)
H17 0.8030 0.8017 0.7773 0.052*
C18 0.6248 (5) 0.7071 (4) 0.6151 (3) 0.0537 (11)
H18 0.5566 0.6544 0.6532 0.064*
C19 0.5744 (4) 0.6950 (4) 0.4837 (3) 0.0443 (9)
H19 0.4730 0.6330 0.4333 0.053*
C20 0.7954 (4) 0.7211 (3) 0.0442 (3) 0.0299 (7)
C21 0.7525 (4) 0.5955 (3) −0.0406 (3) 0.0367 (8)
H21 0.6511 0.5262 −0.0672 0.044*
C22 0.8556 (5) 0.5702 (4) −0.0870 (3) 0.0459 (9)
H22 0.8247 0.4838 −0.1441 0.055*
C23 1.0022 (5) 0.6704 (4) −0.0500 (3) 0.0488 (10)
H23 1.0730 0.6536 −0.0814 0.059*
C24 1.0459 (4) 0.7955 (4) 0.0331 (3) 0.0488 (10)
H24 1.1470 0.8651 0.0587 0.059*
C25 0.9436 (4) 0.8202 (4) 0.0791 (3) 0.0412 (9)
H25 0.9754 0.9071 0.1360 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0784 (7) 0.0327 (4) 0.0474 (5) 0.0239 (5) 0.0270 (5) 0.0073 (4)
C1 0.053 (2) 0.053 (2) 0.0308 (16) 0.0303 (18) 0.0270 (16) 0.0130 (15)
C2 0.069 (3) 0.083 (3) 0.039 (2) 0.054 (3) 0.035 (2) 0.023 (2)
C3 0.047 (2) 0.119 (4) 0.042 (2) 0.047 (3) 0.0269 (19) 0.024 (2)
C4 0.0341 (19) 0.082 (3) 0.0307 (18) 0.0177 (19) 0.0204 (15) 0.0145 (18)
C5 0.0325 (18) 0.052 (2) 0.0270 (16) 0.0060 (16) 0.0147 (15) 0.0051 (15)
C6 0.0312 (16) 0.0384 (17) 0.0195 (14) 0.0126 (14) 0.0158 (13) 0.0069 (12)
N1 0.0342 (14) 0.0246 (12) 0.0213 (12) 0.0102 (11) 0.0147 (11) 0.0053 (10)
C7 0.0316 (17) 0.0235 (14) 0.0290 (15) 0.0065 (13) 0.0140 (13) 0.0037 (12)
C8 0.0398 (18) 0.0295 (15) 0.0222 (14) 0.0105 (14) 0.0145 (14) 0.0025 (12)
C9 0.062 (2) 0.0353 (17) 0.0218 (15) 0.0190 (17) 0.0173 (16) 0.0092 (13)
C10 0.060 (2) 0.0386 (18) 0.0266 (16) 0.0283 (17) 0.0165 (16) 0.0123 (14)
C11 0.055 (2) 0.0365 (17) 0.0253 (15) 0.0243 (16) 0.0160 (15) 0.0082 (13)
C12 0.0338 (17) 0.0297 (15) 0.0243 (15) 0.0112 (13) 0.0136 (13) 0.0049 (12)
C13 0.070 (3) 0.058 (2) 0.042 (2) 0.038 (2) 0.026 (2) 0.0164 (18)
C14 0.0306 (16) 0.0254 (14) 0.0227 (14) 0.0107 (13) 0.0124 (13) 0.0040 (12)
C15 0.0389 (19) 0.0342 (17) 0.0284 (16) 0.0018 (15) 0.0147 (15) 0.0005 (14)
C16 0.042 (2) 0.046 (2) 0.0263 (16) 0.0095 (17) 0.0070 (16) −0.0050 (15)
C17 0.062 (2) 0.0429 (19) 0.0227 (15) 0.0210 (18) 0.0136 (17) 0.0072 (14)
C18 0.059 (2) 0.060 (2) 0.038 (2) 0.009 (2) 0.0293 (19) 0.0197 (18)
C19 0.0365 (19) 0.050 (2) 0.0355 (18) 0.0038 (17) 0.0154 (16) 0.0078 (16)
C20 0.0413 (18) 0.0320 (16) 0.0189 (13) 0.0133 (14) 0.0157 (13) 0.0065 (12)
C21 0.045 (2) 0.0311 (16) 0.0293 (16) 0.0087 (15) 0.0151 (15) 0.0039 (13)
C22 0.072 (3) 0.046 (2) 0.0320 (18) 0.031 (2) 0.0261 (19) 0.0075 (16)
C23 0.059 (2) 0.076 (3) 0.0330 (18) 0.037 (2) 0.0304 (18) 0.0223 (19)
C24 0.045 (2) 0.065 (2) 0.0323 (18) 0.0119 (19) 0.0200 (17) 0.0140 (18)
C25 0.047 (2) 0.0412 (19) 0.0279 (16) 0.0066 (17) 0.0176 (16) 0.0005 (14)

Geometric parameters (Å, º)

Cl1—C1 1.746 (4) C11—H11 1.0000
C1—C2 1.376 (5) C12—C14 1.518 (4)
C1—C6 1.402 (5) C12—H12 1.0000
C2—C3 1.376 (6) C13—H13A 0.9800
C2—H2 0.9500 C13—H13B 0.9800
C3—C4 1.393 (6) C13—H13C 0.9800
C3—H3 0.9500 C14—C15 1.372 (4)
C4—C5 1.413 (5) C14—C19 1.381 (4)
C4—H4 0.9500 C15—C16 1.384 (4)
C5—C6 1.379 (4) C15—H15 0.9500
C5—H5 0.9500 C16—C17 1.379 (5)
C6—C7 1.504 (4) C16—H16 0.9500
N1—C12 1.487 (4) C17—C18 1.355 (5)
N1—C7 1.488 (4) C17—H17 0.9500
N1—C8 1.496 (4) C18—C19 1.402 (5)
C7—H7A 0.9900 C18—H18 0.9500
C7—H7B 0.9900 C19—H19 0.9500
C8—C20 1.511 (4) C20—C25 1.384 (4)
C8—C9 1.523 (4) C20—C21 1.395 (4)
C8—H8 1.0000 C21—C22 1.391 (5)
C9—C10 1.523 (5) C21—H21 0.9500
C9—H9A 0.9900 C22—C23 1.374 (5)
C9—H9B 0.9900 C22—H22 0.9500
C10—C11 1.520 (4) C23—C24 1.380 (5)
C10—H10A 0.9900 C23—H23 0.9500
C10—H10B 0.9900 C24—C25 1.378 (5)
C11—C12 1.536 (4) C24—H24 0.9500
C11—C13 1.549 (5) C25—H25 0.9500
C2—C1—C6 122.7 (4) C13—C11—H11 108.3
C2—C1—Cl1 117.7 (3) N1—C12—C14 109.9 (2)
C6—C1—Cl1 119.6 (3) N1—C12—C11 112.0 (2)
C1—C2—C3 118.6 (4) C14—C12—C11 109.8 (2)
C1—C2—H2 120.7 N1—C12—H12 108.3
C3—C2—H2 120.7 C14—C12—H12 108.3
C2—C3—C4 122.0 (4) C11—C12—H12 108.3
C2—C3—H3 119.0 C11—C13—H13A 109.5
C4—C3—H3 119.0 C11—C13—H13B 109.5
C3—C4—C5 117.4 (4) H13A—C13—H13B 109.5
C3—C4—H4 121.3 C11—C13—H13C 109.5
C5—C4—H4 121.3 H13A—C13—H13C 109.5
C6—C5—C4 122.2 (4) H13B—C13—H13C 109.5
C6—C5—H5 118.9 C15—C14—C19 118.2 (3)
C4—C5—H5 118.9 C15—C14—C12 120.4 (3)
C5—C6—C1 117.1 (3) C19—C14—C12 121.4 (3)
C5—C6—C7 123.5 (3) C14—C15—C16 121.3 (3)
C1—C6—C7 119.4 (3) C14—C15—H15 119.3
C12—N1—C7 108.8 (2) C16—C15—H15 119.3
C12—N1—C8 112.7 (2) C17—C16—C15 120.2 (3)
C7—N1—C8 108.9 (2) C17—C16—H16 119.9
N1—C7—C6 115.3 (2) C15—C16—H16 119.9
N1—C7—H7A 108.4 C18—C17—C16 119.3 (3)
C6—C7—H7A 108.4 C18—C17—H17 120.4
N1—C7—H7B 108.4 C16—C17—H17 120.4
C6—C7—H7B 108.4 C17—C18—C19 120.7 (3)
H7A—C7—H7B 107.5 C17—C18—H18 119.6
N1—C8—C20 110.2 (3) C19—C18—H18 119.6
N1—C8—C9 111.0 (2) C14—C19—C18 120.2 (3)
C20—C8—C9 111.2 (3) C14—C19—H19 119.9
N1—C8—H8 108.1 C18—C19—H19 119.9
C20—C8—H8 108.1 C25—C20—C21 117.6 (3)
C9—C8—H8 108.1 C25—C20—C8 122.3 (3)
C8—C9—C10 110.8 (3) C21—C20—C8 120.1 (3)
C8—C9—H9A 109.5 C22—C21—C20 121.1 (3)
C10—C9—H9A 109.5 C22—C21—H21 119.4
C8—C9—H9B 109.5 C20—C21—H21 119.4
C10—C9—H9B 109.5 C23—C22—C21 119.9 (3)
H9A—C9—H9B 108.1 C23—C22—H22 120.1
C11—C10—C9 110.0 (3) C21—C22—H22 120.1
C11—C10—H10A 109.7 C22—C23—C24 119.6 (4)
C9—C10—H10A 109.7 C22—C23—H23 120.2
C11—C10—H10B 109.7 C24—C23—H23 120.2
C9—C10—H10B 109.7 C25—C24—C23 120.4 (3)
H10A—C10—H10B 108.2 C25—C24—H24 119.8
C10—C11—C12 110.2 (2) C23—C24—H24 119.8
C10—C11—C13 110.3 (3) C24—C25—C20 121.4 (3)
C12—C11—C13 111.4 (3) C24—C25—H25 119.3
C10—C11—H11 108.3 C20—C25—H25 119.3
C12—C11—H11 108.3
C6—C1—C2—C3 −0.2 (5) C10—C11—C12—N1 54.7 (4)
Cl1—C1—C2—C3 −179.1 (3) C13—C11—C12—N1 177.5 (3)
C1—C2—C3—C4 −0.6 (5) C10—C11—C12—C14 177.1 (3)
C2—C3—C4—C5 0.5 (5) C13—C11—C12—C14 −60.1 (3)
C3—C4—C5—C6 0.5 (5) N1—C12—C14—C15 52.4 (4)
C4—C5—C6—C1 −1.2 (4) C11—C12—C14—C15 −71.3 (4)
C4—C5—C6—C7 175.6 (3) N1—C12—C14—C19 −129.9 (3)
C2—C1—C6—C5 1.0 (4) C11—C12—C14—C19 106.5 (4)
Cl1—C1—C6—C5 179.9 (2) C19—C14—C15—C16 −0.7 (5)
C2—C1—C6—C7 −175.9 (3) C12—C14—C15—C16 177.1 (3)
Cl1—C1—C6—C7 3.0 (4) C14—C15—C16—C17 −1.3 (6)
C12—N1—C7—C6 −131.3 (2) C15—C16—C17—C18 2.0 (6)
C8—N1—C7—C6 105.4 (3) C16—C17—C18—C19 −0.8 (6)
C5—C6—C7—N1 11.4 (4) C15—C14—C19—C18 1.9 (5)
C1—C6—C7—N1 −171.9 (3) C12—C14—C19—C18 −175.9 (3)
C12—N1—C8—C20 177.9 (2) C17—C18—C19—C14 −1.2 (6)
C7—N1—C8—C20 −61.2 (3) N1—C8—C20—C25 −69.8 (4)
C12—N1—C8—C9 54.3 (3) C9—C8—C20—C25 53.7 (4)
C7—N1—C8—C9 175.2 (3) N1—C8—C20—C21 110.8 (3)
N1—C8—C9—C10 −56.3 (3) C9—C8—C20—C21 −125.7 (3)
C20—C8—C9—C10 −179.4 (2) C25—C20—C21—C22 0.9 (5)
C8—C9—C10—C11 58.1 (3) C8—C20—C21—C22 −179.6 (3)
C9—C10—C11—C12 −56.7 (4) C20—C21—C22—C23 −0.6 (5)
C9—C10—C11—C13 179.9 (3) C21—C22—C23—C24 0.1 (5)
C7—N1—C12—C14 62.9 (3) C22—C23—C24—C25 0.1 (5)
C8—N1—C12—C14 −176.1 (2) C23—C24—C25—C20 0.2 (5)
C7—N1—C12—C11 −174.7 (2) C21—C20—C25—C24 −0.8 (5)
C8—N1—C12—C11 −53.7 (3) C8—C20—C25—C24 179.8 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C20–C25 ring.

D—H···A D—H H···A D···A D—H···A
C17—H17···Cg1i 0.95 2.83 3.692 (4) 151

Symmetry code: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6872).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934. [DOI] [PubMed]
  5. Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533. [DOI] [PubMed]
  6. Ramalingan, C., Ng, S. E. & Tiekink, E. R. T. (2012). Acta Cryst E68, o2301–o2302. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029200/hb6872sup1.cif

e-68-o2300-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029200/hb6872Isup2.hkl

e-68-o2300-Isup2.hkl (229.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029200/hb6872Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES