Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jun 30;68(Pt 7):o2301–o2302. doi: 10.1107/S1600536812029212

1-(2-Chloro­benz­yl)-3,5-dimethyl-2,6-diphenyl­piperidine

Chennan Ramalingan a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3394077  PMID: 22798942

Abstract

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound, C26H28ClN, with the inverted form of B almost superimposable upon A. Each piperidine ring has a chair conformation and the chloro substituent is anti to the piperidine N atom. Each of two aromatic rings, the benzyl residue and one methyl group substituents occupies an equatorial position, and the second methyl substituent occupies an axial position. The dihedral angle formed between the chloro­benzene ring and the flanking phenyl rings in mol­ecule A are 84.24 (9) and 24.85 (8)°; the equivalent angles for mol­ecule B are 79.97 (9) and 28.33 (9)°. In the crystal, the A and B mol­ecules are connected by C—H⋯Cl and C—H⋯π inter­actions, forming a supra­molecular chain along [101].

Related literature  

For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Ramachandran et al. (2011). For a related structure, see: Ramalingan et al. (2012). For additional conformational analysis, see: Spek (2009).graphic file with name e-68-o2301-scheme1.jpg

Experimental  

Crystal data  

  • C26H28ClN

  • M r = 389.94

  • Monoclinic, Inline graphic

  • a = 13.4940 (6) Å

  • b = 17.3005 (6) Å

  • c = 18.5078 (6) Å

  • β = 100.892 (4)°

  • V = 4242.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.718, T max = 1.000

  • 28999 measured reflections

  • 9798 independent reflections

  • 7163 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.125

  • S = 1.04

  • 9798 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029212/hb6873sup1.cif

e-68-o2301-sup1.cif (34.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029212/hb6873Isup2.hkl

e-68-o2301-Isup2.hkl (479.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029212/hb6873Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C35–C40 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯Cl1 0.95 2.73 3.678 (2) 174
C24—H24⋯Cg1i 0.95 2.95 3.680 (2) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful for facilities provided by the Chairman/Management of Kalasalingam University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

The crystal structure determination of the title compound was undertaken in order to establish conformational details for a molecule designed and synthesized for the evaluation of its biological properties. The motivation for the biological trial arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological/biological activities (Ramalingan et al., 2004; Ramachandran et al., 2011).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The inverted molecule of the N2-containing molecule is virtually super-imposable upon that of the N1-containing molecule, Fig. 2. The r.m.s. bond and angle fits are 0.0045 Å and 0.617°, respectively (Spek, 2009). Each piperidine ring has a chair conformation and the two aromatic rings, the benzyl residue and one methyl substituent occupy equatorial positions, as found in a related structure lacking one C-bound methyl group (Ramalingan et al., 2012), with the additional methyl substituent occupying an axial position. The dihedral angle formed between the C1–C6 chlorobenzene ring and the flanking C9–C14 and C21–C26 phenyl rings are 84.24 (9) and 24.85 (8)°, respectively; the dihedral angle between the phenyl rings is 62.03 (9)°. The comparable values found for the second independent molecule are 79.97 (9), 28.33 (9) and 54.39 (8)°, respectively. The chloro substituent is anti to the piperidine-N atom in each independent molecule.

In the crystal, the independent molecules are connected to each other by C—H···Cl and C—H···π interactions, Table 1, to form a supramolecular chain along [101], Fig. 3. These assemble into the three-dimensional architecture without specific intermolecular interactions between them, Fig. 4.

Experimental

A starting material, 3,5-dimethyl-2,6-diphenylpiperidine, was synthesized from benzaldehyde, 2-butanone and ammonium acetate through a Mannich-type reaction (for a typical synthesis, see Ramalingan et al. (2004)) followed by standard Wolff-Kishner reduction using hydrazine hydrate in diethylene glycol. The title compound was then synthesized as follows. To a DMF solution (15 ml) of 3,5-dimethyl-2,6-diphenylpiperidine (1.33 g, 0.005 mol) was added potassium tert-butoxide (0.67 g, 0.006 mol). The mixture was stirred for 30 minutes and 2-chlorobenzyl bromide (0.78 ml, 0.006 mol) was added drop-wise. Stirring was continued overnight before aqueous work-up. Extraction with diethyl ether followed by column chromatography separation using n-hexane/ethyl acetate (100:4) as an eluent eventually provided the pure title compound as a white solid. Re-crystallization was performed by slow evaporation of its ethanolic solution which afforded colourless prisms. M.pt: 357–358 K. Yield: 79%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, a reflection, i.e. (0 0 2), was omitted from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Superimposition of the two independent molecules in (I); the N2-containing molecule has been inverted. The ring-C,N,C-sequences have been superimposed, and the N1- and N2-containing molecules are shown as red and blue images, respectively.

Fig. 3.

Fig. 3.

A view of the supramolecular chain in (I) sustained by C—H···Cl and C—H···π interactions, shown as orange and purple dashed lines, respectively.

Fig. 4.

Fig. 4.

A view in projection down the a axis of the unit-cell contents for (I). The C—H···Cl and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C26H28ClN F(000) = 1664
Mr = 389.94 Dx = 1.221 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7626 reflections
a = 13.4940 (6) Å θ = 2.2–27.5°
b = 17.3005 (6) Å µ = 0.19 mm1
c = 18.5078 (6) Å T = 100 K
β = 100.892 (4)° Prism, colourless
V = 4242.9 (3) Å3 0.30 × 0.20 × 0.05 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 9798 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 7163 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.044
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −17→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −21→22
Tmin = 0.718, Tmax = 1.000 l = −24→24
28999 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.548P] where P = (Fo2 + 2Fc2)/3
9798 reflections (Δ/σ)max = 0.001
505 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.57702 (4) 0.21027 (3) 0.41914 (3) 0.03073 (13)
Cl2 0.05909 (4) 0.15772 (3) 0.44476 (2) 0.03019 (13)
N1 0.47668 (11) 0.36054 (8) 0.22226 (8) 0.0175 (3)
N2 −0.01535 (11) 0.01975 (8) 0.23992 (8) 0.0170 (3)
C1 0.65192 (14) 0.23531 (10) 0.35521 (10) 0.0207 (4)
C2 0.75323 (15) 0.21679 (10) 0.37297 (11) 0.0262 (4)
H2 0.7794 0.1919 0.4183 0.031*
C3 0.81625 (15) 0.23450 (11) 0.32482 (11) 0.0275 (4)
H3 0.8863 0.2234 0.3373 0.033*
C4 0.77627 (15) 0.26874 (11) 0.25795 (11) 0.0264 (4)
H4 0.8186 0.2798 0.2237 0.032*
C5 0.67491 (14) 0.28676 (10) 0.24120 (10) 0.0224 (4)
H5 0.6488 0.3104 0.1952 0.027*
C6 0.60939 (13) 0.27155 (9) 0.28941 (9) 0.0181 (4)
C7 0.49834 (13) 0.29035 (10) 0.26858 (9) 0.0192 (4)
H7A 0.4629 0.2458 0.2417 0.023*
H7B 0.4709 0.2976 0.3141 0.023*
C8 0.38071 (13) 0.35121 (10) 0.16845 (9) 0.0188 (4)
H8 0.3252 0.3467 0.1972 0.023*
C9 0.37872 (14) 0.27846 (10) 0.12260 (9) 0.0200 (4)
C10 0.45825 (15) 0.25644 (11) 0.08894 (10) 0.0252 (4)
H10 0.5174 0.2874 0.0951 0.030*
C11 0.45250 (17) 0.19001 (11) 0.04664 (11) 0.0315 (5)
H11 0.5075 0.1760 0.0241 0.038*
C12 0.36747 (17) 0.14409 (11) 0.03707 (11) 0.0331 (5)
H12 0.3638 0.0985 0.0080 0.040*
C13 0.28759 (17) 0.16479 (11) 0.07005 (11) 0.0318 (5)
H13 0.2287 0.1335 0.0637 0.038*
C14 0.29341 (15) 0.23138 (11) 0.11253 (10) 0.0249 (4)
H14 0.2383 0.2451 0.1351 0.030*
C15 0.43715 (15) 0.43839 (11) 0.07032 (10) 0.0279 (4)
H15A 0.4190 0.4852 0.0410 0.042*
H15B 0.4381 0.3941 0.0374 0.042*
H15C 0.5041 0.4449 0.1012 0.042*
C16 0.35919 (14) 0.42411 (10) 0.11947 (10) 0.0225 (4)
H16 0.2921 0.4168 0.0865 0.027*
C17 0.35038 (14) 0.49333 (10) 0.16897 (10) 0.0239 (4)
H17A 0.3386 0.5407 0.1385 0.029*
H17B 0.2916 0.4859 0.1932 0.029*
C18 0.44526 (15) 0.50369 (10) 0.22750 (10) 0.0224 (4)
H18 0.5028 0.5163 0.2026 0.027*
C19 0.43245 (17) 0.56965 (11) 0.27974 (11) 0.0329 (5)
H19A 0.4188 0.6178 0.2517 0.049*
H19B 0.4944 0.5754 0.3167 0.049*
H19C 0.3759 0.5581 0.3043 0.049*
C20 0.46965 (14) 0.42816 (10) 0.27099 (9) 0.0180 (4)
H20 0.4126 0.4179 0.2972 0.022*
C21 0.56471 (14) 0.43588 (9) 0.32922 (9) 0.0178 (4)
C22 0.65728 (14) 0.45263 (10) 0.30990 (10) 0.0212 (4)
H22 0.6605 0.4618 0.2598 0.025*
C23 0.74484 (15) 0.45603 (10) 0.36293 (10) 0.0245 (4)
H23 0.8075 0.4672 0.3490 0.029*
C24 0.74092 (15) 0.44318 (10) 0.43634 (10) 0.0263 (4)
H24 0.8010 0.4442 0.4726 0.032*
C25 0.64913 (15) 0.42898 (11) 0.45631 (10) 0.0265 (4)
H25 0.6457 0.4217 0.5067 0.032*
C26 0.56187 (15) 0.42539 (10) 0.40311 (10) 0.0219 (4)
H26 0.4991 0.4156 0.4175 0.026*
C27 0.14146 (14) 0.14577 (10) 0.38294 (10) 0.0216 (4)
C28 0.24042 (15) 0.16987 (12) 0.40676 (11) 0.0306 (5)
H28 0.2610 0.1911 0.4546 0.037*
C29 0.30822 (16) 0.16268 (12) 0.36024 (12) 0.0354 (5)
H29 0.3760 0.1792 0.3758 0.043*
C30 0.27767 (15) 0.13137 (11) 0.29056 (11) 0.0305 (5)
H30 0.3244 0.1263 0.2584 0.037*
C31 0.17902 (14) 0.10758 (10) 0.26834 (10) 0.0235 (4)
H31 0.1590 0.0864 0.2205 0.028*
C32 0.10767 (13) 0.11353 (9) 0.31353 (9) 0.0176 (4)
C33 −0.00109 (13) 0.09102 (10) 0.28530 (9) 0.0175 (4)
H33A −0.0347 0.0839 0.3280 0.021*
H33B −0.0353 0.1343 0.2556 0.021*
C34 −0.10840 (13) 0.02830 (10) 0.18282 (9) 0.0196 (4)
H34 −0.1656 0.0371 0.2092 0.024*
C35 −0.10346 (14) 0.09797 (10) 0.13410 (9) 0.0210 (4)
C36 −0.01872 (15) 0.11497 (11) 0.10387 (10) 0.0265 (4)
H36 0.0386 0.0821 0.1141 0.032*
C37 −0.01681 (16) 0.17884 (11) 0.05930 (10) 0.0296 (5)
H37 0.0417 0.1896 0.0394 0.036*
C38 −0.09997 (16) 0.22715 (12) 0.04353 (10) 0.0311 (5)
H38 −0.0985 0.2713 0.0132 0.037*
C39 −0.18465 (16) 0.21079 (11) 0.07201 (10) 0.0289 (4)
H39 −0.2424 0.2431 0.0605 0.035*
C40 −0.18589 (14) 0.14725 (10) 0.11758 (10) 0.0230 (4)
H40 −0.2442 0.1373 0.1379 0.028*
C41 −0.05959 (17) −0.06385 (12) 0.08492 (11) 0.0325 (5)
H41A −0.0799 −0.1120 0.0583 0.049*
H41B 0.0086 −0.0697 0.1140 0.049*
H41C −0.0603 −0.0215 0.0496 0.049*
C42 −0.13320 (15) −0.04568 (11) 0.13610 (10) 0.0251 (4)
H42 −0.2012 −0.0379 0.1044 0.030*
C43 −0.14212 (15) −0.11296 (11) 0.18682 (11) 0.0285 (4)
H43A −0.1549 −0.1610 0.1575 0.034*
H43B −0.2003 −0.1043 0.2114 0.034*
C44 −0.04682 (15) −0.12267 (10) 0.24478 (10) 0.0243 (4)
H44 0.0109 −0.1333 0.2194 0.029*
C45 −0.05674 (17) −0.18987 (11) 0.29566 (12) 0.0356 (5)
H45A −0.0686 −0.2377 0.2669 0.053*
H45B −0.1136 −0.1805 0.3205 0.053*
H45C 0.0055 −0.1948 0.3324 0.053*
C46 −0.02524 (14) −0.04680 (10) 0.28885 (10) 0.0196 (4)
H46 −0.0847 −0.0363 0.3125 0.024*
C47 0.06641 (13) −0.05358 (9) 0.34988 (9) 0.0185 (4)
C48 0.16218 (14) −0.06415 (10) 0.33366 (10) 0.0211 (4)
H48 0.1701 −0.0667 0.2838 0.025*
C49 0.24588 (14) −0.07102 (10) 0.38926 (10) 0.0240 (4)
H49 0.3108 −0.0777 0.3774 0.029*
C50 0.23543 (15) −0.06826 (10) 0.46231 (10) 0.0255 (4)
H50 0.2930 −0.0731 0.5005 0.031*
C51 0.14104 (15) −0.05841 (10) 0.47917 (10) 0.0262 (4)
H51 0.1335 −0.0566 0.5291 0.031*
C52 0.05683 (14) −0.05107 (10) 0.42327 (10) 0.0220 (4)
H52 −0.0079 −0.0443 0.4354 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0274 (3) 0.0376 (3) 0.0254 (2) −0.0017 (2) 0.0003 (2) 0.0128 (2)
Cl2 0.0320 (3) 0.0374 (3) 0.0208 (2) 0.0034 (2) 0.0040 (2) −0.0100 (2)
N1 0.0189 (8) 0.0143 (7) 0.0178 (7) 0.0011 (6) 0.0000 (6) 0.0019 (6)
N2 0.0166 (8) 0.0158 (7) 0.0177 (7) 0.0011 (6) 0.0009 (6) −0.0017 (6)
C1 0.0246 (10) 0.0156 (8) 0.0210 (9) −0.0019 (7) 0.0022 (7) −0.0023 (7)
C2 0.0271 (11) 0.0206 (9) 0.0269 (10) 0.0053 (8) −0.0053 (8) −0.0010 (8)
C3 0.0202 (10) 0.0245 (10) 0.0354 (11) 0.0062 (8) −0.0008 (8) −0.0091 (9)
C4 0.0247 (11) 0.0245 (10) 0.0315 (10) 0.0034 (8) 0.0087 (8) −0.0060 (8)
C5 0.0256 (11) 0.0185 (9) 0.0225 (9) 0.0017 (7) 0.0027 (8) −0.0008 (7)
C6 0.0201 (10) 0.0112 (8) 0.0214 (9) 0.0006 (7) 0.0000 (7) −0.0021 (7)
C7 0.0205 (10) 0.0156 (8) 0.0210 (9) −0.0008 (7) 0.0026 (7) 0.0041 (7)
C8 0.0180 (9) 0.0195 (9) 0.0186 (8) 0.0010 (7) 0.0025 (7) 0.0008 (7)
C9 0.0226 (10) 0.0206 (9) 0.0159 (8) 0.0026 (7) 0.0013 (7) 0.0021 (7)
C10 0.0263 (11) 0.0258 (10) 0.0241 (9) −0.0009 (8) 0.0064 (8) −0.0007 (8)
C11 0.0382 (13) 0.0298 (11) 0.0290 (10) 0.0041 (9) 0.0128 (9) −0.0030 (9)
C12 0.0483 (14) 0.0216 (10) 0.0297 (11) −0.0008 (9) 0.0080 (10) −0.0056 (8)
C13 0.0358 (13) 0.0255 (10) 0.0331 (11) −0.0070 (9) 0.0042 (9) −0.0020 (9)
C14 0.0257 (11) 0.0243 (9) 0.0246 (9) −0.0001 (8) 0.0042 (8) 0.0007 (8)
C15 0.0306 (12) 0.0291 (10) 0.0236 (10) 0.0049 (8) 0.0041 (8) 0.0083 (8)
C16 0.0192 (10) 0.0249 (9) 0.0213 (9) 0.0045 (7) −0.0013 (7) 0.0033 (8)
C17 0.0245 (11) 0.0208 (9) 0.0249 (9) 0.0047 (8) 0.0003 (8) 0.0041 (8)
C18 0.0266 (11) 0.0172 (9) 0.0218 (9) 0.0018 (7) 0.0008 (8) 0.0038 (7)
C19 0.0404 (13) 0.0178 (9) 0.0362 (11) 0.0071 (9) −0.0040 (10) −0.0001 (9)
C20 0.0198 (10) 0.0166 (8) 0.0178 (8) 0.0018 (7) 0.0044 (7) 0.0020 (7)
C21 0.0212 (10) 0.0114 (8) 0.0203 (9) 0.0017 (7) 0.0024 (7) 0.0007 (7)
C22 0.0257 (10) 0.0193 (9) 0.0186 (9) 0.0000 (7) 0.0042 (7) 0.0000 (7)
C23 0.0226 (10) 0.0202 (9) 0.0305 (10) −0.0021 (8) 0.0042 (8) −0.0008 (8)
C24 0.0274 (11) 0.0218 (9) 0.0255 (10) −0.0031 (8) −0.0056 (8) 0.0015 (8)
C25 0.0345 (12) 0.0257 (10) 0.0179 (9) −0.0007 (8) 0.0014 (8) 0.0031 (8)
C26 0.0249 (10) 0.0186 (9) 0.0224 (9) 0.0000 (7) 0.0047 (8) 0.0038 (7)
C27 0.0235 (10) 0.0197 (9) 0.0213 (9) 0.0012 (7) 0.0031 (8) 0.0002 (7)
C28 0.0285 (12) 0.0318 (11) 0.0279 (10) −0.0065 (9) −0.0043 (9) −0.0003 (9)
C29 0.0245 (12) 0.0376 (12) 0.0412 (12) −0.0112 (9) −0.0016 (9) 0.0052 (10)
C30 0.0250 (11) 0.0322 (11) 0.0371 (11) −0.0028 (9) 0.0125 (9) 0.0091 (9)
C31 0.0263 (11) 0.0218 (9) 0.0228 (9) −0.0004 (8) 0.0054 (8) 0.0036 (8)
C32 0.0199 (9) 0.0138 (8) 0.0188 (8) 0.0001 (7) 0.0027 (7) 0.0022 (7)
C33 0.0181 (9) 0.0189 (8) 0.0154 (8) 0.0018 (7) 0.0031 (7) −0.0015 (7)
C34 0.0172 (9) 0.0220 (9) 0.0185 (8) 0.0028 (7) 0.0006 (7) −0.0024 (7)
C35 0.0235 (10) 0.0246 (9) 0.0132 (8) −0.0013 (8) −0.0005 (7) −0.0045 (7)
C36 0.0254 (11) 0.0319 (10) 0.0218 (9) 0.0046 (8) 0.0036 (8) 0.0006 (8)
C37 0.0350 (12) 0.0337 (11) 0.0204 (9) −0.0028 (9) 0.0062 (8) 0.0013 (8)
C38 0.0367 (13) 0.0294 (10) 0.0232 (10) −0.0034 (9) −0.0048 (9) 0.0038 (8)
C39 0.0306 (12) 0.0252 (10) 0.0262 (10) 0.0027 (8) −0.0069 (9) 0.0001 (8)
C40 0.0229 (10) 0.0228 (9) 0.0214 (9) −0.0017 (8) −0.0005 (8) −0.0052 (8)
C41 0.0372 (13) 0.0323 (11) 0.0266 (10) 0.0041 (9) 0.0025 (9) −0.0042 (9)
C42 0.0234 (10) 0.0242 (9) 0.0250 (9) −0.0007 (8) −0.0027 (8) −0.0061 (8)
C43 0.0242 (11) 0.0241 (10) 0.0346 (11) −0.0032 (8) −0.0016 (9) −0.0035 (9)
C44 0.0237 (10) 0.0190 (9) 0.0282 (10) −0.0021 (7) −0.0002 (8) 0.0003 (8)
C45 0.0379 (13) 0.0245 (10) 0.0407 (12) −0.0053 (9) −0.0016 (10) 0.0054 (9)
C46 0.0170 (9) 0.0182 (9) 0.0244 (9) −0.0004 (7) 0.0055 (7) 0.0028 (7)
C47 0.0198 (10) 0.0135 (8) 0.0225 (9) −0.0013 (7) 0.0042 (7) 0.0014 (7)
C48 0.0219 (10) 0.0200 (9) 0.0213 (9) 0.0001 (7) 0.0038 (7) 0.0013 (7)
C49 0.0184 (10) 0.0231 (9) 0.0306 (10) 0.0010 (7) 0.0050 (8) 0.0015 (8)
C50 0.0248 (11) 0.0215 (9) 0.0259 (10) 0.0002 (8) −0.0060 (8) 0.0010 (8)
C51 0.0352 (12) 0.0229 (9) 0.0198 (9) 0.0015 (8) 0.0035 (8) −0.0006 (8)
C52 0.0232 (10) 0.0193 (9) 0.0248 (9) 0.0023 (7) 0.0076 (8) 0.0029 (7)

Geometric parameters (Å, º)

Cl1—C1 1.7497 (18) C24—H24 0.9500
Cl2—C27 1.7516 (19) C25—C26 1.386 (3)
N1—C7 1.483 (2) C25—H25 0.9500
N1—C8 1.486 (2) C26—H26 0.9500
N1—C20 1.491 (2) C27—C28 1.389 (3)
N2—C33 1.484 (2) C27—C32 1.396 (2)
N2—C46 1.486 (2) C28—C29 1.375 (3)
N2—C34 1.488 (2) C28—H28 0.9500
C1—C2 1.382 (3) C29—C30 1.388 (3)
C1—C6 1.393 (2) C29—H29 0.9500
C2—C3 1.377 (3) C30—C31 1.380 (3)
C2—H2 0.9500 C30—H30 0.9500
C3—C4 1.386 (3) C31—C32 1.393 (2)
C3—H3 0.9500 C31—H31 0.9500
C4—C5 1.380 (3) C32—C33 1.513 (2)
C4—H4 0.9500 C33—H33A 0.9900
C5—C6 1.395 (2) C33—H33B 0.9900
C5—H5 0.9500 C34—C35 1.514 (2)
C6—C7 1.510 (2) C34—C42 1.546 (2)
C7—H7A 0.9900 C34—H34 1.0000
C7—H7B 0.9900 C35—C40 1.389 (3)
C8—C9 1.515 (2) C35—C36 1.396 (3)
C8—C16 1.548 (2) C36—C37 1.382 (3)
C8—H8 1.0000 C36—H36 0.9500
C9—C10 1.392 (3) C37—C38 1.385 (3)
C9—C14 1.394 (3) C37—H37 0.9500
C10—C11 1.384 (3) C38—C39 1.375 (3)
C10—H10 0.9500 C38—H38 0.9500
C11—C12 1.379 (3) C39—C40 1.388 (3)
C11—H11 0.9500 C39—H39 0.9500
C12—C13 1.383 (3) C40—H40 0.9500
C12—H12 0.9500 C41—C42 1.529 (3)
C13—C14 1.389 (3) C41—H41A 0.9800
C13—H13 0.9500 C41—H41B 0.9800
C14—H14 0.9500 C41—H41C 0.9800
C15—C16 1.535 (3) C42—C43 1.514 (3)
C15—H15A 0.9800 C42—H42 1.0000
C15—H15B 0.9800 C43—C44 1.520 (3)
C15—H15C 0.9800 C43—H43A 0.9900
C16—C17 1.526 (3) C43—H43B 0.9900
C16—H16 1.0000 C44—C45 1.518 (3)
C17—C18 1.523 (3) C44—C46 1.544 (2)
C17—H17A 0.9900 C44—H44 1.0000
C17—H17B 0.9900 C45—H45A 0.9800
C18—C19 1.526 (3) C45—H45B 0.9800
C18—C20 1.538 (2) C45—H45C 0.9800
C18—H18 1.0000 C46—C47 1.514 (2)
C19—H19A 0.9800 C46—H46 1.0000
C19—H19B 0.9800 C47—C52 1.389 (2)
C19—H19C 0.9800 C47—C48 1.393 (2)
C20—C21 1.517 (2) C48—C49 1.382 (3)
C20—H20 1.0000 C48—H48 0.9500
C21—C26 1.387 (2) C49—C50 1.386 (3)
C21—C22 1.393 (2) C49—H49 0.9500
C22—C23 1.387 (3) C50—C51 1.378 (3)
C22—H22 0.9500 C50—H50 0.9500
C23—C24 1.388 (3) C51—C52 1.391 (3)
C23—H23 0.9500 C51—H51 0.9500
C24—C25 1.380 (3) C52—H52 0.9500
C7—N1—C8 110.49 (13) C25—C26—C21 121.09 (18)
C7—N1—C20 108.71 (13) C25—C26—H26 119.5
C8—N1—C20 110.10 (13) C21—C26—H26 119.5
C33—N2—C46 108.41 (13) C28—C27—C32 122.65 (17)
C33—N2—C34 108.74 (13) C28—C27—Cl2 116.61 (14)
C46—N2—C34 110.42 (13) C32—C27—Cl2 120.74 (14)
C2—C1—C6 122.54 (17) C29—C28—C27 119.18 (19)
C2—C1—Cl1 116.98 (14) C29—C28—H28 120.4
C6—C1—Cl1 120.48 (14) C27—C28—H28 120.4
C3—C2—C1 119.90 (18) C28—C29—C30 120.08 (19)
C3—C2—H2 120.1 C28—C29—H29 120.0
C1—C2—H2 120.1 C30—C29—H29 120.0
C2—C3—C4 119.27 (18) C31—C30—C29 119.59 (19)
C2—C3—H3 120.4 C31—C30—H30 120.2
C4—C3—H3 120.4 C29—C30—H30 120.2
C5—C4—C3 119.95 (18) C30—C31—C32 122.43 (18)
C5—C4—H4 120.0 C30—C31—H31 118.8
C3—C4—H4 120.0 C32—C31—H31 118.8
C4—C5—C6 122.34 (17) C31—C32—C27 116.06 (16)
C4—C5—H5 118.8 C31—C32—C33 120.59 (16)
C6—C5—H5 118.8 C27—C32—C33 123.21 (15)
C1—C6—C5 115.97 (16) N2—C33—C32 115.03 (14)
C1—C6—C7 123.02 (16) N2—C33—H33A 108.5
C5—C6—C7 120.95 (16) C32—C33—H33A 108.5
N1—C7—C6 113.67 (14) N2—C33—H33B 108.5
N1—C7—H7A 108.8 C32—C33—H33B 108.5
C6—C7—H7A 108.8 H33A—C33—H33B 107.5
N1—C7—H7B 108.8 N2—C34—C35 112.08 (14)
C6—C7—H7B 108.8 N2—C34—C42 112.31 (14)
H7A—C7—H7B 107.7 C35—C34—C42 110.81 (14)
N1—C8—C9 112.74 (14) N2—C34—H34 107.1
N1—C8—C16 110.31 (14) C35—C34—H34 107.1
C9—C8—C16 111.54 (14) C42—C34—H34 107.1
N1—C8—H8 107.3 C40—C35—C36 117.71 (17)
C9—C8—H8 107.3 C40—C35—C34 119.74 (16)
C16—C8—H8 107.3 C36—C35—C34 122.54 (17)
C10—C9—C14 117.87 (17) C37—C36—C35 121.11 (18)
C10—C9—C8 122.98 (16) C37—C36—H36 119.4
C14—C9—C8 119.15 (16) C35—C36—H36 119.4
C11—C10—C9 120.97 (18) C36—C37—C38 120.15 (19)
C11—C10—H10 119.5 C36—C37—H37 119.9
C9—C10—H10 119.5 C38—C37—H37 119.9
C12—C11—C10 120.48 (19) C39—C38—C37 119.59 (19)
C12—C11—H11 119.8 C39—C38—H38 120.2
C10—C11—H11 119.8 C37—C38—H38 120.2
C11—C12—C13 119.54 (19) C38—C39—C40 120.15 (19)
C11—C12—H12 120.2 C38—C39—H39 119.9
C13—C12—H12 120.2 C40—C39—H39 119.9
C12—C13—C14 119.97 (19) C39—C40—C35 121.26 (18)
C12—C13—H13 120.0 C39—C40—H40 119.4
C14—C13—H13 120.0 C35—C40—H40 119.4
C13—C14—C9 121.17 (18) C42—C41—H41A 109.5
C13—C14—H14 119.4 C42—C41—H41B 109.5
C9—C14—H14 119.4 H41A—C41—H41B 109.5
C16—C15—H15A 109.5 C42—C41—H41C 109.5
C16—C15—H15B 109.5 H41A—C41—H41C 109.5
H15A—C15—H15B 109.5 H41B—C41—H41C 109.5
C16—C15—H15C 109.5 C43—C42—C41 111.28 (16)
H15A—C15—H15C 109.5 C43—C42—C34 108.89 (15)
H15B—C15—H15C 109.5 C41—C42—C34 114.80 (16)
C17—C16—C15 111.67 (16) C43—C42—H42 107.2
C17—C16—C8 108.37 (14) C41—C42—H42 107.2
C15—C16—C8 113.85 (15) C34—C42—H42 107.2
C17—C16—H16 107.6 C42—C43—C44 111.51 (16)
C15—C16—H16 107.6 C42—C43—H43A 109.3
C8—C16—H16 107.6 C44—C43—H43A 109.3
C18—C17—C16 111.64 (15) C42—C43—H43B 109.3
C18—C17—H17A 109.3 C44—C43—H43B 109.3
C16—C17—H17A 109.3 H43A—C43—H43B 108.0
C18—C17—H17B 109.3 C45—C44—C43 111.13 (16)
C16—C17—H17B 109.3 C45—C44—C46 110.70 (16)
H17A—C17—H17B 108.0 C43—C44—C46 109.20 (15)
C17—C18—C19 110.97 (16) C45—C44—H44 108.6
C17—C18—C20 109.90 (15) C43—C44—H44 108.6
C19—C18—C20 110.02 (15) C46—C44—H44 108.6
C17—C18—H18 108.6 C44—C45—H45A 109.5
C19—C18—H18 108.6 C44—C45—H45B 109.5
C20—C18—H18 108.6 H45A—C45—H45B 109.5
C18—C19—H19A 109.5 C44—C45—H45C 109.5
C18—C19—H19B 109.5 H45A—C45—H45C 109.5
H19A—C19—H19B 109.5 H45B—C45—H45C 109.5
C18—C19—H19C 109.5 N2—C46—C47 111.10 (14)
H19A—C19—H19C 109.5 N2—C46—C44 111.50 (14)
H19B—C19—H19C 109.5 C47—C46—C44 111.98 (14)
N1—C20—C21 110.91 (14) N2—C46—H46 107.3
N1—C20—C18 112.45 (14) C47—C46—H46 107.3
C21—C20—C18 111.45 (14) C44—C46—H46 107.3
N1—C20—H20 107.2 C52—C47—C48 118.44 (17)
C21—C20—H20 107.2 C52—C47—C46 120.89 (16)
C18—C20—H20 107.2 C48—C47—C46 120.66 (15)
C26—C21—C22 118.25 (17) C49—C48—C47 120.79 (17)
C26—C21—C20 120.76 (16) C49—C48—H48 119.6
C22—C21—C20 120.98 (15) C47—C48—H48 119.6
C23—C22—C21 120.83 (17) C48—C49—C50 120.26 (18)
C23—C22—H22 119.6 C48—C49—H49 119.9
C21—C22—H22 119.6 C50—C49—H49 119.9
C22—C23—C24 120.06 (18) C51—C50—C49 119.58 (18)
C22—C23—H23 120.0 C51—C50—H50 120.2
C24—C23—H23 120.0 C49—C50—H50 120.2
C25—C24—C23 119.54 (18) C50—C51—C52 120.21 (17)
C25—C24—H24 120.2 C50—C51—H51 119.9
C23—C24—H24 120.2 C52—C51—H51 119.9
C24—C25—C26 120.18 (17) C47—C52—C51 120.71 (18)
C24—C25—H25 119.9 C47—C52—H52 119.6
C26—C25—H25 119.9 C51—C52—H52 119.6
C6—C1—C2—C3 0.3 (3) C32—C27—C28—C29 0.7 (3)
Cl1—C1—C2—C3 179.61 (14) Cl2—C27—C28—C29 −179.30 (16)
C1—C2—C3—C4 −1.9 (3) C27—C28—C29—C30 −0.3 (3)
C2—C3—C4—C5 1.9 (3) C28—C29—C30—C31 0.0 (3)
C3—C4—C5—C6 −0.2 (3) C29—C30—C31—C32 −0.2 (3)
C2—C1—C6—C5 1.4 (2) C30—C31—C32—C27 0.5 (3)
Cl1—C1—C6—C5 −177.97 (13) C30—C31—C32—C33 176.43 (17)
C2—C1—C6—C7 178.49 (16) C28—C27—C32—C31 −0.8 (3)
Cl1—C1—C6—C7 −0.8 (2) Cl2—C27—C32—C31 179.19 (13)
C4—C5—C6—C1 −1.4 (3) C28—C27—C32—C33 −176.59 (17)
C4—C5—C6—C7 −178.57 (16) Cl2—C27—C32—C33 3.4 (2)
C8—N1—C7—C6 145.16 (14) C46—N2—C33—C32 93.22 (16)
C20—N1—C7—C6 −93.91 (17) C34—N2—C33—C32 −146.70 (14)
C1—C6—C7—N1 149.01 (16) C31—C32—C33—N2 41.3 (2)
C5—C6—C7—N1 −34.0 (2) C27—C32—C33—N2 −143.10 (16)
C7—N1—C8—C9 −53.74 (18) C33—N2—C34—C35 58.33 (17)
C20—N1—C8—C9 −173.84 (14) C46—N2—C34—C35 177.16 (14)
C7—N1—C8—C16 −179.17 (14) C33—N2—C34—C42 −176.17 (14)
C20—N1—C8—C16 60.73 (17) C46—N2—C34—C42 −57.34 (18)
N1—C8—C9—C10 −46.9 (2) N2—C34—C35—C40 −134.52 (16)
C16—C8—C9—C10 77.9 (2) C42—C34—C35—C40 99.16 (19)
N1—C8—C9—C14 133.87 (16) N2—C34—C35—C36 46.1 (2)
C16—C8—C9—C14 −101.37 (19) C42—C34—C35—C36 −80.2 (2)
C14—C9—C10—C11 0.2 (3) C40—C35—C36—C37 0.3 (3)
C8—C9—C10—C11 −179.05 (17) C34—C35—C36—C37 179.68 (17)
C9—C10—C11—C12 −0.1 (3) C35—C36—C37—C38 −0.3 (3)
C10—C11—C12—C13 0.0 (3) C36—C37—C38—C39 −0.5 (3)
C11—C12—C13—C14 −0.1 (3) C37—C38—C39—C40 1.4 (3)
C12—C13—C14—C9 0.2 (3) C38—C39—C40—C35 −1.5 (3)
C10—C9—C14—C13 −0.3 (3) C36—C35—C40—C39 0.6 (3)
C8—C9—C14—C13 179.02 (17) C34—C35—C40—C39 −178.78 (16)
N1—C8—C16—C17 −60.37 (18) N2—C34—C42—C43 56.4 (2)
C9—C8—C16—C17 173.53 (15) C35—C34—C42—C43 −177.41 (15)
N1—C8—C16—C15 64.54 (19) N2—C34—C42—C41 −69.1 (2)
C9—C8—C16—C15 −61.6 (2) C35—C34—C42—C41 57.1 (2)
C15—C16—C17—C18 −68.85 (19) C41—C42—C43—C44 71.1 (2)
C8—C16—C17—C18 57.3 (2) C34—C42—C43—C44 −56.4 (2)
C16—C17—C18—C19 −176.09 (15) C42—C43—C44—C45 179.61 (16)
C16—C17—C18—C20 −54.2 (2) C42—C43—C44—C46 57.2 (2)
C7—N1—C20—C21 55.53 (17) C33—N2—C46—C47 −57.78 (17)
C8—N1—C20—C21 176.70 (13) C34—N2—C46—C47 −176.81 (13)
C7—N1—C20—C18 −178.92 (14) C33—N2—C46—C44 176.55 (14)
C8—N1—C20—C18 −57.75 (18) C34—N2—C46—C44 57.52 (18)
C17—C18—C20—N1 53.9 (2) C45—C44—C46—N2 −179.96 (16)
C19—C18—C20—N1 176.42 (15) C43—C44—C46—N2 −57.3 (2)
C17—C18—C20—C21 179.20 (14) C45—C44—C46—C47 54.9 (2)
C19—C18—C20—C21 −58.3 (2) C43—C44—C46—C47 177.52 (15)
N1—C20—C21—C26 −114.11 (17) N2—C46—C47—C52 121.84 (17)
C18—C20—C21—C26 119.78 (17) C44—C46—C47—C52 −112.76 (18)
N1—C20—C21—C22 65.0 (2) N2—C46—C47—C48 −59.5 (2)
C18—C20—C21—C22 −61.1 (2) C44—C46—C47—C48 65.9 (2)
C26—C21—C22—C23 2.2 (3) C52—C47—C48—C49 −0.8 (3)
C20—C21—C22—C23 −176.92 (15) C46—C47—C48—C49 −179.45 (16)
C21—C22—C23—C24 −0.4 (3) C47—C48—C49—C50 0.7 (3)
C22—C23—C24—C25 −1.6 (3) C48—C49—C50—C51 −0.2 (3)
C23—C24—C25—C26 1.8 (3) C49—C50—C51—C52 −0.2 (3)
C24—C25—C26—C21 0.0 (3) C48—C47—C52—C51 0.4 (3)
C22—C21—C26—C25 −2.0 (3) C46—C47—C52—C51 179.09 (16)
C20—C21—C26—C25 177.13 (16) C50—C51—C52—C47 0.0 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C35–C40 ring.

D—H···A D—H H···A D···A D—H···A
C29—H29···Cl1 0.95 2.73 3.678 (2) 174
C24—H24···Cg1i 0.95 2.95 3.680 (2) 135

Symmetry code: (i) x+1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6873).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model 19, 557–559. [DOI] [PubMed]
  5. Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934. [DOI] [PubMed]
  6. Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533. [DOI] [PubMed]
  7. Ramalingan, C., Ng, S. E. & Tiekink, E. R. T. (2012). Acta Cryst E68, o2300. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029212/hb6873sup1.cif

e-68-o2301-sup1.cif (34.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029212/hb6873Isup2.hkl

e-68-o2301-Isup2.hkl (479.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029212/hb6873Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES