Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1986 Jan 24;14(2):999–1008. doi: 10.1093/nar/14.2.999

The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster.

B E Hayward, A Hussain, R H Wilson, A Lyons, V Woodcock, B McIntosh, T J Harris
PMCID: PMC339478  PMID: 2868445

Abstract

The nucleotide sequence for a glutamine synthetase (GS) mRNA from gene-amplified Chinese hamster (CHO) cells was determined from recombinant cDNA clones obtained from both pBR322 and lambda gt10 libraries and by primer extension. The sequence obtained contains about 1400 bp corresponding to a minor species of mRNA terminated by a poly A sequence. The mRNA contains 146 nucleotides of 5'-noncoding region, 1119 bp of coding sequence, and 108 bp of 3'-noncoding sequence with a 32 bp poly(A) tail. The polyadenylation site used shows little homology with efficient polyadenylation sites, but has considerable complementarity with U4 RNA. The predicted amino acid sequence, starting from an initiation codon with the preferred sequence surrounding it, indicates that Chinese hamster GS has high homology with published bovine brain GS peptides and enabled an ordering of these peptides. There is homology between the mammalian GS enzymes and glutamine synthetases obtained from plants and cyanobacteria but no obvious homology between the CHO cell GS sequence and that of other ATP hydrolysing enzymes.

Full text

PDF
999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arad G., Freikopf A., Kulka R. G. Glutamine-stimulated modification and degradation of glutamine synthetase in hepatoma tissue culture cells. Cell. 1976 May;8(1):95–101. doi: 10.1016/0092-8674(76)90190-2. [DOI] [PubMed] [Google Scholar]
  2. Berget S. M. Are U4 small nuclear ribonucleoproteins involved in polyadenylation? Nature. 1984 May 10;309(5964):179–182. doi: 10.1038/309179a0. [DOI] [PubMed] [Google Scholar]
  3. Busch H., Reddy R., Rothblum L., Choi Y. C. SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem. 1982;51:617–654. doi: 10.1146/annurev.bi.51.070182.003153. [DOI] [PubMed] [Google Scholar]
  4. Chan Y. L., Gutell R., Noller H. F., Wool I. G. The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J Biol Chem. 1984 Jan 10;259(1):224–230. [PubMed] [Google Scholar]
  5. Frayne E. G., Leys E. J., Crouse G. F., Hook A. G., Kellems R. E. Transcription of the mouse dihydrofolate reductase gene proceeds unabated through seven polyadenylation sites and terminates near a region of repeated DNA. Mol Cell Biol. 1984 Dec;4(12):2921–2924. doi: 10.1128/mcb.4.12.2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gebhardt R., Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 1983;2(4):567–570. doi: 10.1002/j.1460-2075.1983.tb01464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  8. Johnson R. J., Piskiewicz D. Primary structure of peptides from bovine brain glutamine synthetase. Comparison with sequences of glutamine synthetases from other organisms. Biochim Biophys Acta. 1985 Mar 1;827(3):439–446. doi: 10.1016/0167-4838(85)90230-4. [DOI] [PubMed] [Google Scholar]
  9. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol. 1985 May 5;183(1):1–12. doi: 10.1016/0022-2836(85)90276-1. [DOI] [PubMed] [Google Scholar]
  11. Linser P., Moscona A. A. Induction of glutamine synthetase in embryonic neural retina: localization in Müller fibers and dependence on cell interactions. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6476–6480. doi: 10.1073/pnas.76.12.6476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loenen W. A., Brammar W. J. A bacteriophage lambda vector for cloning large DNA fragments made with several restriction enzymes. Gene. 1980 Aug;10(3):249–259. doi: 10.1016/0378-1119(80)90054-2. [DOI] [PubMed] [Google Scholar]
  13. Masters J. N., Attardi G. Discrete human dihydrofolate reductase gene transcripts present in polysomal RNA map with their 5' ends several hundred nucleotides upstream of the main mRNA start site. Mol Cell Biol. 1985 Mar;5(3):493–500. doi: 10.1128/mcb.5.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  15. Michelson A. M., Orkin S. H. Characterization of the homopolymer tailing reaction catalyzed by terminal deoxynucleotidyl transferase. Implications for the cloning of cDNA. J Biol Chem. 1982 Dec 25;257(24):14773–14782. [PubMed] [Google Scholar]
  16. Miller R. E., Hackenberg R., Gershman H. Regulation of glutamine synthetase in cultured 3T3-L1 cells by insulin, hydrocortisone, and dibutyryl cyclic AMP. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1418–1422. doi: 10.1073/pnas.75.3.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Milman G., Portnoff L. S., Tiemeier D. C. Immunochemical evidence for glutamine-mediated degradation of glutamine synthetase in cultured Chinese hamster cells. J Biol Chem. 1975 Feb 25;250(4):1393–1399. [PubMed] [Google Scholar]
  18. Moss J., Watkins P. A., Stanley S. J., Purnell M. R., Kidwell W. R. Inactivation of glutamine synthetases by an NAD:arginine ADP-ribosyltransferase. J Biol Chem. 1984 Apr 25;259(8):5100–5104. [PubMed] [Google Scholar]
  19. Nyunoya H., Lusty C. J. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4629–4633. doi: 10.1073/pnas.80.15.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Powers S. G., Riordan J. F. Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2616–2620. doi: 10.1073/pnas.72.7.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rao D. R., Beyreuther K., Jaenicke L. A comparative study of pig and sheep-brain glutamine synthetases: tryptic peptides and thiol groups. Eur J Biochem. 1973 Jun 15;35(3):582–592. doi: 10.1111/j.1432-1033.1973.tb02876.x. [DOI] [PubMed] [Google Scholar]
  22. Ronzio R. A., Rowe W. B., Meister A. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry. 1969 Mar;8(3):1066–1075. doi: 10.1021/bi00831a038. [DOI] [PubMed] [Google Scholar]
  23. Sanders P. G., Wilson R. H. Amplification and cloning of the Chinese hamster glutamine synthetase gene. EMBO J. 1984 Jan;3(1):65–71. doi: 10.1002/j.1460-2075.1984.tb01762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sternberg M. J., Taylor W. R. Modelling the ATP-binding site of oncogene products, the epidermal growth factor receptor and related proteins. FEBS Lett. 1984 Oct 1;175(2):387–392. doi: 10.1016/0014-5793(84)80774-7. [DOI] [PubMed] [Google Scholar]
  25. Tiemeier D. C., Milman G. Chinese hamster liver glutamine synthetase. Purification, physical and biochemical properties. J Biol Chem. 1972 Apr 25;247(8):2272–2277. [PubMed] [Google Scholar]
  26. Volckaert G., Tavernier J., Derynck R., Devos R., Fiers W. Molecular mechanisms of nucleotide-sequence rearrangements in cDNA clones of human fibroblast interferon mRNA. Gene. 1981 Nov;15(2-3):215–223. doi: 10.1016/0378-1119(81)90131-1. [DOI] [PubMed] [Google Scholar]
  27. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Young A. P., Ringold G. M. Mouse 3T6 cells that overproduce glutamine synthetase. J Biol Chem. 1983 Sep 25;258(18):11260–11266. [PubMed] [Google Scholar]
  29. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES