Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1986 Feb 25;14(4):1801–1809. doi: 10.1093/nar/14.4.1801

Structural characterisation of the bromouracil.guanine base pair mismatch in a Z-DNA fragment.

T Brown, G Kneale, W N Hunter, O Kennard
PMCID: PMC339574  PMID: 3951996

Abstract

The deoxyoligonucleotide d(BrU-G-C-G-C-G) was crystallised at pH 8.2 and its structure analysed by X-ray diffraction. The unit cell, of dimensions a = 17.94, b = 30.85, c = 49.94A contains four DNA duplexes in space group P2(1)2(1)2(1). The duplexes are in the Z conformation, with four Watson-Crick G.C base pairs and two BrU.G base pairs. The structure was refined to an R factor of 0.16 at a resolution of 2.2A with 64 solvent molecules located. The BrU.G base pair mismatch is of the wobble type, with both bases in the major tautomer form and hydrogen bonds linking 0-2 of BrU with N-1 of G and N3 of BrU with 0-6 of G. There is no indication of the presence of ionised base pairs, in spite of the high pH of crystallisation. The results are discussed in terms of the mutagenic properties of 5- bromouracil.

Full text

PDF
1801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown T., Kennard O., Kneale G., Rabinovich D. High-resolution structure of a DNA helix containing mismatched base pairs. Nature. 1985 Jun 13;315(6020):604–606. doi: 10.1038/315604a0. [DOI] [PubMed] [Google Scholar]
  2. Gait M. J., Matthes H. W., Singh M., Sproat B. S., Titmas R. C. Rapid synthesis of oligodeoxyribonucleotides. VII. Solid phase synthesis of oligodeoxyribonucleotides by a continuous flow phosphotriester method on a kieselguhr-polyamide support. Nucleic Acids Res. 1982 Oct 25;10(20):6243–6254. doi: 10.1093/nar/10.20.6243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hopkins R. L., Goodman M. F. Deoxyribonucleotide pools, base pairing, and sequence configuration affecting bromodeoxyuridine- and 2-aminopurine-induced mutagenesis. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1801–1805. doi: 10.1073/pnas.77.4.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jack A., Ladner J. E., Klug A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. J Mol Biol. 1976 Dec 25;108(4):619–649. doi: 10.1016/s0022-2836(76)80109-x. [DOI] [PubMed] [Google Scholar]
  5. LAWLEY P. D., BROOKES P. Ionization of DNA bases or base analogues as a possible explanation of mutagenesis, with special reference to 5-bromodeoxyuridine. J Mol Biol. 1962 Mar;4:216–219. doi: 10.1016/s0022-2836(62)80053-9. [DOI] [PubMed] [Google Scholar]
  6. Lasken R. S., Goodman M. F. A fidelity assay using "dideoxy" DNA sequencing: a measurement of sequence dependence and frequency of forming 5-bromouracil X guanine base mispairs. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1301–1305. doi: 10.1073/pnas.82.5.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lasken R. S., Goodman M. F. The biochemical basis of 5-bromouracil-induced mutagenesis. Heteroduplex base mispairs involving bromouracil in G x C----A x T and A x T----G x C mutational pathways. J Biol Chem. 1984 Sep 25;259(18):11491–11495. [PubMed] [Google Scholar]
  8. Patel D. J., Kozlowski S. A., Ikuta S., Itakura K. Dynamics of DNA duplexes containing internal G.T, G.A, A.C, and T.C pairs: hydrogen exchange at and adjacent to mismatch sites. Fed Proc. 1984 Aug;43(11):2663–2670. [PubMed] [Google Scholar]
  9. Skopek T. R., Hutchinson F. DNA base sequence changes induced by bromouracil mutagenesis of lambda phage. J Mol Biol. 1982 Jul 25;159(1):19–33. doi: 10.1016/0022-2836(82)90029-8. [DOI] [PubMed] [Google Scholar]
  10. Sternglanz H., Bugg C. E. Relationship between the mutagenic and base-stacking properties of halogenated uracil derivatives. The crystal structures of 5-chloro- and 5-bromouracil. Biochim Biophys Acta. 1975 Jan 6;378(1):1–11. doi: 10.1016/0005-2787(75)90130-6. [DOI] [PubMed] [Google Scholar]
  11. Topal M. D., Fresco J. R. Complementary base pairing and the origin of substitution mutations. Nature. 1976 Sep 23;263(5575):285–289. doi: 10.1038/263285a0. [DOI] [PubMed] [Google Scholar]
  12. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  13. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES