Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2010 Nov 25;50(Suppl 1):34–40. doi: 10.1007/s12088-010-0063-4

Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system

Rajiv Kumar 1, Dinesh Goyal 1,
PMCID: PMC3396408  PMID: 22815569

Abstract

A case study was undertaken for the treatment of domestic wastewater generated at village of Sanghol, Distt. Fatehgarh Sahib, Punjab (India), using a schematic designed algal and duckweed based stabilization pond system, which is discussed here for winter months only (November to March) as there was no growth of duckweeds and only algae dominated the whole system. A proficient increase in pH and dissolved oxygen was observed after the treatment with reduction in chemical oxygen demand and biochemical oxygen demand by 93% and 79% respectively. Chlorella sp. was the dominating algal species in the stabilization pond water during entire period and was studied for its Zn2+ and Pb2+ metal removal efficiency. 60–70% removal of Zn2+ was observed from culture medium containing 5–20 mg L−1 Zn2+, which declined to 42% at 50 mg L−1. A constant decline in cell number from 538 × 105 to 8 × 105 cells ml−1 was observed indicating zinc toxicity to Chlorella. Lead was maximally removed by 66.3% from culture medium containing 1 mg L−1. The lead removal efficiency was 45 50 % at higher 5 to 20 mg L−1 of external lead concentrations. The increase in cell number indicated no signs of Pb2+ toxicity up to 20 mg L−1. The maximum uptake (qmax) by live Chlorella biomass for both Zn2+ and Pb2+ was 34.4 and 41.8 mg/g respectively.

Keywords: Chlorella sp., Waste-water stabilization pond system, Chemical oxygen demand, Biochemical oxygen demand, Lead

References

  • 1.Zimmo O.R., Al-Sa’ed R.M., Van der Steen N.P., Gijzen H.J. Process performance assessment of algae-based and duckweed-based wastewater treatment systems. Water Sci Technol. 2002;45:91–101. [PubMed] [Google Scholar]
  • 2.Middlebrooks E.J. Upgrading pond effluents an overview. Water Sci Technol. 1995;31:353–368. doi: 10.1016/0273-1223(95)00522-O. [DOI] [Google Scholar]
  • 3.Pearson H. W., Mara D., Mills D., Arridge H.A. The influence of pond geometry and configuration on facultative and maturation waste stabilization pond performance and efficiency. Water Sci Technol. 1995;31:129–139. doi: 10.1016/0273-1223(95)00500-M. [DOI] [Google Scholar]
  • 4.Cerniglia C.E. Biodegredation of polycyclic aromatic hydrocarbons. Biodegradation. 1992;3:351–368. doi: 10.1007/BF00129093. [DOI] [Google Scholar]
  • 5.De la Noue J., Laliberte G., Proulx D. Algae and wastewater. J Appl Phycol. 1992;4:247–254. doi: 10.1007/BF02161210. [DOI] [Google Scholar]
  • 6.Raghukumar C., Vipparty V., David J., Chandramohan D. Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biot. 2001;57:433–436. doi: 10.1007/s002530100784. [DOI] [PubMed] [Google Scholar]
  • 7.Pinto G., Pollio A., Previtera L., Temussi F. Biodegradation of phenols by Microalgae. Biotechnol Lett. 2002;24:2047–2051. doi: 10.1023/A:1021367304315. [DOI] [Google Scholar]
  • 8.Muthukumaran M., Raghavan B.G., Subramanian V.V., Sivasubramanian V. Bioremediation of industrial effluents using microalgae. India Hydrobiol. 2005;7:105–122. [Google Scholar]
  • 9.Olguín E.J. Phycoremediation key issues for cost-effective nutrient removal processes. Biotechnol Adv. 2003;22:81–91. doi: 10.1016/S0734-9750(03)00130-7. [DOI] [PubMed] [Google Scholar]
  • 10.Oswald W.J. Microalgae and waste-water treatment. In: Borowitza M.A., Borowitzka L.J., editors. Microalgal Biotechnology. New York, USA: Cambridge University Press; 1988. pp. 305–328. [Google Scholar]
  • 11.Wilde E.W., Benemann J.R. Bioremaoval of heavy metals by the use of microalgae. Biotechnol Adv. 1993;11:781–812. doi: 10.1016/0734-9750(93)90003-6. [DOI] [PubMed] [Google Scholar]
  • 12.Zayed A.M., Terry N. Chromium in the environment: Factors affecting biological remediation. Plant Soil. 2003;249:139–156. doi: 10.1023/A:1022504826342. [DOI] [Google Scholar]
  • 13.Chu K.H., Hashim M.A. Quantitative analysis of copper biosorption by the microalgae Chlorella vulgaris. Environ Eng Sci. 2004;21:139–147. doi: 10.1089/109287504773087318. [DOI] [Google Scholar]
  • 14.Alexander M. Biodegradation and Bioremediation. San Diego, California, USA: Academic Press; 1994. Sorption; pp. 114–130. [Google Scholar]
  • 15.Wong S.L., Wainwright J.F., Nakamoto L. Monitoring toxicity in four wastewaters in the bay of Quinte, Lake Ontoria. J Great Lakes Res. 1995;21:340–352. doi: 10.1016/S0380-1330(95)71045-0. [DOI] [Google Scholar]
  • 16.Rachlin J., Grosso A. The growth response of the green alga Chlorella vulgaris to combined cation exposure. Arch Environ Con Tox. 1993;24:16–20. doi: 10.1007/BF01061084. [DOI] [PubMed] [Google Scholar]
  • 17.Gronlund E. Microalgae at wastewater pond treatment in cold climate — an ecological engineering approach. Lulea, Sweden: Division of Sanitary Engineering, Department of Environmental-Engineering, Lulea University of Technology; 2004. [Google Scholar]
  • 18.Tang E.P.Y., Vincent W.F., Proulx D., Lessard P., De la Noue J. Polar cyanobacteria versus green algae for tertiary wastewater treatment in cool climate. J Appl Phycol. 1997;9:371–381. doi: 10.1023/A:1007987127526. [DOI] [Google Scholar]
  • 19.Craggs R.J., Smith V.J., McAuley P.J. Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Sci Technol. 1995;31:151–160. doi: 10.1016/0273-1223(95)00502-E. [DOI] [Google Scholar]
  • 20.Clesceri L.S., Greenberg A.E., Rhodes R. Standard Methods for the Examination of Water and Wastewater. 17th ed. Washington DC, USA: Amer Public Health Assoc; 1989. pp. 5–4. [Google Scholar]
  • 21.Cappuccino J.G., Sherma N. Microbiology: laboratory manual. 5th ed. England: Benjamin/Cumming Publishing Co; 1998. Standard quality analysis of water. [Google Scholar]
  • 22.Prescott G.W. Algae of the Western Great Lakes Area. Dubuque, Iowa: W.M.C. Brown Publishers; 1951. p. 946. [Google Scholar]
  • 23.Smith G.M. The Freshwater Algae of the United States. 2nd ed. New York, USA: Mc. Graw-Hill Publication; 1950. p. 791. [Google Scholar]
  • 24.Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol Rev. 1971;35:171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kaplan D., Heimer Y., Abeliovich A., Goldsbrough P. Cadmium toxicity and resistance in Chlorella sp. Plant Sci J. 1995;109:129–137. doi: 10.1016/0168-9452(95)04165-Q. [DOI] [Google Scholar]
  • 26.Volesky B. Removal of heavy metals by biosorption. In: Ladisch M.R., Bose A., editors. Harnessing Biotechnology for the 21st Century. Washington DC, USA: Amer Chem Soc; 1992. pp. 462–466. [Google Scholar]
  • 27.Zhang L., Zhao L., Yu Y., Chen C. Removal of Pb2+ from aqueous solution by non-living Rhizopus nigricans. Water Res. 1998;32:1437–1444. doi: 10.1016/S0043-1354(97)00348-5. [DOI] [Google Scholar]
  • 28.Msuya F.E., Neori A. Ulva reticulata and Gracilaria crassa: Macroalgae that can biofilter effluent from tidal fishponds in tanzania. J Mar Science. 2002;1:117–126. [Google Scholar]
  • 29.Nhapi I., Dalu J., Ndamba J., Gijzen H.J. An evaluation of duckweed-based pond systems as an alternative option for decentralized treatment and reuse of wastewater in Zimbabwe. Water Sci Technol. 2003;48:115–122. [PubMed] [Google Scholar]
  • 30.Walsh G.E., Bahner L.H., Horning W.B. Toxicity of textile mill effluents to freshwater and estuarine algae, crustaceans and fishes. Environ Pollut A. 1980;21:169–179. doi: 10.1016/0143-1471(80)90161-0. [DOI] [Google Scholar]
  • 31.Lau P.S., Tam N.F.Y., Wong Y.S. Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut. 1995;89:9–66. doi: 10.1016/0269-7491(94)00044-E. [DOI] [Google Scholar]
  • 32.Howarth R.W. Comparative response of aquatic ecosystem to toxic chemical stress. In: Col J., Lovett G., Findlay S., editors. Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories. New York, USA: Springer-Verlag Inc; 1991. pp. 169–196. [Google Scholar]
  • 33.Borchardt M.A. Factors affecting benthic algae nutrients. In: Stevenson R.J., Bothwell M.L., Lowe R.L., editors. Algal Ecology: Freshwater Benthic Ecosystem. San Diego, California, USA: Academic Press Inc; 1996. pp. 184–227. [Google Scholar]
  • 34.Gadd G.M. Heavy metal accumulation by bacteria and other microorganisms. Cell Mol Life Sci. 1990;46:834–840. doi: 10.1007/BF01935534. [DOI] [Google Scholar]
  • 35.Franklin N.M., Adams M.S., Stauber J.L., Lim R.P. Development of a rapid enzyme inhibition bioassay with marine and freshwater microalgae using flowcytometry. Arch Environ Con Tox. 2001;40:469–480. doi: 10.1007/s002440010199. [DOI] [PubMed] [Google Scholar]
  • 36.Wilde K.L., Stauber J.L., Markich S.J., Franklin N.M., Brown P.L. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.) Arch Environ Con Tox. 2006;51:174–185. doi: 10.1007/s00244-004-0256-0. [DOI] [PubMed] [Google Scholar]
  • 37.Nacorda J.O., Martinez-Goss M.R., Torreta N.K., Merca F.E. Metal resistance and removal by two strains of the green algae, Chlorella vulgaris Beijerinck, isolated from Laguna de Bay, Philippines. J Appl Phycol. 2007;19:701–710. doi: 10.1007/s10811-007-9216-1. [DOI] [Google Scholar]
  • 38.Sandau E., Sandau P., Pulz O. Heavy metal sorption by microalgae. Acta Biotechnol. 1996;16:227–235. doi: 10.1002/abio.370160402. [DOI] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES