Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1986 Mar 11;14(5):2089–2107. doi: 10.1093/nar/14.5.2089

Methidiumpropyl-EDTA-iron(II) cleavage of ribosomal DNA chromatin from Dictyostelium discoideum.

R W Parish, E Banz, P J Ness
PMCID: PMC339645  PMID: 3008086

Abstract

We have used methidiumpropyl-EDTA-iron(II) [MPE.Fe(II)] in parallel with micrococcal nuclease to investigate the chromatin structure of the extrachromosomal palindrome ribosomal RNA genes of Dictyostelium. Confirming our earlier results with micrococcal nuclease (1,2), MPE.Fe(II) digested the coding region of rapidly transcribing rRNA genes as a smear, indicating the absence or severe disruption of nucleosomes, whereas in slowly transcribing rRNA genes, a nucleosomal ladder was produced. In the central non-transcribed spacer region of the palindrome, MPE.Fe(II) digestion resulted in a normal nucleosomal repeat, whereas micrococcal nuclease gave a complex banding pattern. The difference is attributed to the lower sequence specificity of MPE.Fe(II) compared to micrococcal nuclease. In the terminal region of the palindrome, however, both substances gave a complex chromatin digestion pattern. In this region the DNA appears to be packaged in structures strongly positioned with respect to the underlying DNA sequence.

Full text

PDF
2089

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alwine J. C., Kemp D. J., Parker B. A., Reiser J., Renart J., Stark G. R., Wahl G. M. Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzyloxymethyl paper. Methods Enzymol. 1979;68:220–242. doi: 10.1016/0076-6879(79)68017-5. [DOI] [PubMed] [Google Scholar]
  2. Batts-Young B., Maizels N., Lodish H. F. Precursors of ribosomal RNA in the cellular slime mold Dictyostelium discoideum. Isolation and characterization. J Biol Chem. 1977 Jun 10;252(11):3952–3960. [PubMed] [Google Scholar]
  3. Bloom K. S., Carbon J. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell. 1982 Jun;29(2):305–317. doi: 10.1016/0092-8674(82)90147-7. [DOI] [PubMed] [Google Scholar]
  4. Borchsenius S., Bonven B., Leer J. C., Westergaard O. Nuclease-sensitive regions on the extrachromosomal r-chromatin from Tetrahymena pyriformis. Eur J Biochem. 1981 Jul;117(2):245–250. doi: 10.1111/j.1432-1033.1981.tb06329.x. [DOI] [PubMed] [Google Scholar]
  5. Cartwright I. L., Abmayr S. M., Fleischmann G., Lowenhaupt K., Elgin S. C., Keene M. A., Howard G. C. Chromatin structure and gene activity: the role of nonhistone chromosomal proteins. CRC Crit Rev Biochem. 1982;13(1):1–86. doi: 10.3109/10409238209108709. [DOI] [PubMed] [Google Scholar]
  6. Cartwright I. L., Elgin S. C. Chemical footprinting of 5S RNA chromatin in embryos of Drosophila melanogaster. EMBO J. 1984 Dec 20;3(13):3101–3108. doi: 10.1002/j.1460-2075.1984.tb02265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cartwright I. L., Hertzberg R. P., Dervan P. B., Elgin S. C. Cleavage of chromatin with methidiumpropyl-EDTA . iron(II). Proc Natl Acad Sci U S A. 1983 Jun;80(11):3213–3217. doi: 10.1073/pnas.80.11.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlesworth M. C., Parish R. W. Further studies on basic nucleoproteins from the cellular slime mold Dictyostelium discoideum. Eur J Biochem. 1977 May 2;75(1):241–250. doi: 10.1111/j.1432-1033.1977.tb11523.x. [DOI] [PubMed] [Google Scholar]
  9. Cockburn A. F., Taylor W. C., Firtel R. A. Dictyostelium rDNA consists of non-chromosomal palindromic dimers containing 5S and 36S coding regions. Chromosoma. 1978 Dec 21;70(1):19–29. doi: 10.1007/BF00292212. [DOI] [PubMed] [Google Scholar]
  10. Cocucci S. M., Sussman M. RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol. 1970 May;45(2):399–407. doi: 10.1083/jcb.45.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davis A. H., Reudelhuber T. L., Garrard W. T. Varigated chromatin structures of mouse ribosomal RNA genes. J Mol Biol. 1983 Jun 15;167(1):133–155. doi: 10.1016/s0022-2836(83)80038-2. [DOI] [PubMed] [Google Scholar]
  12. Dingwall C., Lomonossoff G. P., Laskey R. A. High sequence specificity of micrococcal nuclease. Nucleic Acids Res. 1981 Jun 25;9(12):2659–2673. doi: 10.1093/nar/9.12.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edwards C. A., Firtel R. A. Site-specific phasing in the chromatin of the rDNA in Dictyostelium discoideum. J Mol Biol. 1984 Nov 25;180(1):73–90. doi: 10.1016/0022-2836(84)90431-5. [DOI] [PubMed] [Google Scholar]
  14. Eissenberg J. C., Kimbrell D. A., Fristrom J. W., Elgin S. C. Chromatin structure at the 44D larval cuticle gene locus in Drosophila: the effect of a transposable element insertion. Nucleic Acids Res. 1984 Dec 11;12(23):9025–9038. doi: 10.1093/nar/12.23.9025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Emery H. S., Weiner A. M. An irregular satellite sequence is found at the termini of the linear extrachromosomal rDNA in Dictyostelium discoideum. Cell. 1981 Nov;26(3 Pt 1):411–419. doi: 10.1016/0092-8674(81)90210-5. [DOI] [PubMed] [Google Scholar]
  16. Firtel R. A., Cockburn A., Frankel G., Hershfield V. Structural organization of the genome of Dictyostelium discoideum: analysis by EcoR1 restriction endonuclease. J Mol Biol. 1976 Apr 25;102(4):831–852. doi: 10.1016/0022-2836(76)90294-1. [DOI] [PubMed] [Google Scholar]
  17. Frankel G., Cockburn A. F., Kindle K. L., Firtel R. A. Organization of the ribosomal RNA genes of Dictyostelium discoideum. Mapping of the transcribed region. J Mol Biol. 1977 Feb 5;109(4):539–558. doi: 10.1016/s0022-2836(77)80090-9. [DOI] [PubMed] [Google Scholar]
  18. Gottschling D. E., Cech T. R. Chromatin structure of the molecular ends of Oxytricha macronuclear DNA: phased nucleosomes and a telomeric complex. Cell. 1984 Sep;38(2):501–510. doi: 10.1016/0092-8674(84)90505-1. [DOI] [PubMed] [Google Scholar]
  19. Grainger R. M., Maizels N. Dictyostelium ribosomal RNA is processed during transcription. Cell. 1980 Jul;20(3):619–623. doi: 10.1016/0092-8674(80)90308-6. [DOI] [PubMed] [Google Scholar]
  20. Hörz W., Altenburger W. Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res. 1981 Jun 25;9(12):2643–2658. doi: 10.1093/nar/9.12.2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Igo-Kemenes T., Hörz W., Zachau H. G. Chromatin. Annu Rev Biochem. 1982;51:89–121. doi: 10.1146/annurev.bi.51.070182.000513. [DOI] [PubMed] [Google Scholar]
  22. Karpov V. L., Preobrazhenskaya O. V., Mirzabekov A. D. Chromatin structure of hsp 70 genes, activated by heat shock: selective removal of histones from the coding region and their absence from the 5' region. Cell. 1984 Feb;36(2):423–431. doi: 10.1016/0092-8674(84)90235-6. [DOI] [PubMed] [Google Scholar]
  23. Keene M. A., Elgin S. C. Micrococcal nuclease as a probe of DNA sequence organization and chromatin structure. Cell. 1981 Nov;27(1 Pt 2):57–64. doi: 10.1016/0092-8674(81)90360-3. [DOI] [PubMed] [Google Scholar]
  24. Keene M. A., Elgin S. C. Patterns of DNA structural polymorphism and their evolutionary implications. Cell. 1984 Jan;36(1):121–129. doi: 10.1016/0092-8674(84)90080-1. [DOI] [PubMed] [Google Scholar]
  25. Labhart P., Banz E., Ness P. J., Parish R. W., Koller T. A structural concept for nucleoli of Dictyostelium discoideum deduced from dissociation studies. Chromosoma. 1984;89(2):111–120. doi: 10.1007/BF00292894. [DOI] [PubMed] [Google Scholar]
  26. Labhart P., Ness P., Banz E., Parish R., Koller T. Model for the structure of the active nucleolar chromatin. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):557–564. doi: 10.1101/sqb.1983.047.01.065. [DOI] [PubMed] [Google Scholar]
  27. Lohr D. A protected region upstream and limited nucleosomal positioning downstream of the transcription initiation region of the yeast 35S ribosomal gene. Biochemistry. 1983 Sep 13;22(19):4527–4534. doi: 10.1021/bi00288a027. [DOI] [PubMed] [Google Scholar]
  28. Maizels N. Dictyostelium 17S, 25S, and 5S rDNAs lie within a 38,000 base pair repeated unit. Cell. 1976 Nov;9(3):431–438. doi: 10.1016/0092-8674(76)90088-x. [DOI] [PubMed] [Google Scholar]
  29. McGhee J. D., Felsenfeld G. Another potential artifact in the study of nucleosome phasing by chromatin digestion with micrococcal nuclease. Cell. 1983 Apr;32(4):1205–1215. doi: 10.1016/0092-8674(83)90303-3. [DOI] [PubMed] [Google Scholar]
  30. Ness P. J., Labhart P., Banz E., Koller T., Parish R. W. Chromatin structure along the ribosomal DNA of Dictyostelium. Regional differences and changes accompanying cell differentiation. J Mol Biol. 1983 May 25;166(3):361–381. doi: 10.1016/s0022-2836(83)80090-4. [DOI] [PubMed] [Google Scholar]
  31. Palen T. E., Cech T. R. Chromatin structure at the replication origins and transcription-initiation regions of the ribosomal RNA genes of Tetrahymena. Cell. 1984 Apr;36(4):933–942. doi: 10.1016/0092-8674(84)90043-6. [DOI] [PubMed] [Google Scholar]
  32. Palen T. E., Cech T. R. Transcribed and non-transcribed regions of Tetrahymena ribosomal gene chromatin have different accessibilities to micrococcal nuclease. Nucleic Acids Res. 1983 Apr 11;11(7):2077–2091. doi: 10.1093/nar/11.7.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parish R. W., Schmidlin S. A lysine-rich protein functions as an H1 histone in Dictyostelium discoideum chromatin. Nucleic Acids Res. 1985 Jan 11;13(1):15–30. doi: 10.1093/nar/13.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parish R. W., Schmidlin S., Fuhrer S., Widmer R. Electrophoretic isolation of nucleosomes from Dictyostelium nuclei and nucleoli: proteins associated with monomers and dimers. FEBS Lett. 1980 Feb 11;110(2):236–240. doi: 10.1016/0014-5793(80)80081-0. [DOI] [PubMed] [Google Scholar]
  35. Parish R. W., Stalder J., Schmidlin S. Biochemical evidence for a DNA repeat length in the chromatin of Dictyostelium discoideum. FEBS Lett. 1977 Dec 1;84(1):63–66. doi: 10.1016/0014-5793(77)81057-0. [DOI] [PubMed] [Google Scholar]
  36. Pauli U. H., Seebeck T., Braun R. Sequence-specific cleavage of chromatin by staphylococcal nuclease can generate an atypical nucleosome pattern. Nucleic Acids Res. 1982 Jul 24;10(14):4121–4133. doi: 10.1093/nar/10.14.4121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Prior C. P., Cantor C. R., Johnson E. M., Littau V. C., Allfrey V. G. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell. 1983 Oct;34(3):1033–1042. doi: 10.1016/0092-8674(83)90561-5. [DOI] [PubMed] [Google Scholar]
  38. Reeves R. Transcriptionally active chromatin. Biochim Biophys Acta. 1984 Sep 10;782(4):343–393. doi: 10.1016/0167-4781(84)90044-7. [DOI] [PubMed] [Google Scholar]
  39. Sogo J. M., Ness P. J., Widmer R. M., Parish R. W., Koller T. Psoralen-crosslinking of DNA as a probe for the structure of active nucleolar chromatin. J Mol Biol. 1984 Oct 5;178(4):897–919. doi: 10.1016/0022-2836(84)90318-8. [DOI] [PubMed] [Google Scholar]
  40. Soll D. R., Sussman M. Transcription in isolated nuclei of the sline mold Dictyostelium discoideum. Biochim Biophys Acta. 1973 Sep 7;319(3):312–322. doi: 10.1016/0005-2787(73)90171-8. [DOI] [PubMed] [Google Scholar]
  41. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  42. Spadafora C., Crippa M. Compact structure of ribosomal chromatin in Xenopus laevis. Nucleic Acids Res. 1984 Mar 26;12(6):2691–2704. doi: 10.1093/nar/12.6.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Udvardy A., Louis C., Han S., Schedl P. Ribosomal RNA genes of Drosophila melanogaster have a novel chromatin structure. J Mol Biol. 1984 May 15;175(2):113–130. doi: 10.1016/0022-2836(84)90470-4. [DOI] [PubMed] [Google Scholar]
  44. Van Dyke M. M., Dervan P. B. Echinomycin binding sites on DNA. Science. 1984 Sep 14;225(4667):1122–1127. doi: 10.1126/science.6089341. [DOI] [PubMed] [Google Scholar]
  45. Van Dyke M. W., Dervan P. B. Methidiumpropyl-EDTA.Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA. Nucleic Acids Res. 1983 Aug 25;11(16):5555–5567. doi: 10.1093/nar/11.16.5555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Van Dyke M. W., Hertzberg R. P., Dervan P. B. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci U S A. 1982 Sep;79(18):5470–5474. doi: 10.1073/pnas.79.18.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. WHITE G. J., SUSSMAN M. Metabolism of major cell components during slime mold morphogenesis. Biochim Biophys Acta. 1961 Oct 28;53:285–293. doi: 10.1016/0006-3002(61)90441-3. [DOI] [PubMed] [Google Scholar]
  48. Widmer R., Fuhrer S., Parish R. W. Biochemical evidence for a distinctive chromatin structure in nucleoli of Dictyostelium. FEBS Lett. 1979 Oct 15;106(2):363–369. doi: 10.1016/0014-5793(79)80533-5. [DOI] [PubMed] [Google Scholar]
  49. Worcel A., Gargiulo G., Jessee B., Udvardy A., Louis C., Schedl P. Chromatin fine structure of the histone gene complex of Drosophila melanogaster. Nucleic Acids Res. 1983 Jan 25;11(2):421–439. doi: 10.1093/nar/11.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES