Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1986 Apr 25;14(8):3501–3513. doi: 10.1093/nar/14.8.3501

Interaction of transition metal ions with Z form poly d(A-C).poly d(G-T) and poly d(A-T) studied by I.R. spectroscopy.

S Adam, P Bourtayre, J Liquier, E Taillandier
PMCID: PMC339788  PMID: 3703681

Abstract

Interactions between Ni2+, Co2+ and purine bases have been studied by I.R. spectroscopy in the case of double stranded regularly alternating purine-pyrimidine polynucleotides poly d(A-T), poly d(A-C).poly d(G-T) and poly d(G-C). The spectra of polynucleotide films have been recorded in hydration and salt content conditions which correspond to the obtention of the classical right-handed (A,B) and left-handed (Z) helical conformations. Selective deuteration of the 8C site of purines has been obtained and is used to detect interactions between the transition metal ions and the adenine or guanine bases. The spectral region between 1500 and 1250 cm-1 corresponding to base in-plane vibrations and involving also the glycosidic linkage torsion is discussed in detail. The selective interaction between the transition metal ion and the 7N site of the purine base is considered to be partly responsible for the stabilization of the base in a syn conformation, which favours the adoption by the polynucleotide (poly d(G-C), poly d(A-C).poly d(G-T) or poly d(A-T)) of a Z type conformation.

Full text

PDF
3501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Chandrasekaran R., Hukins D. W., Smith P. J., Watts L. Structural details of double-helix observed for DNAs containing alternating purine and pyrimidine sequences. J Mol Biol. 1974 Sep 15;88(2):523–533. doi: 10.1016/0022-2836(74)90499-9. [DOI] [PubMed] [Google Scholar]
  2. Arnott S., Chandrasekaran R., Puigjaner L. C., Walker J. K., Hall I. H., Birdsall D. L., Ratliff R. L. Wrinkled DNA. Nucleic Acids Res. 1983 Mar 11;11(5):1457–1474. doi: 10.1093/nar/11.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnott S., Selsing E. The conformation of C-DNA. J Mol Biol. 1975 Oct 15;98(1):265–269. doi: 10.1016/s0022-2836(75)80115-x. [DOI] [PubMed] [Google Scholar]
  4. Behe M., Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619–1623. doi: 10.1073/pnas.78.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benevides J. M., Thomas G. J., Jr Characterization of DNA structures by Raman spectroscopy: high-salt and low-salt forms of double helical poly(dG-dC) in H2O and D2O solutions and application to B, Z and A-DNA. Nucleic Acids Res. 1983 Aug 25;11(16):5747–5761. doi: 10.1093/nar/11.16.5747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benevides J. M., Thomas G. J., Jr Dependence of purine 8C-H exchange on nucleic acid conformation and base-pairing geometry: a dynamic probe of DNA and RNA secondary structures. Biopolymers. 1985 Apr;24(4):667–682. doi: 10.1002/bip.360240407. [DOI] [PubMed] [Google Scholar]
  7. Brahms S., Brahms J., Van Holde K. E. Nature of conformational changes in poly[d(A-T)-d(A-T)] in the premelting region. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3453–3457. doi: 10.1073/pnas.73.10.3453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIES D. R., BALDWIN R. L. X-ray studies on two synthetic DNA copolymers. J Mol Biol. 1963 Apr;6:251–255. doi: 10.1016/s0022-2836(63)80086-8. [DOI] [PubMed] [Google Scholar]
  9. Ghomi M., Taboury J. A., Taillandier E. Experimental and calculated study of the vibrational modes of poly(dG-dC).poly(dG-dC) in B and Z conformations. Biochimie. 1984 Feb;66(2):87–92. doi: 10.1016/0300-9084(84)90184-6. [DOI] [PubMed] [Google Scholar]
  10. Liquier J., Bourtayre P., Pizzorni L., Sournies F., Labarre J. F., Taillandier E. Spectroscopic studies of conformational transitions in double stranded DNAs in the presence of carcinogenic nickel compounds and an antitumoral drug (SOAZ). Anticancer Res. 1984 Jan-Apr;4(1-2):41–44. [PubMed] [Google Scholar]
  11. Mahendrasingam A., Rhodes N. J., Goodwin D. C., Nave C., Pigram W. J., Fuller W., Brahms J., Vergne J. Conformational transitions in oriented fibres of the synthetic polynucleotide poly[d(AT)].poly[d(AT)] double helix. Nature. 1983 Feb 10;301(5900):535–537. doi: 10.1038/301535a0. [DOI] [PubMed] [Google Scholar]
  12. Pilet J., Blicharski J., Brahms J. Conformations and structural transitions in polydeoxynucleotides. Biochemistry. 1975 May 6;14(9):1869–1876. doi: 10.1021/bi00680a011. [DOI] [PubMed] [Google Scholar]
  13. Pilet J., Leng M. Comparison of poly(dG-dC).poly(dG-dC) conformations in oriented films and in solution. Proc Natl Acad Sci U S A. 1982 Jan;79(1):26–30. doi: 10.1073/pnas.79.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Small E. W., Peticolas W. L. Conformational dependence of the Raman scattering intensities from polynucleotides. Biopolymers. 1971;10(1):69–88. doi: 10.1002/bip.360100107. [DOI] [PubMed] [Google Scholar]
  15. Taboury J. A., Bourtayre P., Liquier J., Taillandier E. Interaction of Z form poly(dG-dC).poly(dG-dC) with divalent metal ions: localization of the binding sites by I.R. spectroscopy. Nucleic Acids Res. 1984 May 25;12(10):4247–4258. doi: 10.1093/nar/12.10.4247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taboury J. A., Taillandier E. Right-handed and left-handed helices of poly(dA-dC) X (dG-dT). Nucleic Acids Res. 1985 Jun 25;13(12):4469–4483. doi: 10.1093/nar/13.12.4469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taillandier E., Taboury J. A., Adam S., Liquier J. Left-handed helical structure of poly[d(A-C)].poly[d(G-T)] studied by infrared spectroscopy. Biochemistry. 1984 Nov 20;23(24):5703–5706. doi: 10.1021/bi00319a007. [DOI] [PubMed] [Google Scholar]
  18. Thamann T. J., Lord R. C., Wang A. H., Rich A. The high salt form of poly(dG-dC).poly(dG-dC) is left-handed Z-DNA: Raman spectra of crystals and solutions. Nucleic Acids Res. 1981 Oct 24;9(20):5443–5457. doi: 10.1093/nar/9.20.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thomas G. J., Jr, Benevides J. M. An A-helix structure for poly(dA-dT) X poly(dA-dT). Biopolymers. 1985 Jun;24(6):1101–1105. doi: 10.1002/bip.360240613. [DOI] [PubMed] [Google Scholar]
  20. Thomas G. J., Jr, Livramento J. Kinetics of hydrogen-deuterium exchange in adenosine 5'-monophosphate, adenosine 3':5'-monophosphate, and poly(riboadenylic acid) determined by laser-Raman spectroscopy. Biochemistry. 1975 Nov 18;14(23):5210–5217. doi: 10.1021/bi00694a030. [DOI] [PubMed] [Google Scholar]
  21. Wang A. H., Hakoshima T., van der Marel G., van Boom J. H., Rich A. AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG). Cell. 1984 May;37(1):321–331. doi: 10.1016/0092-8674(84)90328-3. [DOI] [PubMed] [Google Scholar]
  22. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
  23. van de Sande J. H., McIntosh L. P., Jovin T. M. Mn2+ and other transition metals at low concentration induce the right-to-left helical transformation of poly[d(G-C)]. EMBO J. 1982;1(7):777–782. doi: 10.1002/j.1460-2075.1982.tb01247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES