Carbolines and tetrahydrocarbolines are common structural motifs in pharmaceuticals and natural products.[1] β-Carboline and its saturated analog, tryptoline, are particularly prevalent[2,3] and continue to inspire methods to efficiently access them.[4,5] In contrast, methods to access the δ-[6] or α-isomer[7] are uncommon despite the important biological properties exhibited by these carbolines. In addition to antibacterial and antiplasmodial activities,[8] δ-carbolines are potential cancer therapeutics (SYUIQ-5),[9] and the α-carboline mescengricin was reported to be a potential neural protective agent (Figure 1).[10] We anticipated that each structural isomer of the carboline scaffold would be readily accessible from an appropriately ortho-substituted aryl azide through a C–H bond amination reaction if a transition metal catalyst was found that could unlock and control the reactivity embedded in the azide.
Figure 1.

Selected examples of biologically active carbolines.
We recently reported that ruthenium trichloride-hydrate selectively transformed aryl azides into γ-carbolinium ions.[11] Extension of these conditions to the synthesis of the other carboline isomers, however, was not successful. Because of the paucity of methods to access δ-carbolines,[6] we decided to find the optimal conditions for their construction. After testing a variety of metal complexes,[12] we found that RhII2-carboxylates were unique in their ability to catalyze the conversion of aryl azide 1 into 2,[13] and the highest yield was attained using 5 mol% of [Rh2(esp)2] complex in dichloroethane [Eq. (1)].[14] Deprotonation of the δ-carbolinium ion using aqueous Na2CO3 produced 3,[15] which was easily purified using silica gel chromatography.
![]() |
(1) |
The scope and limitations of δ-carbolinium ion generation was examined by exposing a series of aryl azides 1 to the optimal reaction conditions. The azides for our study were synthesized in three steps from commercial 2-bromoanilines through a Suzuki cross coupling–azidation–methylation sequence.[16] We found that our amination reaction tolerated a range of substituents on the aryl azide portion of the substrate: azides bearing alkyl- and trifluoromethyl groups as well as halides were efficiently converted into δ-carbolinium ions (Table 1). The reaction was even tolerant of substitution adjacent to the azide (entry 8). While a range of groups was tolerated on the azide portion of the substrate, the reaction yield was severely attenuated if any additional substituents were added to the pyridinium ion moiety.
Table 1.
Scope of RhII2-catalyzed δ-carboline formation.
| ||||||
|---|---|---|---|---|---|---|
|
| ||||||
| Entry | # | Aryl azide 1 | Yield [%] | Yield [%] | ||
| R1 | R2 | R3 | 2[a] | 3[b] | ||
| 1 | a | H | H | H | quant. | 74 |
| 2 | b | Me | H | H | 85 | 71 |
| 3 | c | F | H | H | quant. | 96 |
| 4 | d | Cl | H | H | 97 | 77 |
| 5 | e | F3C | H | H | 97 | 78 |
| 6 | f | H | Me | H | 85 | 75 |
| 7 | g | H | F3C | H | 98 | 86 |
| 8 | h | H | Me | F | quant. | 66 |
As determined using 1H NMR spectroscopy using CH2Br2 as an internal standard.
Yield of 3 from azide 1 after silica gel chromatography. esp=α,α,α′,α′-tetramethyl-1,3-benzenedipropionate; DCE=dichloroethane; Tf=trifluoromethanesulfonate.
With the successful synthesis of 1-methyl-δ-carbolinium triflates 2, the conversion of aryl azides bearing 4-substituted pyridinium ion ortho-substituents into β-carbolinium ions (5) was next attempted. To our delight, the rhodium(II)-catalyzed C–H bond amination conditions proved amenable to the synthesis of 5 from aryl azides 4 (Table 2). Subsequent reduction of the β-carbolinium ion with NaBH4 produced tryptoline 6, which was easily purified using silica gel column chromatography. The alkyl group on the pyridine nitrogen atom could be varied without attenuating the yield of the process as long as a stoichiometric amount of AgOTf was added (entries 2 and 3). The steric environment around azide could be increased through substitution without preventing product formation (entry 4). The electronic nature of the aryl azide could also be modulated without adversely affecting the reaction (entries 6–10): both electron donating- and electron-withdrawing groups were tolerated in the method. Importantly, meta-substituents could be appended to the aryl azide without compromising the yield of the reaction (entries 9 and 10). The resulting tryptolines 6i and 6j cannot be formed selectively from a Fischer indole synthesis.[17]
Table 2.
Scope of RhII2-catalyzed tryptoline formation.
| ||||||||
|---|---|---|---|---|---|---|---|---|
|
| ||||||||
| Entry | # | Aryl azide 4 | Yield [%] | Yield [%] | ||||
| X− | R1 | R2 | R3 | R4 | 5[a] | 6[b] | ||
| 1 | a | TfO− | H | H | H | H | quant. | 99 |
| 2[c] | b | Br− | allyl | H | H | H | 90 | 60 |
| 3[c] | c | Br− | Bn | H | H | H | 89 | 71 |
| 4 | d | TfO− | Me | Me | H | Me | 94 | 83 |
| 5 | e | TfO− | Me | Me | H | H | quant. | 94 |
| 6 | f | TfO− | Me | F | H | H | quant. | 71 |
| 7 | g | TfO− | Me | Cl | H | H | 91 | 70 |
| 8 | h | TfO− | Me | F3CO | H | H | quant. | 88 |
| 9 | i | TfO− | Me | H | Me | H | quant. | 90 |
| 10 | j | TfO− | Me | Me | F | H | quant. | >95 |
As determined using 1H NMR spectroscopy using CH2Br2 as an internal standard.
Yield of 6 from azide 4 after silica gel chromatography.
1.1 equiv AgOTf added.
To illustrate the synthetic utility of this RhII2-catalyzed C–H bond amination method, (±)-horsfiline[18,19] was synthesized (Scheme 1). The aryl azide substrate (4k) for our amination reaction was synthesized in three steps (Suzuki-, azidation-, and methylation reactions, 67%) from commercially available 2-bromo-4-methoxyaniline and 4-pyridinylboronic acid. Exposure of azide 4k to our amination-reduction sequence produced tryptoline 6k in 91%. Oxidation of 6k using N-bromosuccinimide[20] in aqueous acetic acid afforded (±)-horsfiline.[21] Using the same oxidative conditions, tryptoline 6g was converted into spirocyclic oxindole 7 in 71 %. Our overall yield for (±)-horsfiline and 7 for the six steps from the 2-bromo-4-substituted-anilines was 53 % and 42 %, respectively.
Scheme 1.

Synthesis of (±)-horsfiline and analog.
Finally, aryl azides with meta-substituted pyridinium ion ortho-substituents were examined as potential substrates [Eq. (2)]. In contrast to azides 1 or 4, this class of substrates contains two C–H bonds that potentially could be transformed into C–N bonds. Using RuCl3H2O as the catalyst, the reaction occurred solely at C–Hb to produce γ-carbolinium ion 9 as the only product.[11] In contrast, exposure of 8 to [Rh2(esp)2] resulted in the formation of the α-isomer as the only product.[22] We are actively investigating the mechanistic implications of this turnover in selectivity.
![]() |
(2) |
To further investigate this selectivity trend, a series of meta-substituted pyridinium ions were submitted to reaction conditions (Table 3). Basification of the reaction mixture using Na2CO3 produced 11, which was purified using silica gel chromatography. Similar to the other isomers, construction of the α-isomer tolerated both electron-donating and electron-withdrawing aryl azide substituents (entries 1–7) although the yield was diminished in the presence of a para-methoxy group (8b, entry 2). An expanded scope of α-isomer formation was observed: substitution on the pyridinium ion portion of 8 was tolerated to allow access to 11h and 11i (entries 8 and 9).
Table 3.
Scope of RhII2-catalyzed α-carboline formation.
| ||||||
|---|---|---|---|---|---|---|
|
| ||||||
| Entry | # | Aryl azide 8 | Yield [%] | |||
| R1 | R2 | R3 | R4 | 11[a] | ||
| 1 | a | Me | H | H | H | 83 |
| 2 | b | MeO | H | H | H | 63 |
| 3 | c | H | H | H | H | 80 |
| 4 | d | F | H | H | H | 83 |
| 5 | e | Cl | H | H | H | 67 |
| 6 | f | F3C | H | H | H | 78 |
| 7 | g | Me | F | H | H | 64 |
| 8 | h | H | H | Me | H | 77 |
| 9 | i | H | H | Cl | H | 77 |
| 10 | j | H | H | HC=CH−CH=CH | 68 | |
Yield of 11 from azide 8 after silica gel chromatography.
Because our reaction tolerated substitution on the pyridinium moiety, we anticipated that our method might facilitate access to neocryptolepine.[23,24] This indoloquinoline alkaloid exhibits promising cytotoxicity toward cancer cells as well as strong antiplasmodial activity toward chloroquinine-resistant strains.[24f,25] Exposure of azide 8j to [Rh2(esp)2] resulted in amination of only the C–Ha bond to produce neocryptolepine (11j) as a single regioisomer in 68% (entry 10).
In conclusion, we have developed a method to access α-, β-, or δ-carbolinium ions from aryl azides with ortho-pyridinium ion substituents using 1–5 mol% of [Rh2(esp)2]. In combination with our previous report using RuCl3 to access γ-carbolinium ions, we believe our work demonstrates that metal-catalyzed C–H bond amination is a simple, efficient strategy to access all possible carbolinium ion isomers from readily accessible aryl azides. The synthetic utility of our method was illustrated in a four-flask synthesis of cytotoxic and antiplasmodial agent, neocryptolepine and the analgesic oxindole (±)-horsfiline. By synthesizing a chlorinated analog of horsfiline—one not readily accessible through previously reported syntheses—we demonstrated that the modular nature of our method facilitates the construction of natural and non-natural alkaloids.
Supplementary Material
Footnotes
We are grateful to the National Institutes of Health NIGMS (R01GM084945) and the University of Illinois at Chicago for their generous support. We also thank Profs. L. Anderson (UIC) and D. J. Wardrop for insightful discussions.
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201201788.
References
- 1.a) Cox ED, Cook JM. Chem Rev. 1995;95:1797. [Google Scholar]; b) Czarwinski KM, Cook JM. In: Advances in Heterocyclic Natural Products Synthesis. Pearson W, editor. III. JAI; Greenwich: 1996. p. 217. [Google Scholar]; c) Maresh JJ, Giddings LA, Friedrich A, Loris EA, Panjikar S, Trout BL, Stockigt J, Peters B, O'Connor SE. J Am Chem Soc. 2008;130:710. doi: 10.1021/ja077190z. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Luk LYP, Bunn S, Liscombe DK, Facchini PJ, Tanner ME. Biochemistry. 2007;46:10153. doi: 10.1021/bi700752n. and references therein. [DOI] [PubMed] [Google Scholar]
- 2.a) Czarnocki Z, Siwicka A, Szawkalo J. Curr Org Synth. 2005;2:301. [Google Scholar]; b) Youn SW. Org Prep Proced Int. 2006;38:505. [Google Scholar]; c) Zeni G, Larock RC. Chem Rev. 2006;106:4644. doi: 10.1021/cr0683966. [DOI] [PubMed] [Google Scholar]; d) Edwankar CR, Edwankar RV, Namjoshi OA, Rallapappi SK, Yang J, Cook JM. Curr Opin Drug Discovery Dev. 2009;12:752. [PubMed] [Google Scholar]; e) Alekseyev RS, Kurkin AV, Yurovskaya MA. Chem Heterocycl Compd. 2009;45:889. [Google Scholar]; f) Bandini M, Eichholzer A. Angew Chem. 2009;121:9786. [Google Scholar]; Angew Chem Int Ed. 2009;48:9608. [Google Scholar]
- 3.cf; Marinacarboline A, Huang H, Yao Y, He Z, Yang T, Ma J, Tian X, Li Y, Huang C, Chen X, Li W, Zhang S, Zhang C, Ju J. J Nat Prod. 2011;74:2122. doi: 10.1021/np200399t.Inman WD, Bray WM, Gassner NC, Lokey RS, Tenney K, Shen YY, TenDyke K, Suh T, Crews P. J Nat Prod. 2010;73:255. doi: 10.1021/np9005426. hyrtiocarboline:Daugan A, Grondin P, Ruault C, Le Monnier de Gouville AC, Coste H, Linget JM, Kirilovsky J, Hyafil F, Labaudinière R. J Med Chem. 2003;46:4533. doi: 10.1021/jm0300577. tadalafil:
- 4.Recent Pictet–Spengler reports, see: Taylor MS, Jacobsen EN. J Am Chem Soc. 2004;126:10558. doi: 10.1021/ja046259p.Seayad J, Seayad AM, List B. J Am Chem Soc. 2006;128:1086. doi: 10.1021/ja057444l.Wanner MJ, van der Haas RNS, de Cuba KR, van Maarseveen JH, Hiemstra H. Angew Chem. 2007;119:7629. doi: 10.1002/anie.200701808.Angew Chem Int Ed. 2007;46:7485.Klausen RS, Jacobsen EN. Org Lett. 2009;11:887. doi: 10.1021/ol802887h.
- 5.Non-Pictet–Spengler reports, see: Bondzić BP, Eilbracht P. Org Lett. 2008;10:3433. doi: 10.1021/ol801071y.Movassaghi M, Hill MD. Org Lett. 2008;10:3485. doi: 10.1021/ol801264u.England DB, Padwa A. Org Lett. 2008;10:3631. doi: 10.1021/ol801385h.Ohta Y, Oishi S, Fujii N, Ohno H. Org Lett. 2009;11:1979. doi: 10.1021/ol900460m.Laha JK, Barolo SM, Rossi RA, Cuny GD. J Org Chem. 2011;76:6421. doi: 10.1021/jo200923n.
- 6.a) Zhang H, Larock RC. Org Lett. 2001;3:3083. doi: 10.1021/ol010124w. [DOI] [PubMed] [Google Scholar]; b) Zhang H, Larock RC. J Org Chem. 2002;67:7048. doi: 10.1021/jo0258857. [DOI] [PubMed] [Google Scholar]; c) Chiba S, Xu YJ, Wang YF. J Am Chem Soc. 2009;131:12886. doi: 10.1021/ja9049564. [DOI] [PubMed] [Google Scholar]; d) Ding S, Shi Z, Jiao N. Org Lett. 2010;12:1540. doi: 10.1021/ol100272s. [DOI] [PubMed] [Google Scholar]
- 7.a) Kumar AS, Nagarajan R. Org Lett. 2011;13:1398. doi: 10.1021/ol2000827. [DOI] [PubMed] [Google Scholar]; b) Gupta S, Kumar B, Kundu B. J Org Chem. 2011;76:10154. doi: 10.1021/jo201994v. [DOI] [PubMed] [Google Scholar]
- 8.cf; Meurer LC, Guthikonda RN, Huber JL, DiNinno F. Bioorg Med Chem Lett. 1995;5:767.Arzel E, Rocca P, Grellier P, Labaeïd M, Frappier F, Guéritte F, Gaspard C, Marsais F, Godard A, Quéguiner G. J Med Chem. 2001;44:949. doi: 10.1021/jm0010419.El Sayed I, et al. J Med Chem. 2009;52:2979. doi: 10.1021/jm801490z.Mazu TK, Etukala JR, Jacob MR, Khan SI, Walker LA, Ablordeppey SY. Eur J Med Chem. 2011;46:2378. doi: 10.1016/j.ejmech.2011.03.021.
- 9.SYUIQ-5: Takeuchi Y, Oda T, Chang Mr, Okamoto Y, Ono J, Oda Y, Harada K, Hashigaki K, Yamato M. Chem Pharm Bull. 1997;45:406. doi: 10.1248/cpb.45.406.Zhou JM, Zhu XF, Lu YJ, Deng R, Huang ZS, Mei YP, Wang Y, Huang WL, Liu ZC, Gu LQ, Zeng YX. Oncogene. 2005;25:503. doi: 10.1038/sj.onc.1209067.Liu JN, Deng R, Guo JF, Zhou JM, Feng GK, Huang ZS, Gu LQ, Zeng YX, Zhu XF. Leukemia. 2007;21:1300. doi: 10.1038/sj.leu.2404652.
- 10.Mescengricin: Kim JS, Shin-ya K, Furihata K, Hayakawa Y, Seto H. Tetrahedron Lett. 1997;38:3431.Shin-ya K, Kim JS, Furihata K, Hayakawa Y, Seto H. J Asian Nat Prod Res. 2000;2:121. doi: 10.1080/10286020008039901.
- 11.Dong H, Latka RT, Driver TG. Org Lett. 2011;13:2726. doi: 10.1021/ol2008268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Refer to the Supporting Information for the conditions surveyed.
- 13.a) Stokes BJ, Dong H, Leslie BE, Pumphrey AL, Driver TG. J Am Chem Soc. 2007;129:7500. doi: 10.1021/ja072219k. [DOI] [PubMed] [Google Scholar]; b) Shen M, Leslie BE, Driver TG. Angew Chem. 2008;120:5134. doi: 10.1002/anie.200800689. [DOI] [PubMed] [Google Scholar]; Angew Chem Int Ed. 2008;47:5056. [Google Scholar]; c) Stokes BJ, Jovanović B, Dong H, Richert KJ, Riell RD, Driver TG. J Org Chem. 2009;74:3225. doi: 10.1021/jo9002536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.a) Espino CG, Fiori KW, Kim M, Du Bois J. J Am Chem Soc. 2004;126:15378. doi: 10.1021/ja0446294. [DOI] [PubMed] [Google Scholar]; b) Zalatan DN, Du Bois J. J Am Chem Soc. 2009;131:7558. doi: 10.1021/ja902893u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Attempts to reduce carbolinium ion 2 (or 10) using NaBH4 (or any other hydride reducing agent) resulted in only decomposition.
- 16.See Scheme 1 for more details as well as the Supporting Information for the experimental conditions for the three-step substrate synthesis.
- 17.cf. Lee ES, Kim SI, Lee SH, Jeong TC, Moon TC, Chang HW, Jahng Y. Bull Korean Chem Soc. 2005;26:1975.
- 18.Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B. J Org Chem. 1991;56:6527. [Google Scholar]
- 19.For previous total syntheses of horsfiline, see: Bascop SI, Sapi J, Laronze JY, Lévy J. Heterocycles. 1994;38:725.Pellegrini C, Strässler C, Weber M, Borschberg HJ. Tetrahedron: Asymmetry. 1994;5:1979.Lakshmaiah G, Kawabata T, Shang M, Fuji K. J Org Chem. 1999;64:1699. doi: 10.1021/jo981577q.Cravotto G, Giovenzana GB, Pilati T, Sisti M, Palmisano G. J Org Chem. 2001;66:8447. doi: 10.1021/jo015854w.Syam Kumar UK, Ila H, Junjappa H. Org Lett. 2001;3:4193. doi: 10.1021/ol016824i.Lizos DE, Murphy JA. Org Biomol Chem. 2003;1:117. doi: 10.1039/b208114h.Murphy JA, Tripoli R, Khan TA, Mali UW. Org Lett. 2005;7:3287. doi: 10.1021/ol051095i.Trost BM, Brennan MK. Org Lett. 2006;8:2027. doi: 10.1021/ol060298j.Kulkarni MG, Dhondge AP, Chavhan SW, Borhade AS, Shaikh YB, Birhade DR, Desai MP, Dhatrak NR. Beilstein J Org Chem. 2010;6:876. doi: 10.3762/bjoc.6.103.White JD, Li Y, Ihle DC. J Org Chem. 2010;75:3569. doi: 10.1021/jo1002714.Deppermann N, Thomanek H, Prenzel AHGP, Maison W. J Org Chem. 2010;75:5994. doi: 10.1021/jo101401z.
- 20.a) Lawson W, Witkop B. J Org Chem. 1961;26:263. [Google Scholar]; b) Van Tamelen EE, Yardley JP, Miyano M, Hinshaw WB. J Am Chem Soc. 1969;91:7333. [Google Scholar]
- 21.This same oxidative rearrangement was recently reported: Li C, Chan C, Heimann AC, Danishefsky SJ. Angew Chem. 2007;119:1470. doi: 10.1002/anie.200604072.Angew Chem Int Ed. 2007;46:1448. ref. [19j].
- 22.In our initial Communication11 the identity of the minor product was assigned erroneously as the γ-isomer. Re-examination of the reaction mixture revealed this minor product to be decomposition of the starting pyridinium azide.
- 23.a) Sharaf MHM, Schiff PL, Tackie AN, Phoebe CH, Martin GE. J Heterocycl Chem. 1996;33:239. [Google Scholar]; b) Cimanga K, De Bruyne T, Pieters L, Claeys M, Vlietinck A. Tetrahedron Lett. 1996;37:1703. [Google Scholar]
- 24.For previous syntheses of neocryptolepine, see: Kaczmarek Ł, Balicki R, Nantka-Namirski P, Peczyńska-Czoch W, Mordarski M. Arch Pharm. 1988;321:463. doi: 10.1002/ardp.19883210807.Peczynska-Czoch W, Pognan F, Kaczmarek L, Boratynski J. J Med Chem. 1994;37:3503. doi: 10.1021/jm00047a008.Fresneda PM, Molina P, Delgado S. Tetrahedron Lett. 1999;40:7275.Fresneda PM, Molina P, Delgado S. Tetrahedron. 2001;57:6197.Ho TL, Jou DG. Helv Chim Acta. 2002;85:3823.Jonckers THM, van Miert S, Cimanga K, Bailly C, Colson P, De Pauw-Gillet MC, van den Heuvel H, Claeys M, Lemière F, Esmans EL, Rozenski J, Quirijnen L, Maes L, Dommisse R, Lemière GLF, Vlietinck A, Pieters L. J Med Chem. 2002;45:3497. doi: 10.1021/jm011102i.Engqvist R, Bergman J. Org Prep Proced Int. 2004;36:386.Dhanabal T, Sangeetha R, Mohan PS. Tetrahedron. 2006;62:6258.Parvatkar PT, Parameswaran PS, Tilve SG. Tetrahedron Lett. 2007;48:7870.Sharma S, Kundu B. Tetrahedron Lett. 2008;49:7062.Miller M, Vogel JC, Tsang W, Merrit A, Procter DJ. Org Biomol Chem. 2009;7:589. doi: 10.1039/b816608k.Parvatkar PT, Parameswaran PS, Tilve SG. J Org Chem. 2009;74:8369. doi: 10.1021/jo901361x.Haddadin MJ, Zerdan RMB, Kurth MJ, Fettinger JC. Org Lett. 2010;12:5502. doi: 10.1021/ol102376a.Hostyn S, Tehrani KA, Lemière F, Smout V, Maes BUW. Tetrahedron. 2011;67:655.
- 25.a) Cimanga K, De Bruyne T, Pieters L, Totte J, Tona L, Kambu K, Vanden BD, Vlietinck AJ. Phytomedicine. 1998;5:209. doi: 10.1016/S0944-7113(98)80030-5. [DOI] [PubMed] [Google Scholar]; b) Jaromin A, Kozubek A, Suchoszek-Lukaniuk K, Malicka-Blaszkiewicz M, Peczynska-Czoch W, Kaczmarek L. Drug Delivery. 2008;15:49. doi: 10.1080/10717540701829192. [DOI] [PubMed] [Google Scholar]; c) Lavrado J, Moreira R, Paulo A. Curr Med Chem. 2010;17:2348. doi: 10.2174/092986710791698521. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.


