Abstract
Plasmodia of Physarum polycephalum can be induced to differentiate into dormant spherules: DNA-, RNA- and protein-synthesis cease during this process. Analysis of the histone H4 acetylation during spherulation revealed no significant changes of the relative acetate content and percentage of acetylated H4 subspecies. This result does not support a close correlation of histone acetylation and transcriptional activity. Posttranslational incorporation of 3H-acetate into core histones decreased rapidly after start of spherulation. However, acetate incorporation increased significantly at a late stage of spherulation (30 h). To elucidate the role of this elevated acetate incorporation we followed histone synthesis during spherulation. Histone synthesis decreased upon induction of differentiation and stopped after 12 h. After 38 h of spherulation histone synthesis again occurred in the absence of DNA synthesis. The peak of acetate incorporation into core histones clearly preceded this late histone synthesis, indicating acetylation of preexisting histones. We suggest, that this acetate incorporation is part of the mechanism, by which preexisting histones are replaced by newly synthesized histones. Pulse treatment with actinomycin D or cycloheximide during spherulation suggested, that the observed histone synthesis is essential for the germination of spherules. Obviously, new histones have to be synthesized for the coordinate course of the differentiation program.
Full text
PDF

















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson E. D., Woodland H. R. Changes in the rate of histone synthesis during oocyte maturation and very early development of Xenopus laevis. Dev Biol. 1977 May;57(1):136–149. doi: 10.1016/0012-1606(77)90360-8. [DOI] [PubMed] [Google Scholar]
- Allis C. D., Chicoine L. G., Richman R., Schulman I. G. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8048–8052. doi: 10.1073/pnas.82.23.8048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Borun T. W., Gabrielli F., Ajiro K., Zweidler A., Baglioni C. Further evidence of transcriptional and translational control of histone messenger RNA during the HeLa S3 cycle. Cell. 1975 Jan;4(1):59–67. doi: 10.1016/0092-8674(75)90134-8. [DOI] [PubMed] [Google Scholar]
- Borun T. W., Scharff M. D., Robbins E. Rapidly labeled, polyribosome-associated RNA having the properties of histone messenger. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1977–1983. doi: 10.1073/pnas.58.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breindl M., Gallwitz D. Identification of histone messenger RNA from HeLa cells. Appearance of histone mRNA in the cytoplasm and its translation in a rabbit-reticulocyte cell-free system. Eur J Biochem. 1973 Jan 15;32(2):381–391. doi: 10.1111/j.1432-1033.1973.tb02620.x. [DOI] [PubMed] [Google Scholar]
- Brock W. A., Trostle P. K., Meistrich M. L. Meiotic synthesis of testis histones in the rat. Proc Natl Acad Sci U S A. 1980 Jan;77(1):371–375. doi: 10.1073/pnas.77.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown I. R. Histone synthesis in isolated neuronal perikaryon relative to the postnatal appearance of a short DNA repeat length. Dev Biol. 1980 Nov;80(1):248–252. doi: 10.1016/0012-1606(80)90512-6. [DOI] [PubMed] [Google Scholar]
- Brown I. R. Postnatal appearance of short DNA repeat length in neurons of the cerebral cortex. Biochem Biophys Res Commun. 1978 Sep 29;84(2):285–292. doi: 10.1016/0006-291x(78)90168-7. [DOI] [PubMed] [Google Scholar]
- CERIOTTI G. Determination of nucleic acids in animal tissues. J Biol Chem. 1955 May;214(1):59–70. [PubMed] [Google Scholar]
- Christensen M. E., Dixon G. H. Hyperacetylation of histone H4 correlates with the terminal, transcriptionally inactive stages of spermatogenesis in rainbow trout. Dev Biol. 1982 Oct;93(2):404–415. doi: 10.1016/0012-1606(82)90127-0. [DOI] [PubMed] [Google Scholar]
- Christensen M. E., Rattner J. B., Dixon G. H. Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res. 1984 Jun 11;12(11):4575–4592. doi: 10.1093/nar/12.11.4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Commerford S. L., Carsten A. L., Cronkite E. P. Histone turnover within nonproliferating cells. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1163–1165. doi: 10.1073/pnas.79.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Djondjurov L. P., Yancheva N. Y., Ivanova E. C. Histones of terminally differentiated cells undergo continuous turnover. Biochemistry. 1983 Aug 16;22(17):4095–4102. doi: 10.1021/bi00286a016. [DOI] [PubMed] [Google Scholar]
- Doenecke D., Gallwitz D. Acetylation of histones in nucleosomes. Mol Cell Biochem. 1982 Apr 30;44(2):113–128. doi: 10.1007/BF00226895. [DOI] [PubMed] [Google Scholar]
- Elgin S. C., Weintraub H. Chromosomal proteins and chromatin structure. Annu Rev Biochem. 1975;44:725–774. doi: 10.1146/annurev.bi.44.070175.003453. [DOI] [PubMed] [Google Scholar]
- Goldknopf I. L., Taylor C. W., Baum R. M., Yeoman L. C., Olson M. O., Prestayko A. W., Busch H. Isolation and characterization of protein A24, a "histone-like" non-histone chromosomal protein. J Biol Chem. 1975 Sep 25;250(18):7182–7187. [PubMed] [Google Scholar]
- Grimes S. R., Jr, Henderson N. Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res. 1984 May;152(1):91–97. doi: 10.1016/0014-4827(84)90232-5. [DOI] [PubMed] [Google Scholar]
- Groppi V. E., Jr, Coffino P. G1 and S phase mammalian cells synthesize histones at equivalent rates. Cell. 1980 Aug;21(1):195–204. doi: 10.1016/0092-8674(80)90127-0. [DOI] [PubMed] [Google Scholar]
- Gurley L. R., Walters R. A., Tobey R. A. The metabolism of histone fractions. IV. Synthesis of histones during the G1-phase of the mammalian life cycle. Arch Biochem Biophys. 1972 Feb;148(2):633–641. doi: 10.1016/0003-9861(72)90182-8. [DOI] [PubMed] [Google Scholar]
- Hohmann P. Phosphorylation of H1 histones. Mol Cell Biochem. 1983;57(1):81–92. doi: 10.1007/BF00223526. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Levy-Wilson B. Glycosylation, ADP-ribosylation, and methylation of Tetrahymena histones. Biochemistry. 1983 Jan 18;22(2):484–489. doi: 10.1021/bi00271a035. [DOI] [PubMed] [Google Scholar]
- Loidl P., Gröbner P., Csordas A., Puschendorf B. Cell-cycle-dependent effects of sodium-n-butyrate in Physarum polycephalum. J Cell Sci. 1982 Dec;58:303–311. doi: 10.1242/jcs.58.1.303. [DOI] [PubMed] [Google Scholar]
- Loidl P., Loidl A., Puschendorf B., Gröbner P. Lack of correlation between histone H4 acetylation and transcription during the Physarum cell cycle. 1983 Sep 29-Oct 5Nature. 305(5933):446–448. doi: 10.1038/305446a0. [DOI] [PubMed] [Google Scholar]
- Loidl P., Loidl A., Puschendorf B., Gröbner P. RNA polymerase activity and template activity of chromatin after butyrate induced hyperacetylation of histones in Physarum. Nucleic Acids Res. 1984 Jul 11;12(13):5405–5417. doi: 10.1093/nar/12.13.5405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel P., Okazaki H., Niedergang C. Poly(adenosine diphosphate ribose). Prog Nucleic Acid Res Mol Biol. 1982;27:1–51. doi: 10.1016/s0079-6603(08)60596-6. [DOI] [PubMed] [Google Scholar]
- Marashi F., Baumbach L., Rickles R., Sierra F., Stein J. L., Stein G. S. Histone proteins in HeLa S3 cells are synthesized in a cell cycle stage specific manner. Science. 1982 Feb 5;215(4533):683–685. doi: 10.1126/science.7058333. [DOI] [PubMed] [Google Scholar]
- Melli M., Spinelli G., Arnold E. Synthesis of histone messenger RNA of HeLa cells during the cell cycle. Cell. 1977 Sep;12(1):167–174. doi: 10.1016/0092-8674(77)90194-5. [DOI] [PubMed] [Google Scholar]
- Mohberg J., Rusch H. P. Isolation and DNA content of nuclei of Physarum polycephalum. Exp Cell Res. 1971 Jun;66(2):305–316. doi: 10.1016/0014-4827(71)90682-3. [DOI] [PubMed] [Google Scholar]
- Mueller R. D., Yasuda H., Bradbury E. M. Phosphorylation of histone H1 through the cell cycle of Physarum polycephalum. 24 sites of phosphorylation at metaphase. J Biol Chem. 1985 Apr 25;260(8):5081–5086. [PubMed] [Google Scholar]
- Mueller R. D., Yasuda H., Hatch C. L., Bonner W. M., Bradbury E. M. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase. J Biol Chem. 1985 Apr 25;260(8):5147–5153. [PubMed] [Google Scholar]
- Robbins E., Borun T. W. The cytoplasmic synthesis of histones in hela cells and its temporal relationship to DNA replication. Proc Natl Acad Sci U S A. 1967 Feb;57(2):409–416. doi: 10.1073/pnas.57.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schofield P. N., Walker I. O. Control of histone gene expression in Physarum polycephalum. I. Protein synthesis during the cell cycle. J Cell Sci. 1982 Oct;57:139–150. doi: 10.1242/jcs.57.1.139. [DOI] [PubMed] [Google Scholar]
- Spalding J., Kajiwara K., Mueller G. C. The metabolism of basic proteins in HeLa cell nuclei. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1535–1542. doi: 10.1073/pnas.56.5.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein G., Park W., Thrall C., Mans R., Stein J. Regulation of cell cycle stage-specific transcription of histone genes from chromatin by non-histone chromosomal proteins. Nature. 1975 Oct 30;257(5529):764–767. doi: 10.1038/257764a0. [DOI] [PubMed] [Google Scholar]
- Waterborg J. H., Matthews H. R. A more sensitive assay for histone deacetylase. Anal Biochem. 1982 May 15;122(2):313–318. doi: 10.1016/0003-2697(82)90288-3. [DOI] [PubMed] [Google Scholar]
- Waterborg J. H., Matthews H. R. Patterns of histone acetylation in Physarum polycephalum. H2A and H2B acetylation is functionally distinct from H3 and H4 acetylation. Eur J Biochem. 1984 Jul 16;142(2):329–335. doi: 10.1111/j.1432-1033.1984.tb08290.x. [DOI] [PubMed] [Google Scholar]
- Waterborg J. H., Matthews H. R. Patterns of histone acetylation in the cell cycle of Physarum polycephalum. Biochemistry. 1983 Mar 15;22(6):1489–1496. doi: 10.1021/bi00275a025. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Palter K., Van Lente F. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell. 1975 Sep;6(1):85–110. doi: 10.1016/0092-8674(75)90077-x. [DOI] [PubMed] [Google Scholar]
- West M. H., Bonner W. M. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 1980 Oct 24;8(20):4671–4680. doi: 10.1093/nar/8.20.4671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilhelm M. L., Toublan B., Jalouzot R., Wilhelm F. X. Histone H4 gene is transcribed in S phase but also late in G(2) phase in Physarum polycephalum. EMBO J. 1984 Nov;3(11):2659–2662. doi: 10.1002/j.1460-2075.1984.tb02190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu R. S., Bonner W. M. Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell. 1981 Dec;27(2 Pt 1):321–330. doi: 10.1016/0092-8674(81)90415-3. [DOI] [PubMed] [Google Scholar]
- Zweidler A. Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 1978;17:223–233. [PubMed] [Google Scholar]



