Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2013 Jul 16.
Published in final edited form as: Chem Res Toxicol. 2012 May 10;25(7):1316–1383. doi: 10.1021/tx300132k

Contributions of Human Enzymes in Carcinogen Metabolism

Slobodan Rendic 1,*, F Peter Guengerich 2
PMCID: PMC3398241  NIHMSID: NIHMS373973  PMID: 22531028

Abstract

Considerable support exists for roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are procarcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, inter-individual variations, and risk assessment.

INTRODUCTION

Knowledge that chemicals can cause cancer goes back to at least 1761 with the report by Hill1 that the use of tobacco snuff was related to oral cancer in humans. More than 100 years ago, Rehn2 reported an association of bladder cancer with occupations in the so-called aniline dye factories. Experimental studies in animals showed that chemicals cause cancer, beginning with reports on coal tar in rabbits by Yamagiwa.3 Classic studies with the polycyclic aromatic hydrocarbon benzo[a]pyrene followed.4 Fieser5 and others had suggested that metabolism (of carcinogens1) plays a role in cancer, and extensive animal studies by James and Elizabeth Miller6-8 validated the concept (Figure 1). Incorporation of the capability for metabolism led to the success of the bacterial Ames test9 for mutagenicity and testing for carcinogenic potential.

Figure 1.

Figure 1

General paradigm of metabolism of chemical carcinogens.

The roles of individual enzymes in carcinogen metabolism has been studied extensively, and roles of many human P450s in carcinogen activation have been characterized.10 Much of this work was first done in medium-throughput screens, e.g. bacterial genotoxicity, and then extended with more detailed studies of reaction products and DNA adducts.10-13 Studies with P450s led the way but similar approaches have been used with other enzymes known to have roles in the metabolism of xenobiotic chemicals.14,15 Research in this area has been important in several applied disciplines and approaches. These include molecular epidemiology, which is an attempt to relate risk from carcinogens to the enzymes present in an individual.16-18 Another area of interest is chemoprevention, where a major strategy involves either inhibiting enzymes that activate carcinogens or inducing enzymes that inactive them.19,20

Several efforts have been made to delineate the levels of expression of individual enzymes, especially P450s, in humans.21 Another approach is to analyze the fractions of the enzymes involved in reactions. Such analyses have been reported for drugs, for all “xenobiotic-metabolizing enzymes”22,23 and for P450s.22-25 The analyses are rather consistent with each other and generally accepted, both with marketed drugs and new chemical entities (drug candidates). Of particular note are the findings that i) ~75% of enzymatic reaction with drugs are catalyzed by P450s,23 ii) ~90% of the P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4,23-25 and iii) the largest fraction of the P450 reactions are catalyzed by P450 3A enzymes, particularly P450 3A4.23-25

To our knowledge, there has not been a similar effort to categorize all of the the human enzymes involved in the metabolism of carcinogens. We thought that this would be a useful exercise in the light of continuing scientific interest in chemical carcinogenesis, cancer chemoprevention, and molecular epidemiology of cancer. We report our analysis of the literature in parts—general chemicals (environmental/industrial),Footnote 1 drugs, and natural/physiological compounds—as well as an overall analysis of all literature carcinogens for which information about metabolism is available. The results show a dominant role for P450s, especially the three Family 1 P450 enzymes (1A1, 1A2, 1B1) and P450s 2A6, 2E1, and 3A4 (Figure 2). The aldo-keto reductase (AKR) enzymes are also highly represented.26

Figure 2.

Figure 2

Figure 2

Enzyme contributions to activation of carcinogens (from Table 1). A: Fractions of activation reactions attributed to groups of enzymes. The analysis is based on 713 reactions. B: Fractions of P450 activation reactions attributed to individual human P450 enzymes (from a total of 473 reactions considered). See text for discussion.

ASSIGNMENTS OF ROLES OF ENZYMES

Most of the literature on the roles of human enzymes in carcinogen metabolism has been developed in the last 25 years, e.g. a review by one of us in 198827 had only a very limited discussion of this aspect. The present literature analysis is a continuation of the work done by one of us (S. Rendic) on literature searches on the metabolism of drugs and other chemicals catalyzed by human P450s, for more than 15 years ending in February 2012. Extensive key-word literature searches were done using the PubMed database, accessing the MEDLINE database of references and abstracts. In the latter stages, the existing literature on metabolism of carcinogens and the original papers was systematically analyzed, extracting those data contributing in a “significant way” to the activation and/or detoxication of general chemicals, drugs, and physiological compounds. (This is a qualitative evaluation, and the reader is referred to a more comprehensive list in Supporting Information Table S1.)

The results are presented in several tables (Tables 1-4), including activation reactions with all chemicals (Table 1) (exclusive of “weak” reactions), followed by the activation of physiological/natural compounds (Table 2) and drugs (Table 3). Detoxication reactions are presented in Table 4. For convenience, PMID numbers of references are included in the tables to facilitate searches and retrievals. In considering the results for all types of metabolism, it is clear that P450s are dominant. The three activation tables (Tables 1-3) contain only data for what are deemed “significant activation”. All activation data (potent and weak) are presented as a single table in the Supporting Information (Table S1).

Table 1. Data on individual enzymes and chemicals, but not including weak bioactivation (see Supporting Information for inclusion of weak activation data).

Note: the term “diol” is used in stead of “dihydrodiol” for convenience with the PAHs.

enzyme category subcategory compound reaction remarks references PubMed ID
AKR1A1 chemical PAH, metabolite (±)-benzo[a]pyrene-7,8-
dihydrodiol
oxidation, o-quinone
formation, preferential for
(−)-7R,8R-oxidation
activation 26, 28-33 16411658,
11306097,
9973208,
11535067,
15720144,
17295519,
18788756
AKR1A1 chemical PAH, metabolite 12-methylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 28 11306097
AKR1A1 chemical PAH, metabolite 5-methylchrysene-1,2-diol oxidation, o-quinone
formation (medium Km,
high activity, high
efficiency)
activation 28, 30, 34 11306097,
11535067,
16946553
AKR1A1 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
form.
activation 28,30 11306097,
11535067
AKR1A1 chemical PAH, metabolite 7-methylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation, preferential for
(−)3S,4S-oxidation
activation 28, 30 11306097,
11535067
AKR1A1 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation, o-quinone
formation, preferential for
(−)3R,4R-oxidation
activation 28, 30 11306097,
11535067
AKR1A1 chemical PAH, metabolite chrysene-1,2-diol oxidation, o-quinone
formation
activation 28 11306097
AKR1B1 chemical PAH (+)-benz[a]anthracene-
3S,4S-diol
oxidation, o-quinoneform, stereospecific for
(+)-7S-,8S
activation 33 18788756
AKR1B1 chemical PAH, metabolite (+)-benzo[a]pyrene-7S,8S-
diol
oxidation, o-quinone
formation, stereospecific
for (+)-7S-,8S
activation 33 18788756
AKR1B1 chemical PAH, metabolite (+)-S,S-benzo[g]chrysene-
11,12-diol
oxidation, o-quinone
formation, stereospecific
for (+)-7S-,8S
activation 33 18788756
AKR1B10 chemical PAH, metabolite (−)-R,R- and (+)-S,S-
benzo[g]chrysene-11,12-diol
oxidation, o-quinone
formation
activation 33 18788756
AKR1B10 chemical PAH, metabolite (+)-benz[a]anthracene-3S,4S-
diol
oxidation, o-quinone
formation, stereospecific
for (+)-7S-,8S
activation 33 18788756
AKR1B10 chemical PAH, metabolite (+)-benzo[a]pyrene-7S,8S-
diol
oxidation, o-quinone
formation, stereospecific
for (+)-7S-,8S
activation 33 18788756
AKR1B10 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 33 18788756
AKR1C1 chemical PAH, metabolite (+,−)- and (−)-
benzo[a]pyrene-7,8-diol
oxidation, o-quinone
formation
activation 29, 33, 35,
36
9973208,
18788756,
11978787,
11060293
AKR1C1 chemical PAH, metabolite 5-methylchrysene-7,8-diol oxidation, o-quinone
formation
activation 35, 36 11978787,
11060293
AKR1C1 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation, minor enzyme
activation 35, 36 11978787,
11060293
AKR1C1 chemical PAH, metabolite 7-methylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation, minor enzyme
activation 35 11978787
AKR1C1 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C1 chemical aromatic hydrocarbon benzene diol oxidation, o-quinone
formation
activation 36, 37 11060293,
15026176
AKR1C1 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation, o-quinone
formation
activation 35, 36 11978787,
11060293
AKR1C1 chemical PAH, metabolite naphthalene 1,2-diol oxidation, o-quinone
formation, major enzyme
activation 35, 36 11978787,
11060293
AKR1C2 chemical PAH, metabolite (±)- and (−)-benzo[a]pyrene-
7,8-diol
oxidation, o-quinone
formation
activation 29, 33, 35 9973208,
18788756,
11978787
AKR1C2 chemical PAH, metabolite 5-methylchrysene-7,8-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C2 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C2 chemical PAH, metabolite 7-methylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C2 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C2 chemical PAH, metabolite benzene diol oxidation, o-quinone
formation
activation 37 15026176
AKR1C2 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
oxidation, o-quinone
form.
activation 35 11978787
AKR1C2 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C2 chemical PAH, metabolite chrysene-1,2-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C2 chemical PAH, metabolite naphthalene 1,2-diol oxidation, o-quinone
formation, major enzyme
activation 35 11978787
AKR1C3 chemical PAH, metabolite (+,−)- and (−)-
benzo[a]pyrene-7,8-
dihydrodiol
oxidation, o-quinone
formation
activation 29, 33, 35 9973208,
18788756,
11978787
AKR1C3 chemical PAH, metabolite 5-methylchrysene-7,8-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical PAH, metabolite 7-methylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical aromatic hydrocarbon,
metabolite
benzene diol oxidation, o-quinone
formation
activation 37 15026176
AKR1C3 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical PAH, metabolite chrysene-1,2-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C3 chemical PAH, metabolite naphthalene 1,2-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C4 chemical PAH, metabolite (±)- and (−)-benzo[a]pyrene-
7,8-diol
oxidation, o-quinone
formation
activation 29, 35 9973208,
11978787
AKR1C4 chemical PAH, metabolite (±)-benzo[a]pyrene-7,8-diol oxidation, o-quinone
formation
activation 33 18788756
AKR1C4 chemical PAH, metabolite 5-methylchrysene-7,8-diol oxidation, o-quinone
formation, major enzyme
activation 35 11978787
AKR1C4 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation, major enzyme
activation 35 11978787
AKR1C4 chemical PAH, metabolite 7-methylbenz[a]anthracene-
3,4-diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C4 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C4 chemical aromatic hydrocarbon,
metabolite
benzene diol oxidation, o-quinone
formation
activation 37 15026176
AKR1C4 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
oxidation, o-quinone
formation
activation 35 11978787
AKR1C4 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation, o-quinone
formation, major enzyme
activation 35 11978787
AKR1C4 chemical PAH, metabolite chrysene-1,2-diol oxidation, o-quinone
formation
activation 35 11978787
AKR1C4 chemical PAH, metabolite naphthalene 1,2-diol oxidation, o-quinone
formation
activation 35 11978787
COX-1 chemical PAH, metabolite (±)- and (+)-benzo[a]pyrene-
7,8-diol
oxidation activation 38 11159734
COX-1 chemical heterocyclic amine 2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (MeIQx)
oxidation activation 38 11159734
COX-1 chemical arylamine 4,4′-methylene bis(2-
chloroaniline) (MOCA)
oxidation potent
activation
38 11159734
COX-1 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl oxidation activation 38 11159734
COX-1 chemical arylamine benzidine oxidation activation 38 11159734
COX-1 drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plant
compound,
topoisomerase II
inhibitor, DNA
binding
ellipticine oxidation activation 39, 40 16936898,
21753906
COX-2 chemical PAH, metabolite (±)- and (+)-benzo[a]pyrene-
7,8-diol
oxidation activation 38 11159734
COX-2 chemical heterocyclic amine 2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (MeIQx)
oxidation activation 38 11159734
COX-2 chemical arylamine 4,4′-methylene bis(2-
chloroaniline) (MOCA)
oxidation potent
activation
38 11159734
COX-2 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl oxidation activation 38 11159734
COX-2 chemical arylamine benzidine oxidation activation 38 11159734
COX-2 drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plant
compound,
topoisomerase II
inhibitor, and DNA
binding
ellipticine oxidation activation 39, 40 16936898,
21753906
CYP1A1 chemical PAH, metabolite (±)-, (−)-, and (+)-
benzo[a]pyrene-7,8-diol
trans-(anti)-7,8-
dihydroxy-9,10-epoxy-
7,8,9,10-tetrahydroformation
(trans-diol
epoxide formation);
oxidation
potent
activation
13, 31, 32,
34, 41-52
2509067,
8674051,
7955101,
11502724,
11238186,
8043197,
7581497,
11952781,
15720144,
10426814,
8293790,
16946553,
16885195,
17295519,
17525473,
21028851
CYP1A1 chemical nitroarene 1,8-dinitropyrene nitroreduction potent
activation
53 11113705
CYP1A1 chemical arylamine, metabolite
of 1-nitropyrene
1-aminopyrene oxidation activation 54 11525925
CYP1A1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-
(diallylamino)-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-
benzotriazole
(PBTA-8)
oxidation activation 55 18562244
CYP1A1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-
(diethylamino)-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-
benzotriazole (PBTA-7)
oxidation activation 55 18562244
CYP1A1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-amino-
5-methoxyphenyl]-5-amino-
7-bromo-4-chloro-2H-
benzotriazole (PBTA-4)
oxidation activation 55 18562244
CYP1A1 chemical benzotriazole 2-[2-(acetylamino)-4-amino-
5-methoxyphenyl]-5-amino-
7-bromo-4-chloro-2H-
benzotriazole (PBTA-4)
oxidation activation 56 21786339
CYP1A1 chemical arylamine, metabolite 2-acetylaminofluorene (2-
AAF)
N-hydroxylation,
oxidation
activation 41, 43, 57 8674051,
11502724,
15279838
CYP1A1 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N-hydroxylation,
oxidation
activation 41, 43, 57-
61
8674051,
11502724,
15279838,
9111224,
9855011,
21081470,
1377247
CYP1A1 chemical heterocyclic amine 2-amino-3,4-
dimethylimidazo[4,5-
f]quinoline (MeIQ)
N-hydroxylation,
oxidation
potent
activation
41, 43, 49,
56, 62, 63
8674051,
11502724,
10426814,
21786339,
11473383,
8200084
CYP1A1 chemical heterocyclic amine 2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (MeIQx)
N-hydroxylation,
oxidation
activation 41, 43, 49,
58, 62-64
8674051,
11502724,
10426814,
9111224,
11473383,
8200084,
17627018
CYP1A1 chemical heterocyclic amine 2-amino-3-
methylimidazo[4,5-
f]quinoline (IQ)
N-hydroxylation,
oxidation
potent
activation
41, 43, 49,
58, 61, 65
8674051,
11502724,
10426814,
9111224,
11377247,
9918136
CYP1A1 chemical heterocyclic amine 2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (Glu-P-1)
N-hydroxylation,
oxidation
activation 41, 43, 61 8674051,
11502724,
11377247
CYP1A1 chemical arylamine 2-aminoanthracene N-hydroxylation,
oxidation (high activity)
potent
activation
41, 43, 61,
66
8674051,
11502724,
11377247,
9685642
CYP1A1 chemical arylamine 2-aminofluorene N-hydroxylation,
oxidation
activation 41, 43, 49,
61
8674051,
11502724,
10426814,
11377247
CYP1A1 chemical nitroarene 2-nitronaphthalene nitroreduction activation 67 10521697
CYP1A1 chemical nitroarene 2-nitropyrene 2-aminopyrene formation
(nitroreduction)
activation 41 8674051
CYP1A1 chemical nitrosamine 3-(n-nitrosomethylamino) propiona
ldehyde
oxidation activation 68 15725615
CYP1A1 chemical nitrosamine 3-(N-
nitrosomethylamino) propioni
trile
oxidation (at high
concentrations)
activation 68, 69 15725615,
16720019
CYP1A1 chemical nitroarene 3,6-dinitrobenzo[e]pyrene nitroreduction activation 70 19393727
CYP1A1 chemical heterocyclic amine 3-Amino-1,4-dimethyl-5H-
pyrido[4,3-b]indole (Trp-P-1)
N-hydroxylation,
oxidation
potent
activation
41, 43, 49,
61, 66, 71
8674051,
11502724,
10426814,
11377247,
9685642,
9721189
CYP1A1 chemical heterocyclic amine 3-amino-1-methyl-5H-
pyrido[4,3-b]indole (Trp-P-2)
N-hydroxylation,
oxidation
activation 41, 43, 49,
61-63, 66
8674051,
11502724,
10426814,
11377247,
11473383,
8200084,
9685642
CYP1A1 chemical arylamine, metabolite 3-aminobenzanthrone N-hydroxylation activation 72, 73 15885895,
16601755
CYP1A1 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene (3-MeO-
AAB)
oxidation potent
activation
41, 43, 49,
66
8674051,
11502724,
10426814,
9685642
CYP1A1 chemical PAH 3-methylcholanthrene (3MC) oxidation activation 74 11360624
CYP1A1 chemical PAH, metabolite 3-methylcholanthrene-11,12-
diol, 3MC-11,12-diol
oxidation activation 43 11502724
CYP1A1 natural
compound
indole, alkylating,
pulmonary toxin; in
higher concentrations
in mammalian
digestive tract and coal
tar
3-methylindole, skatole epoxidation (3-
methyloxindole
formation);
dehydrogenation
(desaturation, 3-
methyleneindolenine
formation), low Km,
medium activity, high
efficiency
activation 75-78 8558432,
11408359,
12563100,
20795680
CYP1A1 chemical nitroarene 3-nitrobenzanthrone nitroreduction activation 73, 79, 80 16601755,
12740904,
12782579
CYP1A1 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl N-hydroxylation,
oxidation
activation 41, 58, 66 8674051,
9111224,
9685642
CYP1A1 chemical PAH, metabolite 5,6-dimethylchrysene-1,2-
diol
oxidation activation 34, 43, 49,
81
16946553,
11502724,
10426814,
14720319
CYP1A1 chemical PAH 5-methylchrysene 1,2-dihydrodiol formation
(medium Km, high
activity, high efficiency),
oxidation
activation 43, 81-83 11502724,
14720319,
8542586,
18992797
CYP1A1 chemical PAH, metabolite 5-methylchrysene-1,2-diol oxidation potent
activation
34, 41, 43,
49, 81, 83
16946553,
8674051,
11502724,
10426814,
14720319,
18992797
CYP1A1 chemical arylamine 6-aminochrysene oxidation (high activity) potent
activation
41, 43, 66 8674051,
11502724,
9685642
CYP1A1 chemical arylamine, metabolite 6-aminochrysene-1,2-diol diol epoxide formation,
oxidation
activation 41, 84, 85 8674051,
8118930,
8330339
CYP1A1 chemical PAH 6-methylchrysene 1,2-dihydrodiol formation activation 82 8542586
CYP1A1 chemical nitroarene 6-nitrochrysene oxidation activation 43 11502724
CYP1A1 chemical PAH 7,12-
dimethylbenz[a]anthracene
oxidation (low Km, high
activity and efficiency)
potent
activation
43, 49, 81,
86, 87
11502724,
10426814,
14720319,
12584184,
20507880
CYP1A1 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
3,4-dihydrodiol-1,2-
epoxide formation
(medium Km, high
activity, high efficiency),
oxidation
potent
activation
34, 43, 49,
66, 74, 81
16946553,
11502724,
10426814,
9685642,
11360624,
14720319
CYP1A1 chemical N-heterocyclic
aromatic hydrocarbon
7H-dibenzo[c,g]carbazole oxidation potent
activation
88-91 10984687,
12034315,
15534862,
21809388
CYP1A1 chemical PAH, aza-aromatic 7-methylbenz[c]acridine 3,4-dihydrodiol formation activation 92 7866988
CYP1A1 chemical PAH, aza-aromatic 7-methylbenz[c]acridine oxidation potent
activation
92 7866988
CYP1A1 chemical PAH, metabolite 9-hydroxybenzo[a]pyrene oxidation activation 43 11502724
CYP1A1 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 epoxidation 8,9-,
oxidation
activation 41, 57, 61,
93, 94
8674051,
15279838,
11377247,
7923587,
8200084
CYP1A1 chemical heterocyclic amine aminomethylphenylnorharma
n
N-hydroxylation activation 95 17067997
CYP1A1 natural
compound
phenanthroic acid
derivative;
nephrotoxin, found in
the Aristolochiaceae
family of plants
aristolochic acid I nitroreduction potent
activation
96-99 11511187,
15386410,
16125300,
22086975
CYP1A1 natural
compound
phenanthroic acid
derivative;
nephrotoxin, found in
the Aristolochiaceae
family of plants
aristolochic acid II nitroreduction activation 96-99 11511187,
15386410,
16125300,
22086975
CYP1A1 chemical PAH benz[a]anthracene oxidation activation 43, 81, 100 11502724,
14720319
CYP1A1 chemical PAH, metabolite benz[a]anthracene-1,2-diol oxidation activation 34, 43, 74,
101
16946553,
11502724,
11360624,
11377097
CYP1A1 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation activation 34, 43, 81 16946553,
11502724,
14720319
CYP1A1 chemical PAH, metabolite benz[a]anthracene-5,6-diol oxidation activation 34, 43 16946553,
11502724
CYP1A1 chemical diphenylmethanol,
metabolite
benzhydrol oxidation activation 102 12160905
CYP1A1 chemical PAH benzo[a]perylene oxidation activation 103 10613181
CYP1A1 chemical PAH benzo[a]pyrene trans-7,8-dihydroxy-9,10-
epoxy-7,8,9,10-
tetrahydro- formation
(low activity, medium
activity, or high activity,
high efficiency); 1,6-,3,6-,
6,12-dione (quinone
formation, low activity);
oxidation
activation 41, 43, 50-
52, 57, 81,
93, 94,
104-108
8674051,
11502724,
16885195,
17525473,
21028851,
15279838
14720319,
7923587,
8200084,
9806168,
11513247,
8037457,
1486866,
19501186
CYP1A1 chemical PAH, metabolite benzo[b]fluoroanthene-9,10-
diol
oxidation potent
activation
34, 41, 43,
49, 66, 81
16946553,
8674051,
11502724,
10426814,
9685642,
14720319
CYP1A1 chemical PAH benzo[c]phenanthrene dihydrodiol 3,4-, 1,2-
epoxide formation (major
enzyme); oxidation
activation 109 11409939
CYP1A1 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
dihydrodiol 3,4-, 1,2-
epoxide formation;
oxidation
activation 43, 49 11502724,
10426814
CYP1A1 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation activation 34, 43, 49,
81
16946553,
11502724,
10426814,
14720319
CYP1A1 chemical aromatic ketone,
diphenyl ketone
benzophenone oxidation activation 102 12160905
CYP1A1 chemical PAH, metabolite chrysene-1,2-diol oxidation potent
activation
43, 49, 81 11502724,
10426814,
14720319
CYP1A1 chemical PAH cyclopenta[c,d]pyrene oxidation activation 110 7923587
CYP1A1 Drug imidazole; anticancer,
alkylating
dacarbazine N-demethylation (major
extrahepatic enzyme)
activation 111 10473105
CYP1A1 chemical PAH, metabolite, aza-
aromatic
dibenz[a,h]acridine 10,11-diol formation potent
activation
112 15144224
CYP1A1 chemical PAH dibenz[a,h]anthracene oxidation activation 43 11502724
CYP1A1 chemical PAH, aza-aromatic dibenz[a,j]acridine 3,4-dihydrodiol formation activation 92 7866988
CYP1A1 chemical PAH dibenzo[a,e]fluoranthene oxidation activation 103 10613181
CYP1A1 chemical PAH dibenzo[a,e]pyrene oxidation activation 103 10613181
CYP1A1 chemical PAH dibenzo[a,f]fluoranthene oxidation activation 103 10613181
CYP1A1 chemical PAH dibenzo[a,h]pyrene oxidation activation 103 10613181
CYP1A1 chemical PAH dibenzo[a,k]fluoranthene oxidation activation 103 10613181
CYP1A1 chemical PAH dibenzo[a,l]pyrene (−)-syn- and (−)-anti-
11,12-dihydrodiol-13,14-
epoxide formation
(medium Km, high
activity, high efficiency);
oxidation
potent
activation
43, 81, 103,
113-119
11502724,
14720319,
10613181,
9625737,
10207125,
10493514,
10506751,
8968059,
16581046,
17509623
CYP1A1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
11,12-dihydrodiol-13,14-
epoxide formation
(medium Km, high
activity, high efficiency);
oxidation
potent
activation
34, 43, 49,
71, 81,
113-115,
118-120
16946553,
11502724,
10426814,
9721189,
14720319,
9625737,
10207125,
10493514,
16581046,
17509623,
16485905
CYP1A1 chemical PAH dibenzo[b,k]fluoranthene oxidation activation 103 10613181
CYP1A1 physiologi
-cal
compound
estrogen 17β−estradiol C2-hydroxylation (major
reaction, medium Km,
high activity, high
efficiency), major
metabolite and major
extrahepatic enzyme; C4-
hydroxylation (minor
reaction, medium Km,
medium efficiency, low
activity), oxidation, 3,4-
quinone formation (lower
activity); oxidation, 2,3-
quinone formation; C16α-
hydroxylation (high Km,
low activity)
potent
activation
71, 106,
121-130
9721189,
8037457,
7826886,
9625734,
9054608,
9667077,
8930523,
11555828,
12865317,
15784278,
16112414,
17570247
CYP1A1 physiologi
cal
compound
estrogen estrone C2-hydroxylation (major
reaction, medium Km, low
activity), oxidation, 2,3-
quinone formation; C4-
hydroxylation (medium
Km, low activity, or
medium activity); C16α-
hydroxylation (minor
reaction, very low
activity)
activation 49, 127,
130, 131
10426814,
12865317,
17570247,
15805301
CYP1A1 chemical PAH, metabolite fluoranthene-2,3-diol oxidation activation 34, 43 16946553,
11502724
CYP1A1 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide oxidation (at high
concentrations)
activation 87 20507880
CYP1A1 chemical PAH naphtho[1,2-k]fluoranthene oxidation activation 103 10613181
CYP1A1 chemical PAH naphtho[2,1-a]pyrene oxidation activation 103 10613181
CYP1A1 chemical PAH naphtho[2,3-a]pyrene oxidation activation 103 10613181
CYP1A1 chemical N-heterocyclic
aromatic hydrocarbon,
dibenzocarbazole
N-
methyldibenzo[c,g]carbazole
oxidation potent
activation
88-91 10984687,
12034315,
15534862,
21809388
CYP1A1 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine oxidation activation 132, 133 11774366,
12214673
CYP1A1 chemical nitrosamine N-nitrosodibutylamine (N, N-
dibutylnitrosamine)
oxidation activation 134 11600130
CYP1A1 chemical nitrosamine N-nitrosodiethylamine (N, N-diethylnitrosamine) oxidation activation 132-134 11774366,
12214673,
11600130
CYP1A1 chemical nitrosamine N-nitrosodi-n-propylamine
(N-nitrosodipropylamine)
oxidation activation 134 11600130
CYP1A1 chemical nitrosamine N-nitrosoethylbutylamine oxidation (major enzyme) activation 134 11600130
CYP1A1 chemical nitrosamine N-nitrosomethylbutylamine oxidation activation 134 11600130
CYP1A1 chemical nitrosamine N-nitrosomethylethylamine oxidation activation 134 11600130
CYP1A1 chemical nitrosamine N-nitrosomethylpropylamine oxidation activation 69, 134 16720019,
11600130
CYP1A1 chemical nitrosamine N-nitrosomorpholine oxidation activation 132, 133 11774366,
12214673
CYP1A1 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
oxidation activation 132, 133 11774366,
12214673
CYP1A1 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OH-
tetrahydrofuran
formation); oxidation
activation 132, 133 11774366,
12214673
CYP1A1 chemical azoarylamine o-aminoazotoluene oxidation activation 41, 66 8674051,
9685642
CYP1A1 chemical diphenylketone,
metabolite
p-benzoylphenol,4-
hydroxybenzophenone
oxidation activation 102 12160905
CYP1A1 chemical PAH phenanthrene oxidation to 1,2- (major
reaction), 9,10-, and 3,4-
dihydrodiols (minor
reactions) and phenols, at
high concentration
activation 46, 135 7581497,
19766613
CYP1A1 chemical aza-aromatic Sudan I oxidation, major enzyme activation 136, 137 12384524,
17159775
CYP1A2 chemical PAH, metabolite (±)-, (−)-, and (+)-
benzo[a]pyrene-7,8-
dihydrodiol
trans-(anti)-7,8-
dihydroxy-9,10-epoxy-
7,8,9,10-tetrahydro-
formation; oxidation
activation 13, 34, 41-
43, 120,
138, 139
2509067,
16946553,
8674051,
7955101,
1502724,
16485905,
9014198,
2803520
CYP1A2 chemical triazole 1-aminobenzotriazole (1-
ABT)
oxidation activation 140 17584015
CYP1A2 chemical arylamine, metabolite
of 1-nitropyrene
1-aminopyrene oxidation activation 54, 141-
144
11525925,
15728263,
15843388,
17158518,
9860501
CYP1A2 chemical PAH, aza-aromatic 1-azabenzo[a]pyrene oxidation potent
activation
145 14729370
CYP1A2 chemical arylamine, metabolite 2-acetylaminofluorene (2-
AAF)
N-hydroxylation (major
enzyme), oxidation
potent
activation
12, 41, 57,
107, 139,
146, 147
2655891,
8674051,
15279838,
1486866,
2803520,
11375903,
15450435
CYP1A2 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N-hydroxylation,
oxidation (high activity,
major enzyme, major
reaction)
potent
activation
57-61, 63,
107, 146,
148-156,
157
15279838,
9111224,
9855011,
21081470,
11377247,
8200083,
1486866,
11375903,
8082563,
1913651,
9705755,
11013410,
10503887,
12351158,
14744142,
14725854,
15073045,
16167840
CYP1A2 chemical heterocyclic amine 2-amino-3,4,8-
trimethylimidazo[4,5-
]quinoxaline (DiMeIQx)
N-hydroxylation potent
activation
107 1486866
CYP1A2 chemical heterocyclic amine 2-amino-3,4-
dimethylimidazo[4,5-
f]quinolone (MeIQ)
N-hydroxylation;
oxidation (major enzyme)
potent
activation
12, 41, 56,
61-63, 71,
94, 107,
120, 150,
151, 154,
155, 158
2655891,
8674051,
21786339,
11377247,
11473383,
8200083,
9721189,
8200084,
1486866,
16485905,
9705755,
11013410,
14744142,
14725854,
10861951
CYP1A2 chemical heterocyclic amine 2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (MeIQx)
N-hydroxylation (major
enzyme, high activity)
potent
activation
12, 41, 58,
61-63, 94,
107, 151-
155
2655891,
8674051,
9111224,
11377247,
11473383,
8200083,
8200084,
1486866,
11013410,
10503887,
12351158,
14744142,
14725854
CYP1A2 chemical arylamine,
heterocyclic
2-amino-3-methyl-9H-
pyrido[2,3-b]indole
(MeAαC)
N-hydroxylation,
oxidation
potent
activation
159 14729582
CYP1A2 chemical heterocyclic amine 2-amino-3-
methylimidazo[4,5-
f]quinolone (IQ)
N-hydroxylation,
oxidation (high activity,
major enzyme)
potent
activation
12, 41, 58,
61, 65, 71,
141-144,
151, 154,
155, 160-
163
2655891,
8674051,
9111224,
11377247,
9918136,
9721189,
15728263,
15843388,
17158518,
9860501,
11013410,
14744142,
14725854,
1486866,
2813353,
9675256,
10023085,
15089095
CYP1A2 chemical heterocyclic amine 2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (Glu-P-1)
N-hydroxylation,
oxidation (high activity,
major enzyme)
potent
activation
12, 41, 61,
107, 139,
154, 155,
160
2655891,
8674051,
11377247,
1486866,
2803520,
14744142,
14725854,
2813353
CYP1A2 chemical heterocyclic amine 2-amino-α-carboline oxidation activation 149, 164 1913651,
8801053
CYP1A2 chemical arylamine 2-aminoanthracene N-hydroxylation,
oxidation (major enzyme)
potent
activation
12, 41, 61,
107, 139,
141-144,
162, 165
2655891,
8674051,
11377247,
1486866,
2803520,
15728263,
15843388,
17158518,
9860501,
10023085,
9477228
CYP1A2 chemical heterocyclic amine 2-aminodipyrido[1,2-a:3,2′-
d]-imidazole (Glu-P-2)
oxidation activation 12, 107,
139
2655891,
1486866,
2803520
CYP1A2 chemical arylamine 2-aminofluorene (2-AF) N-hydroxylation,
oxidation (major enzyme,
high activity)
potent
activation
12, 41, 61,
107, 139,
166-168
2655891,
8674051,
11377247,
1486866,
2803520,
15840428,
16372832,
10727902
CYP1A2 chemical arylamine 2-naphthylamine (β-
naphthylamine)
N-hydroxylation,
oxidation
activation 12, 61, 107,
147, 160
2655891,
11377247,
1486866,
15450435,
2813353
CYP1A2 chemical nitroarene 2-nitrofluoranthene nitroreduction activation 53 11113705
CYP1A2 chemical nitrosamine 3-(N-
nitrosomethylamino) propiona
ldehyde
oxidation activation 68 15725615
CYP1A2 chemical nitroarene 3,6-dinitrobenzo[e]pyrene nitroreduction activation 70 19393727
CYP1A2 chemical nitroarene 3-acetylaminobenzanthrone N-hydroxylation
(concentration dependent)
activation 79 12740904
CYP1A2 chemical heterocyclic amine 3-amino-1,4-dimethyl-5H-
pyrido[4,3-b]indole (Trp-P-1)
N-hydroxylation;
oxidation (major enzyme)
activation 12, 41, 61,
139, 151
2655891,
8674051,
11377247,
2803520,
11013410
CYP1A2 chemical heterocyclic amine 3-amino-1-methyl-5H-
pyrido[4,3-b]indole (Trp-P-2)
N-hydroxylation,
oxidation (major enzyme)
activation 12, 41, 61,
62, 94, 107,
151, 160
2655891,
8674051,
11377247,
11473383,
8200084,
1486866,
11013410,
2813353
CYP1A2 chemical arylamine, metabolite 3-aminobenzanthrone N-hydroxylation (major
enzyme, concentration
dependent)
activation 72, 73 15885895,
16601755
CYP1A2 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
oxidation activation 41 8674051
CYP1A2 chemical arylamine 3′-methyl-4-
dimethylaminazobenzene
oxidation potent
activation
169 10720750
CYP1A2 chemical nitroarene 3-nitrobenzanthrone nitroreduction activation 73, 79, 80 16601755,
12740904,
12782579
CYP1A2 chemical nitroarene 3-nitrofluoranthene nitroreduction activation 53 11113705
CYP1A2 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl N-hydroxylation,
oxidation
activation 12, 41, 58,
107, 147,
160, 170,
171
2655891,
8674051,
9111224,
1486866,
15450435,
2813353,
9163700,
16988941
CYP1A2 natural
compound
furanoterpene
produced by sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol oxidation (major enzyme) activation 172, 173 1651809,
15892579
CYP1A2 chemical nitroarene 4-nitropyrene 4-aminopyrene formation
(nitroreduction)
activation 174 10197616
CYP1A2 chemical PAH, metabolite 5,6-dimethylchrysene-1,2-
diol
oxidation activation 34, 43, 81 16946553,
11502724,
14720319
CYP1A2 chemical N-heterocyclic
aromatic hydrocarbon,
5,9-
dimethyldibenzo[c,g]carbazol
e
oxidation activation 88-91 10984687,
12034315,
15534862,
21809388
CYP1A2 chemical PAH, metabolite 5-methylchrysene-1,2-diol oxidation activation 31, 34, 43,
81
16946553,
8674051,
11502724,
14720319
CYP1A2 chemical arylamine 6-aminochrysene oxidation activation 41, 66, 84,
85, 141-
144
8674051,
9685642,
8118930,
8330339,
15728263,
15843388,
17158518,
9860501
CYP1A2 chemical arylamine, metabolite 6-aminochrysene-1,2-diol diol epoxide formation;
oxidation
activation 41, 84, 85 8674051,
8118930,
8330339
CYP1A2 chemical PAH 7,12-
dimethylbenz[a]anthracene
oxidation activation 43, 81, 86 11502724,
14720319,
12584184
CYP1A2 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
oxidation activation 34, 43, 81 16946553,
11502724,
14720319
CYP1A2 chemical N-heterocyclic
aromatic hydrocarbon
7H-dibenzo[c,g]carbazole oxidation activation 88-90 10984687,
12034315,
15534862
CYP1A2 chemical PAH, aza-aromatic 7-methylbenz[c]acridine 3,4-dihydrodiol formation activation 92 7866988
CYP1A2 chemical PAH, aza-aromatic 7-methylbenz[c]acridine oxidation activation 92 7866988
CYP1A2 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) epoxidation (both exo-
8,9- and endo-8,9-),
oxidation
activation 11, 12, 41,
42, 57, 61,
93, 94, 162,
175-182
2492107,
2509067,
8674051,
7955101,
15279838,
11377247,
7923587,
8200084,
10023085,
2162057,
766804,
8261428,
12079611,
1902334,
11782366,
16385575,
16608170
CYP1A2 chemical heterocyclic amine aminomethylphenylnorharma
n
N-hydroxylation activation 95 17067997
CYP1A2 chemical arylamine,
heterocyclic
aminophenylharman N-hydroxylation activation 95 17067997
CYP1A2 chemical arylamine,
heterocyclic
aminophenylnorharman N-hydroxylation activation 95 17067997
CYP1A2 natural
compound
phenanthroic acid
derivative;
nephrotoxin, found in
the Aristolochiaceae
family of plants
aristolochic acid I nitroreduction potent
activation
96-99 11511187,
15386410,
16125300,
22086975
CYP1A2 natural
compound
phenanthroic acid
derivative;
nephrotoxin, found in
the Aristolochiaceae
family of plants
aristolochic acid II nitroreduction potent
activation
96-99 11511187,
15386410,
16125300,
22086975
CYP1A2 chemical PAH, metabolite benz[a]anthracene-3,4-diol oxidation activation 34, 43, 81 16946553,
11502724,
14720319
CYP1A2 chemical diphenylmethanol,
metabolite
benzhydrol oxidation activation 102 12160905
CYP1A2 chemical PAH, metabolite benzo[b]fluoroanthene-9,10-
diol
oxidation activation 34, 41, 43,
81
16946553,
8674051,
11502724,
14720319
CYP1A2 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
oxidation activation 43 11502724
CYP1A2 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation activation 34, 43, 81 16946553,
11502724,
14720319
CYP1A2 chemical aromatic ketone,
diphenyl ketone
benzophenone oxidation activation 102 12160905
CYP1A2 chemical PAH, metabolite chrysene-1,2-diol oxidation activation 34, 41, 81 16946553,
11502724,
14720319
CYP1A2 drug imidazole; anticancer,
alkylating
dacarbazine N-demethylation (major
enzyme)
potent
activation
111 10473105
CYP1A2 natural
compound
bicyclic monoterpene Δ3-carene epoxidation (high Km,
medium activity)
activation 183 16379671
CYP1A2 chemical PAH dibenz[a,h]anthracene 3,4-dihydrodiol formation activation 184 8638931
CYP1A2 chemical PAH, aza-aromatic dibenz[a,j]acridine 3,4-dihydrodiol formation activation 92 7866988
CYP1A2 chemical PAH dibenzo[a,l]pyrene (−)-anti-11,12-
dihydrodiol-13,14-
epoxide formation,
oxidation
activation 81 14720319
CYP1A2 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
oxidation activation 34, 71, 81 16946553,
9721189,
14720319
CYP1A2 drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plant
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine hydroxylation, C12- and
C13- (low activity)
activation 39, 40,
185-189
16936898,
21753906,
11755121,
12123750,
15548707,
17197724,
21683692
CYP1A2 physiologi
cal
compound
estrogen 17β-estradiol C2-hydroxylation (major
reaction, medium Km,
medium activity, medium
efficiency), major
metabolite and major
enzyme in liver; C4-
hydroxylation (minor
reaction); C16α-
hydroxylation (major
enzyme, high Km, no
activity, or low activity)
activation 71, 106,
122-124,
126-129,
190-194
9721189,
8037457,
9625734,
9054608,
9667077,
11555828,
12865317,
15784278,
16112414,
1449532,
9635876,
11454902,
11741520,
14703066
CYP1A2 natural
compound
alkenylbenzene;
occurs in a variety of
foods including
essential oils of
tarragon, sweet basil,
sweet fennel, anis
estragole C1′-hydroxylation (major
enzyme, medium Km, low
activity)
potent
activation
195-197 17407329,
15914212,
21459083
CYP1A2 physiologi
cal
compound
estrogen estrone C2-hydroxylation
(medium Km, high
activity, major
metabolite); C4-
hydroxylation (medium
Km, medium activity, very
low activity); C16α-
hydroxylation (minor
reaction, very low
activity)
activation 49, 122,
123, 127,
128, 191,
192, 198
10426814,
9625734,
9054608,
12865317,
15784278,
9635876,
11454902,
16537715
CYP1A2 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide oxidation (at high
concentration)
activation 87 20507880
CYP1A2 natural
compound
phenylpropene; from
Rhizoma
acorigraminei
methyleugenol C1′-hydroxylation
(medium Km, major
enzyme)
activation 196, 199 15914212,
16411663
CYP1A2 chemical arylamine, metabolite N-acetyl-N-hydroxy-3-
aminobenzanthrone
oxidation, at higher
concentrations
activation 79 12740904
CYP1A2 chemical PAH naphthalene oxidation activation 200 11356140
CYP1A2 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-3-
aminobenzanthrone
reduction to amine activation 79 12740904
CYP1A2 chemical N-heterocyclic
aromatic hydrocarbon
N-
methyldibenzo[c,g]carbazole
oxidation activation 88-91 10984687,
12034315,
15534862,
21809388
CYP1A2 chemical nitrosamine N-nitrosoethylbutylamine oxidation activation 134 11600130
CYP1A2 chemical nitrosamine N-nitrosomethylbutylamine oxidation activation 134 11600130
CYP1A2 chemical nitrosamine N-nitrosomethylethylamine oxidation activation 134 11600130
CYP1A2 chemical nitrosamine N-nitrosomethylpropylamine oxidation activation 69, 134 16720019,
11600130
CYP1A2 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OHtetrahydrofuran
formation)
activation 132, 133 11774366,
12214673
CYP1A2 chemical azoarylamine o-aminoazotoluene oxidation activation 41, 66 8674051,
9685642
CYP1A2 chemical o-methoxyaniline o-anisidine (2-
methoxyaniline)
N-hydroxylation (major
enzyme with recombinant
model), oxidation
activation 147, 201 15450435,
15828049
CYP1A2 chemical diphenylketone,
metabolite
p-benzoylphenol (4-
hydroxybenzophenone)
oxidation activation 102 12160905
CYP1A2 chemical PAH phenanthrene oxidation to 1,2- (major
reaction), 3,4-, and 9,10-
dihydrodiols and phenols
activation 46, 135 7581497,
19766613
CYP1A2 natural
compound
furanoxanthone;
mycotoxin, produced
by Aspergillus species
sterigmatocystin oxidation activation 41 8674051
CYP1A2 chemical aromatic hydrocarbon,
alkyl benzene
styrene (vinyl benzene) oxidation, 7,8-oxide
formation
activation 202-207 9253143,
7696548,
11407535,
12616646,
12834847,
18266326
CYP1B1 chemical PAH, metabolite (±)-, (−)-, and (+)-
benzo[a]pyrene-7,8-
dihydrodiol
trans-(anti)-7,8-
dihydroxy-9,10-epoxy-
7,8,9,10-tetrahydro-
formation, trans-diol
epoxide form (low Km,
high activity, high
efficiency); oxidation
potent
activation
26, 31, 32,
34, 41, 43,
49, 52, 120,
208-210
16411658,
15720144,
17295519,
16946553,
8674051,
11502724,
10426814,
21028851,
16485905,
12628515,
12807732,
16551781
CYP1B1 chemical nitroarene 1,8-dinitropyrene nitroreduction potent
activation
53 11113705
CYP1B1 chemical arylamine, metabolite
of 1-nitropyrene
1-aminopyrene oxidation potent
activation
54 11525925
CYP1B1 chemical PAH 2,3-dihydroxy-2,3-
dihydrofluoranthene
oxidation activation 66 9685642
CYP1B1 chemical heterocyclic amine 2-amino-3,4-
dimethylimidazo[4,5-
f]quinolone (MeIQ)
N-hydroxylation,
oxidation
activation 41, 49, 61,
100, 210,
211
8674051,
10426814,
11377247,
11502724,
16551781,
11719446
CYP1B1 chemical heterocyclic amine 2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (MeIQx)
N-
hydroxylation, oxidation
activation 41, 49, 61 8674051
10426814,
11377247
CYP1B1 chemical heterocyclic amine 2-amino-3-
methylimidazo[4,5-
f]quinolone (IQ)
N-hydroxylation,
oxidation
activation 41, 49, 61,
65, 100
8674051,
10426814,
11377247,
9918136,
11502724
CYP1B1 chemical arylamine 2-aminoanthracene N-hydroxylation,
oxidation (high activity)
potent
activation
41, 61, 100,
210
8674051,
11377247,
11502724,
16551781
CYP1B1 chemical arylamine 2-aminofluorene (2-AF) N-hydroxylation,
oxidation
potent
activation
41, 49, 61,
100, 210
8674051,
10426814,
11377247,
11502724,
16551781
CYP1B1 chemical nitroarene 2-nitrofluoranthene nitroreduction potent
activation
53 11113705
CYP1B1 chemical nitroarene 2-nitropyrene 2-aminopyrene formation
(nitroreduction)
potent
activation
41, 100 8674051,
11502724
CYP1B1 chemical nitrosamine 3-(N-
nitrosomethylamino) propiona
ldehyde
oxidation activation 68 15725615
CYP1B1 chemical heterocyclic amine 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) N-hydroxylation,
oxidation
potent
activation
41, 49, 61,
66, 71, 100,
210
8674051,
10426814,
11377247,
9685642,
9721189,
11502724,
16551781
CYP1B1 chemical heterocyclic amine 3-amino-1-methyl-5H-
pyrido[4,3-b]indole (Trp-P-2)
N-hydroxylation;
oxidation
activation 41, 49, 61,
62, 66, 71,
100
8674051,
10426814,
11377247,
11473383,
9685642,
11502724
CYP1B1 chemical arylamine, metabolite 3-aminobenzanthrone N-hydroxylation activation 212 15310241
CYP1B1 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
oxidation potent
activation
41, 49, 66,
100, 210
8674051,
10426814,
9685642,
11502724,
16551781
CYP1B1 chemical nitroarene 3-nitrofluoranthene nitroreduction activation 53 11113705
CYP1B1 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
oxidation activation 132, 133,
213-217
11774366,
12214673,
1312898,
7595636,
8806763,
10803680,
9106248
CYP1B1 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl N-hydroxylation;
oxidation
activation 41, 218 8674051,
19274671
CYP1B1 chemical PAH, metabolite 5,6-dimethylchrysene-1,2-
diol
oxidation activation 34, 41, 43,
49, 66, 81,
210
16946553,
8674051,
11502724,
10426814,
9685642,
14720319,
16551781
CYP1B1 chemical PAH 5-methylchrysene oxidation activation 83, 210 18992797
16551781
CYP1B1 chemical PAH, metabolite 5-methylchrysene-1,2-diol oxidation (medium Km,
high activity, high
efficiency)
potent
activation
34, 41, 43,
49, 66, 81,
83, 120,
210
16946553,
8674051,
11502724,
10426814,
9685642,
14720319,
18992797,
16485905,
16551781
CYP1B1 chemical arylamine 6-aminochrysene oxidation potent
activation
41, 43 8674051,
11502724
CYP1B1 chemical arylamine, metabolite 6-aminochrysene-1,2-diol diolepoxide formation,
oxidation
potent
activation
41, 84, 85 8674051,
8118930,
8330339
CYP1B1 chemical nitroarene 6-nitrochrysene nitroreduction; 5,6-
quinone formation
activation 41, 43, 219 8674051,
11502724,
8481905
CYP1B1 chemical PAH 7,12-
dimethylbenz[a]anthracene
oxidation (low Km, high
activity and efficiency)
activation 43, 49, 81,
86, 210
11502724,
10426814,
14720319,
12584184,
16551781
CYP1B1 chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
3,4-dihydrodiol-1,2-
epoxide formation
(medium Km, high
activity, high efficiency);
oxidation
potent
activation
34, 41, 43,
49, 66, 81
16946553,
8674051,
11502724,
10426814,
9685642,
14720319
CYP1B1 chemical PAH, metabolite 9-hydroxybenzo[a]pyrene oxidation activation 43 11502724
CYP1B1 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) oxidation activation 61, 210,
217
11377247,
16551781,
9106248
CYP1B1 chemical diphenylmethanol,
metabolite
benzhydrol oxidation activation 102 12160905
CYP1B1 chemical PAH benzo[a]pyrene trans-7,8-dihydroxy-9,10-
epoxy-7,8,9,10-
tetrahydro- formation
(medium Km, high
activity, high efficiency);
1,6-,3,6-dione (quinone
form., low activity);
oxidation (major enzyme)
activation 34, 41, 43,
49, 52, 61,
81, 104,
208, 210,
220-222
16946553,
8674051,
11502724,
10426814,
21028851,
11377247,
14720319,
9806168,
12628515,
16551781,
10409402,
11465393,
15958554
CYP1B1 chemical PAH, metabolite benzo[b]fluoroanthene-9,10-
diol
oxidation activation 34, 43, 49,
50, 81
16946553,
8674051,
11502724,
10426814,
14720319
CYP1B1 chemical PAH benzo[c]phenanthrene dihydrodiol 3,4-, 1,2-
epoxide formation (major
enzyme); oxidation
activation 43, 81, 109,
217, 223
11502724,
14720319,
11409939,
9168260,
21781864
CYP1B1 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
dihydrodiol 3,4-, 1,2-
epoxide formation
activation 43, 49 11502724,
10426814
CYP1B1 chemical PAH, metabolite benzo[g]chrysene-11,12-diol oxidation potent
activation
34, 41, 43,
49, 66, 81
16946553,
8674051,
11502724,
10426814,
9685642,
14720319
CYP1B1 chemical aromatic ketone,
diphenyl ketone
benzophenone oxidation activation 102 12160905
CYP1B1 chemical PAH, metabolite chrysene-1,2-diol oxidation potent
activation
34, 41, 43,
49, 66, 81,
210
16946553,
8674051,
11502724,
10426814,
9685642,
14720319,
16551781
CYP1B1 chemical PAH cyclopenta[c,d]pyrene oxidation activation 217 9106248
CYP1B1 chemical PAH, aza-aromatic dibenz[a,h]acridine 10,11-diol formation activation 111 15144224
CYP1B1 chemical PAH dibenzo[a,l]pyrene (−)-anti-11,12-
dihydrodiol-13,14-
epoxide formation
(medium Km, high
activity, high efficiency);
oxidation
potent
activation
43, 81,
113-119,
208, 210,
224
11502724,
14720319,
9625737,
10207125,
10493514,
10506751,
8968059,
16581046,
17509623,
12628515,
16551781,
17623886
CYP1B1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
11,12-dihydrodiol-13,14-
epoxide formation
(medium Km, high
activity, high efficiency)
potent
activation
34, 41, 43,
49, 71, 81,
113-115,
118, 120,
208, 210
16946553,
8674051,
11502724,
10426814,
9721189,
14720319,
9625737,
10207125,
10493514,
16581046,
17509623,
16485905,
12628515,
16551781
CYP1B1 drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plant
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine oxidation activation 39, 185-
188
16936898,
11755121,
12123750,
15548707,
17197724
CYP1B1 physiologi
cal
compound
estrogen 17β-estradiol C4-hydroxylation (major
enzyme, medium Km,
medium activity, medium
and low efficiency),
oxidation, 3,4-quinone
formation; C2-
hydroxylation (low
activity, minor reaction),
oxidation, 2,3-quinone
formation; C16α-
hydroxylation (minor
enzyme, medium and high
Km, low activity)
potent
activation
49, 71,
121-130,
194, 211,
221, 225-
228
10426814,
9721189,
7826886,
9625734,
9054608,
9667077,
8930523,
11555828,
12865317,
15784278,
16112414,
17570247,
14703066,
11719446,
11465393,
8790407,
7568105,
10862525,
10910054
CYP1B1 physiologi
cal
compound
estrogen estrone C4-hydroxylation (low
Km, major reaction); C2-
hydroxylation (low
activity, minor reaction),
oxidation, 2,3-quinone
formation;
potent
activation
49, 127,
128, 130,
198
10426814,
12865317,
15784278,
17570247,
16537715
CYP1B1 chemical nitrosamine N-nitrosodiethylamine (N,N-
diethylnitrosamine)
oxidation activation 132-134 11774366,
12214673,
11600130
CYP1B1 chemical nitrosamine N-nitrosoethylbutylamine oxidation activation 134 11600130
CYP1B1 chemical nitrosamine N-nitrosomethylbutylamine oxidation activation 134 11600130
CYP1B1 chemical nitrosamine N-nitrosomethylpropylamine oxidation activation 69, 134 16720019,
11600130
CYP1B1 chemical nitrosamine N-nitrosomorpholine oxidation activation 132, 133 11774366,
12214673
CYP1B1 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OHtetrahydrofuran
formation), oxidation
activation 132, 133 11774366,
12214673
CYP1B1 chemical diphenylketone,
metabolite
p-benzoylphenol,4-
hydroxybenzophenone
oxidation activation 102 12160905
CYP1B1 chemical PAH phenanthrene oxidation to 9,10- (major
reaction), and 1,2- and
3,4- (minor reaction)
dihydrodiols and phenols
activation 135 19766613
CYP1B1 chemical nitroarene 1-nitropyrene 1-aminopyrene form.
(nitroreduction), at low
concentrations,
epoxidation C4,5-, at high
concentration
potent
activation
53, 54, 229 11113705,
11525925,
15310239
CYP2A6 chemical haloalkane 1, 2-dibromoethane (ethylene
dibromide)
oxidation to 2-
bromoacetaldehyde
activation 230 8870687
CYP2A6 chemical diene 1,3-butadiene butadiene monoxide
(epoxybutene) formation
(high activity)
activation 231-233 7586124,
8901879,
9016811
CYP2A6 chemical nitrile, herbicide 2,6-dichlorobenzonitrile
(dichlobenil)
epoxidation, C2,3- activation 234, 235 8649351,
8863822
CYP2A6 chemical arylamine 2,6-dimethylaniline N-hydroxylation (at
higher concentrations),
major enzyme
activation 236 11409937
CYP2A6 chemical nitrosamine 3-(N-
nitrosomethylamino) propiona
ldehyde
oxidation activation 68 15725615
CYP2A6 chemical nitrosamine 3-(N-
nitrosomethylamino) propioni
trile
oxidation (at high
concentrations, major
enzyme)
potent
activation
68, 69 15725615,
16720019
CYP2A6 chemical arylamine, metabolite 3-aminobenzanthrone N-hydroxylation activation 212 15310241
CYP2A6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
Cα-hydroxylationmethylene
(lactol/acid
formation or Cα-methyl
(diol/acid formation)
activation 170, 237,
238
9163700,
12975327,
21473878
CYP2A6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
Cα-hydroxylationmethylene
(keto aldehyde
and keto alcohol
formation), high Km, low
activity, oxidation
activation 66, 132-
134, 141-
143, 213-
216, 238-
246
9685642,
11774366,
12214673,
11600130,
15728263,
15843388,
17158518,
1312898,
7595636,
8806763,
10803680,
11016631,
15333516,
17671098,
21473878,
10837014,
11080669,
12920169,
1423839
CYP2A6 chemical arylamine 4,4′-methylene bis(2-
chloroaniline) (MOCA)
oxidation, N-
hydroxylation
activation 65, 106,
248, 249
9685642,
1486866,
1944238,
1740010
CYP2A6 chemical arylamine 6-aminochrysene oxidation activation 248 1944238
CYP2A6 chemical diphenylmethanol,
metabolite
benzhydrol oxidation (major enzyme) activation 102 12160905
CYP2A6 chemical aromatic ketone,
diphenyl ketone
benzophenone oxidation (major enzyme) activation 102 12160905
CYP2A6 chemical aliphatic epoxide,
metabolite
butadiene monoxide (1,2-
epoxy-3-butene)
diepoxybutane meso-
(major) and (±)-
formation (at high
concentrations)
activation 231-233 7586124,
8901879,
9016811
CYP2A6 chemical haloalkane chloroform
(trichloromethane)
dehalogenation, reductive
(at high concentrations);
oxidation (major enzyme
at high concentrations)
activation 250 12584152
CYP2A6 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (minor
enzyme, high Km);
oxidation
activation 101, 108,
251-254
11377097,
19501186,
8242617,
9010702,
10348794,
10692561
CYP2A6 natural
compound
alkenylbenzene;
occurs in a variety of
foods including
essential oils of
tarragon, sweet basil,
sweet fennel, anis
estragole C1′-hydroxylation (major
enzyme, medium Km,
medium activity)
potent
activation
195, 197 17407329,
21459083
CYP2A6 chemical phosphoramide hexamethylphosphoramide oxidation, formaldehyde
production
activation 235, 255 8863822,
9007030
CYP2A6 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation (minor
reaction, high Km),
oxidation (at high
concentration)
activation 87, 247,
253
20507880,
8242617,
10348794
CYP2A6 natural
compound
furanocoumarin; anti-
psoriatic,
photosensitizer, found
in several species of
plants
methoxalen (8-
methoxypsoralen,
xanthotoxin)
epoxidation
(furanoepoxide
formation) and hydrolysis
activation 140 17584015
CYP2A6 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine oxidation activation 132, 133 11774366,
12214673
CYP2A6 chemical tobacco-specific
nitrosamine
N’-nitrosoanatabine oxidation activation 132, 133 11774366,
12214673
CYP2A6 chemical nitrosamine N-nitrosodibutylamine (N, N-
dibutylnitrosamine)
oxidation activation 244, 134 10837014,
11600130
CYP2A6 chemical nitrosamine N-nitrosodiethylamine (N,N-
diethylnitrosamine)
oxidation potent
activation
106, 132-
134, 141-
144, 245-
247
1486866,
11774366,
12214673,
11600130,
15728263,
15843388,
17158518,
9860501,
10837014,
11080669,
1423839
CYP2A6 chemical nitrosamine N-nitrosodi-n-propylamine
(N-nitrosodipropylamine)
oxidation potent
activation
134, 141-
143, 244
11600130,
15728263,
15843388,
17158518,
10837014
CYP2A6 chemical nitrosamine N-nitrosoethylbutylamine oxidation (major enzyme) potent
activation
134, 244 11600130,
10837014
CYP2A6 chemical nitrosamine N-nitrosomethylbutylamine oxidation (major enzyme) potent
activation
134, 244 11600130,
10837014
CYP2A6 chemical nitrosamine N-nitrosomethylethylamine oxidation potent
activation
134, 243 11600130,
10837014
CYP2A6 chemical nitrosamine N-nitrosomethylphenylamine oxidation activation 134, 243,
245
11600130,
10837014,
11080669
CYP2A6 chemical nitrosamine N-nitrosomethylpropylamine oxidation activation 68, 134,
244
16720019,
11600130,
10837014
CYP2A6 chemical nitrosamine N-nitrosomorpholine oxidation (major enzyme) activation 132, 133 11774366,
12214673
CYP2A6 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-nitrosonornicotine, NNN) hydroxylation C5′- (lactol
formation, medium Km,
high to medium activity),
oxidation (major enzyme)
activation 132-134,
244, 256-
258
11774366,
12214673,
11600130,
15651850,
10837014,
9276639,
7646564
CYP2A6 chemical nitrosamine N-nitrosopiperidine Cα-hydroxylation (2-OH-
tetrahydropyran and 2-
OH-5-
methyltetrahydropyran
formation), major
enzyme; oxidation
activation 132, 133,
258
11774366,
12214673,
15651850
CYP2A6 chemical nitrosamine N-nitrosopyrrolidine, Cα-hydroxylation (2-OH-
tetrahydrofuran
formation); oxidation
(major enzyme)
activation 132-134,
244, 258
11774366,
12214673,
11600130,
15651850,
10837014
CYP2A6 chemical diphenylketone,
metabolite
p-benzoylphenol (4-
hydroxybenzophenone)
oxidation (major enzyme) activation 102 12160905
CYP2A6 natural
compound
Methylenedioxypheny
l (benzodioxole)
safrole C1′-hydroxylation (major
enzyme at low
concentrations), medium
Km, medium activity
activation 195, 196,
259, 260
17407329,
15914212,
15377158,
15310247
CYP2A13 chemical nitrosamine 3-(N-
nitrosomethylamino) propiona
ldehyde
oxidation (major enzyme) potent
activation
68 15725615
CYP2A13 natural
compound
indole, alkylating,
pulmonary toxin; in
higher concentrations
in mammalian
digestive tract and coal
tar
3-methylindole (skatole) dehydrogenation
(desaturation, 3-
methyleneindolenine
form., low Km, medium
activity, high efficiency),
epoxidation (3-
methyloxindole
formation)
potent
activation
77, 261 20795680,
19608696
CYP2A13 chemical nitrosamine 3-N-nitrosoguvacoline oxidation (major enzyme) activation 68, 69 15725615,
16720019
CYP2A13 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
Cα-hydroxylation-methyl
(keto alcohol formation),
major enzyme, medium
Km, medium activity, or
high activity
potent
activation
237-240,
262-266
11016631,
12975327,
15333516,
15528319,
15962925,
12130698,
16917071,
17671098,
19074523,
21473878
CYP2A13 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl N-hydroxylation;
oxidation
activation 58, 171 9111224,
16988941
CYP2A13 chemical difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) epoxidation 8,9-,
oxidation
potent
activation
181, 265 16385575,
16917071
CYP2A13 natural
compound
furanocoumarin; anti-
psoriatic,
photosensitizer, found
in bergamot essential
oil, in other citrus
essential oils, and in
grapefruit juice
bergapten, 5-
methoxypsoralen
epoxidation and
hydrolysis to dihydrodiol
activation 267 20798279
CYP2A13 chemical nitrosamine N-nitrosomethylpropylamine oxidation potent
activation
69, 134 16720019,
11600130
CYP2A13 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
hydroxylation C5′- (lactol
formation, medium Km,
high activity) and C2′-
(keto alcohol formation,
medium Km, low activity)
activation 258, 266 19074523,
15651850
CYP2A13 chemical nitrosamine N-nitrosopiperidine Cα-hydroxylation (2-OH-
tetrahydropyran and 2-
OH-5-methyl
tetrahydrofuran
formation)
activation 258 15651850
CYP2A13 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OH-
tetrahydrofuran
formation)
activation 258 15651850
CYP2A13 chemical aromatic hydrocarbon,
alkyl benzene
styrene (vinyl benzene) oxidation, 7,8-oxide
formation
activation 207 18266326
CYP2B6 chemical haloalkane 1, 2-dibromoethane (ethylene
dibromide)
oxidation to 2-
bromoacetaldehyde
activation 230 8870687
CYP2B6 chemical haloalkane 2, 2-dichloro-1,1,1-
trifluoroethane (HCFC-123)
oxidation activation 268, 269 11684364,
11684365
CYP2B6 chemical arylamine, metabolite 3-aminobenzanthrone N-hydroxylation activation 212 15310241
CYP2B6 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
oxidation activation 270 7905383
CYP2B6 chemical nitroarene 3-nitrobenzanthrone nitroreduction potent
activation
80 12782579
CYP2B6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
hydroxylation, alphamethyl
(keto alcohol
form.), major reaction and
Cα-methylene (keto
aldehyde form.), minor
reaction
activation 74, 213-
216, 252,
271, 272
11360624,
1312898,
7595636,
8806763,
10803680,
12920169,
9280407,
16174803
CYP2B6 chemical unsaturated 4-vinyl-1-cyclohexene (S)-
and (R)-
epoxidation 7,8- (major
reaction, stereoselective
for (R)-); epoxidation 1,2-
activation 100, 273 11502734,
11159809
CYP2B6 chemical arylamine 6-aminochrysene oxidation activation 85, 270 8330339,
7905383
CYP2B6 chemical herbicide,
chloroacetamide
alachlor oxidation activation 274 11133395
CYP2B6 chemical herbicide,
chloroacetamide
butachlor oxidation activation 274 11133395
CYP2B6 chemical haloalkane chloroform
(trichloromethane)
oxidation (at high conc.) activation 250 12584152
CYP2B6 drug azaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (major
enzyme, major reaction,
high Km, high activity);
oxidation
potent
activation
74, 101,
108, 251-
254, 271,
275
11360624,
11377097,
19501186,
8242617,
9010702,
10348794,
10692561,
9280407,
15919850
CYP2B6 chemical polycyclic aromatic
hydrocarbon (PAH)
dibenz[a,h]anthracene 3,4-dihydrodiol form. activation 184 8638931
CYP2B6 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (S)-
(high Km, major enzyme),
oxidation (at high
concentrations)
activation 87, 259,
261, 262,
275-278
20507880,
8242617,
10348794,
10692561,
15919850,
10534317,
15821045,
16854777
CYP2B6 chemical herbicide,
chloroacetamide
metolachlor oxidation activation 274 11133395
CYP2B6 chemical aziridine N, N’, N”-triethylene
thiophosphoramide
(thioTEPA)
desulfuration, TEPA
formation (major enzyme)
activation 140, 279 17584015,
12107550,
CYP2B6 chemical nitrosamine N-nitrosomorpholine oxidation activation 74 11360624
CYP2B6 chemical o-methoxyaniline o-anisidine (2-
methoxyaniline)
N-hydroxylation activation 201 15828049
CYP2B6 chemical aromatic hydrocarbon,
alkyl benzene
styrene (vinyl benzene) oxidation (major enzyme
in liver microsomes at
high concentration)
activation 202-205,
2780
9253143,
7696548,
11407535,
12616646,
16125881
CYP2C8 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
oxidation activation 132, 133 11774366,
12214673
CYP2C8 chemical haloalkane chloroform
(trichloromethane)
dehalogenation reductive
(at high concentrations)
activation 258 12584152
CYP2C8 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation (minor
enzyme, high Km),
oxidation (at high
concentrations)
activation 87, 259,
261
20507880,
8242617,
10348794
CYP2C8 chemical nitrosamine N-nitrosomethylbutylamine oxidation activation 134 11600130
CYP2C8 chemical nitrosamine N-nitrosomethylpropylamine oxidation activation 134 11600130
CYP2C8 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OH-
tetrahydrofuran
formation); oxidation
activation 132, 133 11774366,
12214673
CYP2C8 chemical aromatic
hydrocarbons, alkyl
benzene
styrene (vinyl benzene) oxidation (major enzyme
in liver microsomes at
high concentrations)
activation 202-205,
280
9253143,
7696548,
11407535,
12616646,
16125881
CYP2C9 chemical diene 1,3-butadiene butadiene monoxide
(epoxybutene) formation
(high activity)
activation 231-233 7586124,
8901879,
9016811
CYP2C9 chemical triazole 1-aminobenzotriazole (1-
ABT)
oxidation activation 140 17584015
CYP2C9 chemical PAH 7,12-
dimethylbenz[a]anthracene
oxidation activation 43, 81, 87 11502724,
14720319,
20507880
CYP2C9 chemical PAH benzo[c]phenanthrene oxidation activation 81 14720319
CYP2C9 chemical aliphatic epoxide,
metabolite
butadiene monoxide (1, 2-
epoxy-3-butene)
diepoxybutane meso- and
(±)- formation
activation 231-233 7586124,
8901879,
9016811
CYP2C9 chemical haloalkane chloroform
(trichloromethane)
dehalogenation reductive
(at high concentrations)
activation 250 12584152
CYP2C9 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (low
Km, low activity, major
enzyme at low
concentrations); oxidation
activation 101, 108,
251-254
11377097,
19501186,
8242617,
9010702,
10348794,
10692561
CYP2C9 chemical PAH dibenz[a,h]anthracene 3,4-dihydrodiol formation activation 184 8638931
CYP2C9 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation (low
Km), oxidation (at high
concentration)
activation 87, 259 20507880,
8242617
CYP2C9 natural
compound
phenylpropene, from
Rhizoma
acorigraminei
methyleugenol C1′-hydroxylation
(medium activity, high
Km), at high concentration
activation 196, 199 15914212,
16411663
CYP2C19 chemical triazole 1-aminobenzotriazole (1-
ABT)
oxidation activation 140 17584015
CYP2C19 natural
compound
furanoterpene
produced in sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol oxidation (major enzyme) activation 173 15892579
CYP2C19 chemical haloalkane chloroform
(trichloromethane)
dehalogenation reductive
(at high concentration);
oxidation (at high
concentration)
activation 250 12584152
CYP2C19 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (low
Km, low activity);
oxidation
activation 108, 251-
254
19501186,
8242617,
9010702,
10348794,
10692561
CYP2C19 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (S)-
(minor reaction, high Km),
oxidation (at high
concentration)
activation 87, 259,
253, 276
20507880,
8242617,
10348794,
10534317
CYP2C19 chemical nitrosamine N-nitrosomethylbutylamine oxidation activation 134 11600130
CYP2C19 chemical nitrosamine N-nitrosomethylethylamine oxidation activation 134 11600130
CYP2C19 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OH-
tetrahydrofuran
formation)
activation 132, 133 11774366,
12214673
CYP2D6 chemical triazole 1-aminobenzotriazole (1-
ABT)
oxidation activation 140 17584015
CYP2D6 chemical nitrosamine 3-(N-
nitrosomethylamino) propiona
ldehyde
oxidation activation 68 15725615
CYP2D6 chemical nitroarene 3-nitrobenzanthrone nitroreduction potent
activation
80 12782579
CYP2D6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
Cα-
hydroxylation,methylene
activation 170 9163700
CYP2D6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
Cα-hydroxylation, methyl
(keto alcohol formation),
high Km, medium activity,
or high activity, major
reaction and Cα-
methylene (keto aldehyde
formation), high Km, low
activity, minor reaction
activation 170, 213-
216, 281
9163700,
1312898,
7595636,
8806763,
10803680,
8485585
CYP2D6 natural
compound
furanoterpene
produced in sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 173 15892579
CYP2D6 chemical PAH 7,12-
dimethylbenz[a]anthracene
oxidation activation 87 20507880
CYP2D6 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) oxidation activation 61 11377247
CYP2D6 chemical haloalkane chloroform
(trichloromethane)
dehalogenation, reductive
(at high concentration)
activation 250 12584152
CYP2D6 drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plant
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine oxidation N2-;
hydroxylation, C13- (low
activity)
activation 39, 40, 187,
188
16936898,
21753906,
15548707,
17197724
CYP2D6 drug oxazaphosporine;
anticancer, nitrogen
mustard
alkylating
ifosfamide
oxidation (at high
concentration)
activation 87 20507880
CYP2E1 chemical haloalkane 1, 2-dibromoethane (ethylene
dibromide)
oxidation to 2-
bromoacetaldehyde
activation 107, 230,
180
1486866,
8870687,
1664256
CYP2E1 chemical haloalkane 1, 2-dichloroethane (ethylene
dichloride)
oxidation activation 107, 282 1486866,
1664256
CYP2E1 chemical haloalkane 1, 2-dichloropropane
(propylene dichloride)
oxidation activation 107, 282 1486866,
1664256
CYP2E1 chemical hydrazine 1, 2-dimethylhydrazine oxidation activation 283 15576447
CYP2E1 chemical haloalkane 1,1,2-trichloroethane oxidation activation 284 8671747
CYP2E1 chemical haloalkene 1,1,3-trichloropropene oxidation activation 284 8671747
CYP2E1 chemical haloalkene 1,1-dichloroethylene
(vinylidene chloride)
epoxidation activation 285 15319346
CYP2E1 chemical diene 1,3-butadiene butadiene monoxide
(epoxybutene) (S)- and
(R)- formation (high
activity, major enzyme)
potent
activation
231-233,
286
7586124,
8901879,
9016811,
9635416
CYP2E1 chemical halobenzene 1,4-dichlorobenzene oxidation activation 287 9817075
CYP2E1 chemical triazole 1-aminobenzotriazole (1-
ABT)
oxidation activation 140 17584015
CYP2E1 chemical haloalkane 2, 2-dichloro-1,1,1-
trifluoroethane (HCFC-123)
oxidation activation 268, 269,
288, 289
11684364,
11684365,
7975716,
8199305
CYP2E1 chemical halobenzene 2,3-dichlorobutane oxidation activation 284 8671747
CYP2E1 chemical nitrile, herbicide 2,6-dichlorobenzonitrile
(dichlobenil)
epoxidation, C2,3- activation 234,235 8649351,
8863822
CYP2E1 chemical arylamine 2,6-dimethylaniline N-hydroxylation (at
higher concentration)
activation 236 11409937
CYP2E1 chemical arylamine 2-aminoanthracene N-hydroxylation activation 61 11377247
CYP2E1 chemical arylamine 2-aminofluorene (2-AF) N-hydroxylation activation 61 11377247
CYP2E1 natural
compound
furanoterpene
produced in sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 173 15892579
CYP2E1 chemical unsaturated 4-vinyl-1-cyclohexene, (S)-
and (R)-
epoxidation 7,8-,
stereoselective for (S)-;
epoxidation 1,2-,
stereoselective for (R)-
activation 100, 273 11502734,
11159809
CYP2E1 chemical acrylic amide acrylamide epoxidation to
glycidamide
activation 290, 291 19190172,
20209648
CYP2E1 chemical aliphatic nitrile acrylonitrile (vinyl cyanide,
cyanoethylene)
oxidation (2-
cyanoethylene oxide
formation)
activation 107, 282,
290
1486866,
1664256,
8117926
CYP2E1 chemical oxidoazanium azoxymethane oxidation activation 283 15576447
CYP2E1 chemical aromatic hydrocarbon benzene hydroxylation, aromatic
(via benzene oxide,
muconic acid, and
benzoquinone formation,
major enzyme at low
concentrations)
activation 107, 110,
282, 293-
295
1486866,
7923572,
1664256,
10207612,
11083083,
15122651
CYP2E1 chemical aliphatic epoxide,
metabolite
butadiene monoxide (1, 2-
epoxy-3-butene)
diepoxybutane meso-
(major) and (±)-
formation, high activity,
major enzyme
potent
activation
231-233,
296
7586124,
8901879,
9016811,
17298833
CYP2E1 chemical haloalkane carbon tetrachloride dechlorination reductive
(at low concentrations),
oxidative stress induction
potent
activation
106, 297-
300
1486866,
8571359,
10731522,
8471158,
12235922
CYP2E1 chemical haloalkane chloroform
(trichloromethane)
dehalogenation reductive
(at high concentration,
major enzyme); oxidation
(major enzyme at low
concentration)
potent
activation
66, 107,
252, 282,
299, 301
9685642,
1486866,
12584152,
1664256,
8471158,
15129551
CYP2E1 chemical haloalkene chloroprene epoxidation activation 302 11397396
CYP2E1 drug platinum-containing;
anticancer
cisplatin oxidation activation 303, 304 16251482,
17761302
CYP2E1 drug imidazole; anticancer,
alkylating
dacarbazine N-demethylation activation 111 10473105
CYP2E1 chemical haloalkene
dichloromethane (methylene
chloride)
dehalogenation oxidative activation 107, 282,
284, 297
1486866,
1664256,
8671747,
8571359
CYP2E1 chemical organic solvents,
alcohol
ethanol oxidation, reactive
oxygen species
production
activation 305-309 7687464,
16052683,
16878272,
16356668,
21146245
CYP2E1 natural
compound
carbamic acid
derivative;
fermentation by-
product
ethyl carbamate (urethane) oxidation to vinyl
carbamate epoxide
activation 107, 282,
310-312
1486866,
1664256,
9344892,
9150748,
11181492
CYP2E1 chemical furan furan oxidation, cis-2-butene-
1,4-dial formation
activation 313 16006568
CYP2E1 chemical organic solvents,
alkylformamide
N, N-dimethylformamide(DMF) N-demethylation (high
activity)
activation 314, 315 8477011,
11684354
CYP2E1 chemical organic solvents,
alkylformamide
N-methylformamide oxidation
(methylisocyanate
formation)
activation 316 1538706
CYP2E1 chemical nitrosamine N-nitrosodiethanolamine oxidation activation 317 18616954
CYP2E1 chemical nitrosamine N-nitrosodiethylamine
(N,N-
diethylnitrosamine,)
oxidation (major enzyme) potent
activation
107, 132-
134, 141-
144, 244,
318, 319
1486866,
11774366,
12214673,
11600130,
15728263,
15843388,
17158518,
9860501,
10837014,
11733072,
14669323
CYP2E1 chemical nitrosamine N-nitrosodimethylamine
(N,N-dimethylnitrosamine,
DMN)
oxidation (major enzyme) activation 107, 134,
170, 244,
246, 317,
318, 320,
321, 322
1486866,
11600130,
9163700,
10837014,
1423839,
18616954,
11733072,
8692217,
10366544,
15668106
CYP2E1 chemical nitrosamine N-nitrosodi-n-propylamine
(N-nitrosodipropylamine)
Cα-hydroxylation and N-
depropylation (major
enzyme); oxidation
activation 134, 141-
143, 244,
318, 323-
325
11600130,
15728263,
15843388,
17158518,
10837014,
11733072,
9247615,
8824531,
10910959
CYP2E1 chemical nitrosamine N-nitrosoethylbutylamine oxidation activation 134, 244 11600130,
10837014
CYP2E1 chemical nitrosamine N-nitrosomethylbutylamine oxidation potent
activation
107, 134,
244
1486866,
11600130,
10837014,
CYP2E1 chemical nitrosamine N-nitrosomethylethylamine oxidation potent
activation
134, 244 11600130,
10837014
CYP2E1 chemical nitrosamine N-nitrosomethylpropylamine oxidation potent
activation
134, 244 11600130,
10837014
CYP2E1 chemical nitrosamine N-nitrosomorpholine oxidation activation 132, 133,
326
11774366,
12214673,
10461547
CYP2E1 chemical nitrosamine N-nitroso-N-
methylbenzylamine
oxidation activation 107 1486866
CYP2E1 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
hydroxylation C5′- (lactol
formation, low activity)
activation 134, 244,
247, 256,
257
11600130,
10837014,
1423839,
9276639,
7646564
CYP2E1 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OH-
tetrahydrofuran
formation); oxidation
activation 132-134,
244, 327
11774366,
12214673,
11600130,
10837014,
17457417
CYP2E1 chemical o-methoxyaniline o-anisidine (2-
methoxyaniline)
N-hydroxylation (major
enzyme in microsomal
model)
potent
activation
201, 328 15828049,
21217841
CYP2E1 chemical aromatic
hydrocarbons, alkyl
benzene
styrene (vinyl benzene) oxidation, medium Km,
major enzyme in liver at
low concentration,
stereoselective
activation 66, 107,
202-205,
280, 282,
329
9685642,
1486866,
9253143,
7696548,
11407535,
12616646,
16125881,
1664256,
16872732
CYP2E1 chemical haloalkene tetrachloroethylene oxidation activation 284 8671747
CYP2E1 chemical haloalkene trichloroethylene (TCE) oxidation to
trichloroethylene oxide
and chloral hydrate form
ation (major enzyme)
activation 107, 282,
330-333
1486866,
1664256,
9070354,
10807551,
11304134,
15987776
CYP2E1 chemical vinyl halide vinyl bromide
(bromoethylene)
oxidation activation 66, 107,
282
9685642,
1486866,
1664256
CYP2E1 chemical carbamic acid
derivative, metabolite
vinyl carbamate epoxide formation activation 66, 107,
282, 312
9685642,
1486866,
1664256,
11181492
CYP2E1 chemical vinyl halide vinyl chloride
(chloroethylene)
oxidation potent
activation
66, 107,
282, 299
9685642,
1486866,
1664256,
8471158
CYP2E1 chemical cyclohexane derivative vinylcyclohexane oxidation (epoxidation) activation 329 16872732
CYP2F1 natural
compound
indole, alkylating,
pulmonary toxin;
present in higher
concentrations in
mammalian digestive
tract and coal tar
3-methylindole, skatole dehydrogenation
(desaturation, 3-
methyleneindolenine
form., low Km, medium
activity, high efficiency),
major enzyme
potent
activation
75-78, 334,
335
8558432,
11408359,
12563100,
20795680,
10383923,
17962375
CYP2F1 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
hydroxylation, α-methyl
(keto alcohol formation)
activation 213-216 1312898,
7595636,
8806763,
10803680
CYP2F1 natural
compound
furanoterpene
produced in sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 172 1651809
CYP2F1 chemical PAH naphthalene oxidation activation 334 10383923
CYP2F1 chemical aromatic hydrocarbon,
alkyl benzene
styrene (vinyl benzene) oxidation (major enzyme
in lung microsomes)
activation 202-205,
278
9253143,
7696548,
11407535,
12616646,
16125881
CYP2W1 chemical PAH, metabolite (±)-benzo[a]pyrene-7,8-diol oxidation activation 210 16551781
CYP2W1 chemical arylamine 2-aminoanthracene oxidation activation 210 16551781
CYP2W1 chemical arylamine 2-aminofluorene (2-AF) oxidation activation 210 16551781
CYP2W1 chemical heterocyclic amine 3-amino-1,4-dimethyl-5H-
pyrido[4,3-b]indole (Trp-P-1)
oxidation activation 210 16551781
CYP2W1 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
oxidation activation 210 16551781
CYP2W1 chemical PAH, metabolite 5-methylchrysene-1,2-diol oxidation activation 210 16551781
CYP2W1 Natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) oxidation activation 210 16551781
CYP2W1 chemical PAH, metabolite chrysene-1,2-diol oxidation activation 210 16551781
CYP2W1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
oxidation activation 210 16551781
CYP2W1 natural
compound
furanoxanthone;
mycotoxin, produced
by Aspergillus species
sterigmatocystin oxidation activation 210 16551781
CYP3A4 chemical nitroarene 1, 2-dihydro-1,2-dihydroxy-
6-nitrochrysene
oxidation activation 219 8481905
CYP3A4 chemical nitroarene 6-nitrochrysene oxidation activation 12 2655891
CYP3A4 chemical nitroarene 1,6-dinitropyrene nitroreduction activation 174 10197616
CYP3A4 chemical triazole 1-aminobenzotriazole (1-
ABT)
oxidation activation 140 17584015
CYP3A4 chemical arylamine, metabolite
of 1-nitropyrene
1-aminopyrene oxidation activation 54 11525925
CYP3A4 chemical nitroarene 1-nitropyrene epoxidation C4,5-, minor
reaction
activation 54, 107,
174
11525925,
1486866,
10197616
CYP3A4 chemical arylamine 2-aminofluorene oxidation activation 61, 336 9328287,
11377247
CYP3A4 chemical nitroarene 3,6-dinitrobenzo[e]pyrene niroreduction and O-
acetylation
activation 70 19393727
CYP3A4 chemical heterocyclic amine 3-amino-1,4-dimethyl-5H-
pyrido[4,3-b]indole (Trp-P-1)
N-hydroxylation potent
activation
12, 61 2655891,
11377247
CYP3A4 chemical heterocyclic amine 3-amino-1-methyl-5H-
pyrido[4,3-b]indole (Trp-P-2)
N-hydroxylation potent
activation
61 11377247
CYP3A4 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
oxidation activation 336 9328287
CYP3A4 chemical arylamine 4,4′-methylene bis(2-
chloroaniline) (MOCA)
oxidation, N- (major
enzyme)
activation 66, 107,
249
9685642,
1486866,
1740010
CYP3A4 Natural
compound
furanoterpene
produced in sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol epoxidation; oxidation,
minor enzyme
activation 140, 172,
173
17584015,
1651809,
15892579
CYP3A4 chemical nitroarene 4-nitropyrene 4-aminopyrene formation
(nitroreduction), major
enzyme
activation 174 10197616
CYP3A4 chemical N-heterocyclic
aromatic hydrocarbon,
dibenzocarbazole
5,9-
dimethyldibenzo[c,g]carbazol
e
oxidation activation 337 21798277
CYP3A4 chemical arylamine 6-aminochrysene oxidation (high activity) potent
activation
12, 84, 85,
107, 336,
338
2655891,
8118930,
8330339,
1486866,
9328287,
9493761
CYP3A4 chemical arylamine, metabolite 6-aminochrysene-1,2-diol Diol epoxide formation;
oxidation
activation 84, 85 8118930,
8330339
CYP3A4 chemical N-heterocyclic
aromatic hydrocarbon,
dibenzocarbazole
7H-dibenzo[c,g]carbazole oxidation activation 337 21798277
CYP3A4 chemical PAH, aza-aromatic 7-methylbenz[c]acridine oxidation. potent
activation
92 7866988
CYP3A4 chemical PAH, metabolite benzo[a]pyrene 7,8-diol oxidation activation 12 2655891
CYP3A4 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) epoxidation exo-C8,9-
(major activating
enzyme), oxidation
activation 11, 12, 42,
57, 61,
175-180,
182, 336,
339-341
2492107,
2655891,
7955101,
15279838,
11377247,
2162057,
7766804,
8261428,
12079611,
1902334,
11782366,
16608170,
9328287,
1643250,
7545582,
7850790
CYP3A4 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin G1 (AFG1) oxidation activation 11, 12, 107,
148, 341-
343
2492107,
2655891,
1486866,
8082563,
7850790,
352361,
12849689
CYP3A4 chemical herbicide,
chloroacetamide
alachlor oxidation activation 274 11133395
CYP3A4 chemical herbicide,
chloroacetamide
butachlor oxidation activation 274 11133395
CYP3A4 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation;
oxidation
activation 108, 251-
254, 275,
344
19501186,
8242617,
9010702,
10348794,
10692561,
9923542,
15919850
CYP3A4 chemical PAH), aza-aromatic dibenz[a,j]acridine 3,4-dihydrodiol formation potent
activation
92 7866988
CYP3A4 drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine hydroxylation, C13-
(major enzyme) and C12-
(minor reaction);
oxidation N2- (major
enzyme
potent
activation
39, 40,
287-290,
345
16936898,
21753906,
11755121,
12123750,
15548707,
17197724,
20576524
CYP3A4 physiologi
cal
compound
estrogen 17β-estradiol C2-hydroxylation (major
reaction, major enzyme,
medium Km, medium
efficiency, high activity),
major metabolite and
major enzyme in liver;
oxidation, 2,3-quinone
formation (lower
activity); C4-
hydroxylation (minor
reaction, major enzyme,
medium Km, medium
activity, medium
efficiency); oxidation,
3,4-quinone formation;
C16α-hydroxylation (high
Km, low activity)
activation 107, 122-
124, 126-
130, 190-
193, 346,
347
1486866,
9625734,
9054608,
9667077,
11555828,
12865317,
15784278,
16112414,
17570247,
1449532,
9635876,
11454902,
11741520,
10821664,
12124305
CYP3A4 physiologi
cal
compound
estrogen estrone C2-hydroxylation (high
Km, major metabolite, low
activity); oxidation, 2,3-
quinone formation; C4-
hydroxylation (high Km,
low activity, major
enzyme); C16α-
hydroxylation (high Km,
low activity, major
enzyme)
activation 48, 122-
124, 127,
128, 130,
191, 192
10426814,
9625734,
9054608,
9667077,
12865317,
15784278,
17570247,
9635876,
11454902
CYP3A4 drug estradiol derivative;
estrogen,
contraceptive
17α-ethynylestradiol (ethi-
nylestradiol 17α-)
oxygenation (2-
hydroxylation, 17α-
inactivation)
activation 140, 348 17584015,
17251390
CYP3A4 drug antimitotic,
epipodophyllotoxin,
topoisomerase II
inhibitor
etoposide (VP-16) O-demethylation
(catechol formation), high
Km, high activity, major
enzyme
activation 349-351 8114683,
9456308,
17168690
CYP3A4 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (R)-
(high Km, high activity),
oxidation at high
concentrations
potent
activation
87, 251,
254, 275-
277, 344,
352-355
20507880,
8242617,
10692561,
15919850,
10534317,
15821045,
9923542,
8161344,
10101149,
10348794,
16854777
CYP3A4 chemical herbicide,
chloroacetamide
metolachlor oxidation activation 274 11133395
CYP3A4 natural
compound
alkaloid, pyrrolizidine,
genotoxic
monocrotaline dehydrogenation activation 356 15649625
CYP3A4 chemical aziridine N, N’, N”-triethylene
thiophosphoramide
(thioTEPA)
desulfuration, TEPA
formation (minor enzyme)
activation 279 12107550
CYP3A4 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine oxidation (major enzyme) activation 132, 133 11774366,
12214673
CYP3A4 chemical nitrosamine N-nitrosodibutylamine (N,N-
dibutylnitrosamine)
oxidation activation 134 11600130
CYP3A4 chemical nitrosamine N-nitrosodiethylamine (N,N-diethylnitrosamine) oxidation activation 134, 255 11600130,
1423839
CYP3A4 chemical nitrosamine N-nitrosoethylbutylamine oxidation activation 134 11600130
CYP3A4 chemical nitrosamine N-nitrosomethylbutylamine oxidation activation 134 11600130
CYP3A4 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-nitrosonornicotine, NNN) hydroxylation C2′- (keto
alcohol formation);
oxidation
activation 132, 133,
264, 265
11774366,
12214673,
9276639,
7646564
CYP3A4 chemical nitrosamine N-nitrosopiperidine Cα-hydroxylation (2-OH-
tetrahydropyran and 2-
OH-5-
methyltetrahydrofuran
formation); oxidation
activation 132, 133 11774366,
12214673
CYP3A4 chemical nitrosamine N-nitrosopyrrolidine Cα-hydroxylation (2-OH-
tetrahydrofuran
formation); oxidation
activation 132, 133 11774366,
12214673
CYP3A4 natural
compound
pyrrolizidine alkaloid
from Senecio retrorsus
retrorsine dehydrogenation activation 356 15649625
CYP3A4 natural
compound
pyrrolizidine alkaloid,
food contaminant
(meat, milk, and
honey)
riddelline dehydrogenation activation 356 15649625
CYP3A4 natural
compound
pyrrolizidine alkaloid,
genotoxic
senecionine dehydrogenation activation 107, 357 1486866,
2009596
CYP3A4 natural
compound
furanoxanthone;
mycotoxin, produced
by Aspergillus species
sterigmatocystin oxidation activation 11, 12, 66,
107, 336,
341
2492107,
2655891,
9685642,
1486866,
9328287,
7850790
CYP3A4 drug triphenylethyleneamin
e; antiestrogen,
estrogen receptor
modulator
tamoxifen Cα-hydroxylation (major
enzyme), catechol
formation, oxidation, at
high concentrations
activation 87, 354,
358-364
20507880,
10348797,
12018981,
12971802,
14678348,
15159443,
16533026,
12124303,
12419838
CYP3A4 chemical organophosphate tris(2,3-
dibromopropyl)phosphate
oxidation activation 12, 107 2655891,
1486866
CYP3A5 chemical PAH, aza-aromatic 7-methylbenz[c]acridine oxidation potent
activation
92 7866988
CYP3A5 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) epoxidation exo-8,9-
(major reaction);
oxidation
activation 182, 365 16608170,
7893152
CYP3A5 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (very
low activity) activation to
cytotoxic metabolites
activation 253 10348794
CYP3A5 chemical PAH, aza-aromatic dibenz[a,j]acridine 3,4-dihydrodiol formation activation 92 7866988
CYP3A5 physiologi
cal
compound
estrogen 17β-estradiol C2-hydroxylation; C4-
hydroxylation (major
reaction); C16α-
hydroxylation (low
activity)
activation 127, 128,
191, 192,
347
12865317,
15784278,
9635876,
11454902,
12124305
CYP3A5 drug estradiol derivative;
estrogen,
contraceptive
17α-ethynylestradiol
(ethinylestradiol, 17α-)
oxygenation (2-
hydroxylation, 17α-
mechanism-based
inactivation)
activation 140, 348 17584015,
17251390
CYP3A5 drug antimitotic,
epipodophyllotoxin,
topoisomerase II
inhibitor
etoposide (VP-16) O-demethylation
(catechol formation),
medium Km, high activity,
minor enzyme
activation 349 8114683
CYP3A5 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation,
stereoselective for (R)-
activation 253, 276,
277, 353,
355
10348794,
10534317,
15821045,
10101149,
16854777
CYP3A5 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine oxidation activation 132, 133 11774366,
12214673
CYP3A5 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
oxidation activation 132, 133 11774366,
12214673
CYP3A7 chemical arylamine 2-aminofluorene (2-AF) oxidation activation 336 9328287
CYP3A7 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
oxidation activation 336 9328287
CYP3A7 chemical arylamine 6-aminochrysene oxidation activation 336, 338 9328287,
9493761
CYP3A7 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) epoxidation exo-C8,9-;
oxidation
activation 107, 182,
336, 338,
341, 366
1486866,
16608170,
9328287,
9493761,
7850790,
9044840
CYP3A7 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin G1 (AFG1) oxidation activation 341 7850790
CYP3A7 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation activation 253, 275 10348794,
15919850
CYP3A7 physiologi
cal
compound
estrogen 17β-estradiol C2-hydroxylation
(medium Km, low activity,
major reaction); C4-
hydroxylation (low
activity, high Km); C16α-
hydroxylation (very low
activity, high Km)
activation 127, 128,
347
12865317,
15784278,
12124305,
CYP3A7 physiologi
cal
compound
estrogen estrone C2-hydroxylation
(medium Km, medium
activity); C4-
hydroxylation (low
activity, medium Km);
C16α-hydroxylation
(medium Km, medium
activity)
activation 127, 128 12865317,
15784278
CYP3A7 drug oxazaphosporine;
anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (R)-
(high Km, medium (S-)
and high (R-) activity,
minor enzyme and
reaction)
activation 253, 273 10348794,
15919850
CYP3A7 natural
compound
furanoxanthone;
mycotoxin, produced
by Aspergillus species
sterigmatocystin oxidation activation 336, 338,
341
9328287,
9493761,
7850790
CYP4B1 chemical arylamine 2-aminofluorene (2-AF) N-hydroxylation;
oxidation
activation 367, 368 11396967,
11062028
CYP4B1 natural
compound
furanoterpene
produced in sweet
potatoes infected with
Fusarium solani;
pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 172 1651809
CYP4B1 chemical aromatic hydrocarbon benzene oxidation (at high conc.,
minor reaction)
activation 294 11083083
CYP19A1
(aromatase)
physiologi
cal
compound
estrogen 17β-estradiol C2-hydroxylation
(medium Km)
activation 125, 369 8930523,
8476762
CYP19A1
(aromatase)
physiologi
cal
compound
estrogen estrone C2-hydroxylation
(medium Km)
activation 125, 369 8930523,
8476762
Epoxide
hydrolase,
EH
chemical PAH, metabolite benzo[a]pyrene-7,8-oxide hydrolysis to
benzo[a]pyrene -7,8-diol
activation 51, 220 21028851,
10409402
FMO1 chemical thiocarbamide thiourea S-oxidation (medium Km,
high activity)
activation 370, 371 10901713,
14976351
FMO2 chemical thiocarbamide 1-phenylthiourea S-oxidation activation 372 15144220
FMO2 chemical thiocarbamide α-naphthylthiourea S-oxidation activation 372 15144220
FMO2 chemical thiocarbamide ethylenethiourea S-oxidation activation 372 15144220
FMO2 chemical thiocarbamide thiourea S-oxidation (medium Km,
high activity)
activation 372, 373 15144220,
11744609
FMO3 chemical thiocarbamide thiourea S-oxidation (medium Km,
high activity)
activation 374 12093470
GST chemical haloalkane 1, 2-dibromoethane (ethylene
dibromide)
GSH conjugation activation 375-378 8330352,
16948056,
12542971,
15554237
GST chemical haloalkane 1, 2-dichloroethane, ethylene
dichloride
GSH conjugation activation 375, 378 8330352,
15554237
GST chemical haloalkene chlorotrifluoroethene GSH conjugation activation 378 15554237
GST chemical haloalkane dichloromethane, methylene
chloride
GSH conjugation activation 284, 377,
378
8671747,
12542971,
15554237
GST chemical haloalkene hexachlorobutadiene GSH conjugation activation 378 15554237
GST chemical haloalkene tetrafluoroethene GSH conjugation activation 378 15554237
GST chemical haloalkene trichloroethene GSH conjugation activation 378 15554237
GST T1-1 chemical haloalkane 1, 2-dibromoethane (ethylene
dibromide)
GSH conjugation activation 378 8565128
GST T1-1 chemical haloalkane dibromomethane (methylene
dibromide)
GSH conjugation activation 378 8565128
GST T1-1 chemical haloalkane diepoxybutane (butadiene
diepoxide)
GSH conjugation activation 379, 380 8565128,
222181695
GST A1-1 chemical haloalkane diepoxybutane, butadiene
diepoxide
GSH conjugation activation 380 222181695
GST A3-3 chemical haloalkane diepoxybutane (butadiene
diepoxide)
GSH conjugation activation 380 222181695
GST M1-1 chemical haloalkane diepoxybutane (butadiene
diepoxide)
GSH conjugation activation 380 222181695
GST P1-1 chemical haloalkane diepoxybutane (butadiene
diepoxide)
GSH conjugation activation 380 222181695
Lactoperoxi
dase (LPO)
chemical arylamine, metabolite 3-aminobenzanthrone N-oxidation activation 72, 73 15885895,
16601755
Lactoperoxi
dase (LPO)
drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
Ellipticine oxidation activation 39, 40 16936898,
21753906
Myeloperoxi
dase (MPO)
chemical arylamine, metabolite 3-aminobenzanthrone N-oxidation activation 72, 73 15885895,
16601755
Myeloperoxi
dase (MPO)
drug pyrido-carbazole;
antineoplastic,
alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine oxidation activation 39, 40 16936898,
21753906
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
1,2-dibromoethane (ethylene
dibromide)
conjugation activation 381, 382 12151404,
15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
dibromomethane (methylene
dibromide)
conjugation activation 382, 383 15257623,
15206895
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
bromomethyl acetate conjugation activation 383 15206895
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
dichloromethane (methylene
dichloride)
conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
bromochloromethane conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
1,2-diiodoethane (ethylene
diiodide)
conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
1,2-bromochloroethane conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
1,3-dibromopropane conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
1,4-dibromobutane conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
1,3-diiodopropane conjugation activation 382 15257623
O6-
alkylguanine
DNA alkyl
transferase
(MGMT)
chemical bifunctional
electrophile
diepoxybutane (butadiene
diepoxide)
conjugation activation 382 15257623
NADPH-
cytochrome
P450
reductase
(POR)
chemical nitroarene 1,8-dinitropyrene nitroreduction activation 53, 384 11113705,
15606153
NADPH-
cytochrome
P450
reductase
(POR)
chemical nitroarene 1-nitro-6-nitrosopyrene reduction activation 384 15606153
NADPH-
cytochrome
P450
reductase
(POR)
chemical nitroarene 1-nitro-8-nitrosopyrene reduction activation 384 15606153
NADPH-
cytochrome
P450
reductase
(POR)
chemical nitroarene 3,6-dinitrobenzo[e]pyrene niroreduction and O-
acetylation
activation 70 19393727
NADPH-
cytochrome
P450
reductase
(POR)
chemical nitroarene 3-nitrobenzanthrone nitroreduction activation 80 12782579
NADPH-
cytochrome
P450
reductase
(POR)
chemical quinone anthraquinone reduction activation 385 11697035
NADPH-
cytochrome
P450
reductase
(POR)
drug dihydroxyanthraquino
ne; laxative
danthron reduction activation 383 11697035
Xanthine
oxidoreducta
se (XOR)
chemical nitroarene 2-nitroanisole nitroreduction to
hydroxylamine
activation 328 21217841
Xanthine
oxidoreducta
se (XOR)
chemical nitroarene 3-nitrobenzanthrone nitroreduction to
hydroxylamine
activation 79 12740904
NAT1 chemical nitroarene 1,8-dinitropyrene O-acetylaton after
nitroreduction
activation 386 10357791
NAT1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-
(diallylamino)-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-benzotriazole (PBTA-8)
O-acetylation activation 55 18562244
NAT1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-
(diethylamino)-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-
benzotriazole (PBTA-7)
O-acetylation activation 55 18562244
NAT1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-[bis(2-
hydroxyethyl)amino]-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-
benzotriazole (PBTA-6)
O-acetylation activation 55 18562244
NAT1 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-amino-
5-methoxyphenyl]-5-amino-
7-bromo-4-chloro-2H-
benzotriazole (PBTA-4)
O-acetylation activation 55 18562244
NAT1 chemical arylamine, metabolite 2-acetylaminofluorene (2-
AAF)
O-acetylation after N-hydroxylation potent
activation
147 15450435
NAT1 chemical heterocyclic amine 2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (Glu-P-1)
O-acetylation after N-
hydroxylation
activation 386 10357791
NAT1 chemical arylamine 2-aminofluorene (2-AF) O-acetylaton after N-
hydroxylation
activation 386, 387 10357791,
1617672
NAT1 chemical arylamine 2-naphthylamine O-acetylation after N-
hydroxylation
activation 147 15450435
NAT1 chemical nitroaromatic 2-nitrofluorene O-acetylaton after
nitroreduction
activation 386 10357791
NAT1 chemical nitroarene 3-acetylaminobenzanthrone O-acetylation after N-
hydroxylation, at higher
conc.
potent
activation
79 12740904
NAT1 chemical arylamine, metabolite 3-aminobenzanthrone O-acetylation after N-
hydroxylation, at higher
conccentrations
potent
activation
79 12740904
NAT1 chemical nitroarene 3-nitrobenzanthrone O-acetylation after nitro-
reduction to
hydroxylamine, at higher
concentrations
potent
activation
73, 79, 388 16601755,
12740904,
12419844
NAT1 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl
(4-ABP)
O-acetylation after N-
hydroxylation
potent
activation
147, 389 15450435,
8353847
NAT1 chemical arylamine,
heterocyclic
aminophenylnorharman O-acetylation after N-
hydroxylation
activation 95 17067997
NAT1 chemical arylamine benzidine O-acetylation after N-
hydroxylation
activation 147, 387 15450435,
1617672
NAT1 chemical arylamine, metabolite N-acetyl-N-hydroxy-3-
aminobenzanthrone
O-acetylation at higher
concentrations
potent
activation
79, 387 12740904,
12419844
NAT1 chemical arylamine, tobacco
smoke compound,
metabolite
N-hydroxy-4-aminobiphenyl
(N-OH-4-ABP)
O-acetylation activation 389 8353847
NAT1 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-aminofluorene
(N-OH-2-AF)
O-acetylation activation 389 8353847
NAT1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-
aminomethylphenylnorharma
n
O-acetylation activation 95 17067997
NAT1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-
aminophenylnorharman
O-acetylation activation 95 17067997
NAT1 chemical nitroarene nitrofen O-acetylation after
nitroreduction
activation 390 14754874
NAT1 chemical o-methoxyaniline o-anisidine, 2-
methoxyaniline
O-acetylation after N-
hydroxylation
activation 147 15450435
NAT2 chemical nitroarene 1,8-dinitropyrene O-acetylaton after
nitroreduction
potent
activation
386 10357791
NAT2 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-
(diallylamino)-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2Hbenzotriazole
(PBTA-8)
oxidation activation 55 18562244
NAT2 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-
(diethylamino)-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2Hbenzotriazole
(PBTA-7)
oxidation activation 55 18562244
NAT2 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-[bis(2-
hydroxyethyl)amino]-5-
methoxyphenyl]-5-amino-7-
bromo-4-chloro-2H-
benzotriazole (PBTA-6)
oxidation activation 55 18562244
NAT2 chemical 2-phenylbenzotriazole 2-[2-(acetylamino)-4-amino-
5-methoxyphenyl]-5-amino-
7-bromo-4-chloro-2H-
benzotriazole (PBTA-4)
oxidation activation 55 18562244
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
2-amino-3,4-
dimethylimidazo[4,5-
f]quinolone (MeIQ)
O-acetylation after N-
hydroxylation
activation 386, 387 10357791,
1617672
NAT2 chemical heterocyclic amine 2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (Glu-P-1)
O-acetylation after N-
hydroxylation
activation 386 10357791
NAT2 chemical nitroarene 2-nitrobenzanthrone O-acetylation after
reduction to
hydroxylamine
activation 391 17483118
NAT2 chemical nitroarene 3-acetylaminobenzanthrone O-acetylation after Nhydroxylation,
at higher
concentration
potent
activation
79 12740904
NAT2 chemical arylamine, metabolite 3-aminobenzanthrone O-acetylation after Nhydroxylation,
at higher
concentration
potent
activation
79 12740904
NAT2 chemical nitroarene 3-nitrobenzanthrone O-acetylation after nitro-
reduction to
hydroxylamine, at higher
concentration
potent
activation
73, 79, 388,
391
16601755,
12740904,
12419844,
17483118
NAT2 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl
(4-ABP)
O-acetylation after N-
hydroxylation
activation 147, 389 15450435,
8353847
NAT2 chemical arylamine 6-aminochrysene O-acetylation after N-
hydroxylation
activation 386 10357791
NAT2 chemical arylamine,
heterocyclic
aminomethylphenylnorharma
n
O-acetylation after N-hydroxylation activation 95 17067997
NAT2 chemical arylamine,
heterocyclic
aminophenylharman O-acetylation after N-hydroxylation activation 95 17067997
NAT2 chemical arylamine,
heterocyclic
aminophenylnorharman O-acetylation after N-
hydroxylation
activation 95 17067997
NAT2 chemical arylamine, metabolite N-acetyl-N-hydroxy-3-
aminobenzanthrone
O-acetylation at higher
conc.
potent
activation
79, 388 12740904,
12419844
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methylimidazo[4,5-
f]quinolone (N-hydroxyisoIQ)
O-acetylation activation 392 7697826
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-3,4-
dimethylimidazo[4,5-
f]quinolone (N-hydroxy-
MeIQ)
O-acetylation activation 392 7697826
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (N-hydroxy-
MeIQx)
O-acetylation activation 392 7697826
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-3-
methylimidazo[4,5-
f]quinolone (N-hydroxy-IQ)
O-acetylation potent
activation
392, 393 7697826,
12067565
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (N-hydroxy-Glu-P-
1)
O-acetylation activation 392 7697826
NAT2 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-
aminobenzanthrone
O-acetylation activation 391 17483118
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-
aminodipyrido[1,2-a:3,2′-d]-
imidazole (N-hydroxy-Glu-P-
2)
O-acetylation ativation 392 7697826
NAT2 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-3-
aminobenzanthrone
O-acetylation activation 391 17483118
NAT2 chemical arylamine, tobacco
smoke compound,
metabolite
N-hydroxy-4-aminobiphenyl
(N-OH-4-ABP)
O-acetylation activation 389 8353847
NAT2 chemical hydroxylamine,
arylamine, metabolite
N-hydroxyaminofluorene
(N-OH-2-AF)
O-acetylation activation 389 8353847
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-
hydroxyaminomethylphenyln
orharman
O-acetylation activation 95 17067997
NAT2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-
hydroxyaminophenylnorharm
an
O-acetylation activation 95 17067997
NAT2 chemical o-methoxyaniline o-anisidine, 2-
methoxyaniline
O-acetylation after N-
hydroxylation
activation 147 15450435
Prostaglandi
n H synthase
(PHS, COX)
chemical arylamine, metabolite 3-aminobenzanthrone N-oxidation activation 72, 73 15885895,
16601755
Quinone
oxidoreducta
se (NQO1)
chemical nitroarene 3-nitrobenzanthrone nitroreduction (major
enzyme)
potent
activation
73, 80 16601755,
12782579
SULT1A1 chemical PAH, metabolite (−)-1-hydroxyethylpyrene O-sulfonation activation 169, 394 10720750,
11535246
SULT1A1 chemical PAH, metabolite 1-(1-pyrenyl)ethanol O-sulfonation activation 395 9141497
SULT1A1 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation potent
activation
169, 390,
396, 397
10720750,
14754874,
10657971,
17936463
SULT1A1 natural
compound
1-methoxy-3-
indolylmethyl
glucosinolate
breakdown product, in
many Brassica
vegetables
1-methoxy-3-indolylmethyl-
alcohol
O-sulfonation activation 398 20846518
SULT1A1 chemical benzylic alcohol,
nitroatromatic
2,4-dinitrobenzylalcohol O-sulfonation activation 169, 394,
399
10720750,
11535246,
11154739
SULT1A1 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
O-sulfonation after
oxidation
activation 400 22006426
SULT1A1 chemical heterocyclic amine 2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (Glu-P-1)
O-sulfonation after N-
hydroxylation
potent
activation
401 22072630
SULT1A1 chemical benzylic alcohol 2-aminobenzylalcohol O-sulfonation activation 3979 11154739
SULT1A1 chemical arylamine,
heterocyclic
2-hydroxylamino-3-methyl-
9H-pyrido[2,3-b]indole (N-
OH-MeAαC)
O-sulfonation potent
activation
160 14729582
SULT1A1 chemical hydroxylamine,
heterocyclic
2-hydroxylamino-5-
phenylpyridine
O-sulfonation activation 394 11535246
SULT1A1 chemical nitroarene 2-nitrobenzanthrone O-sulfonation after
reduction to
hydroxylamine
activation 391 17483118
SULT1A1 chemical nitroarene 3,9-dinitrofluoranthene O-sulfonation potent
activation
401 22072630
SULT1A1 chemical nitroarene 3-acetylaminobenzanthrone O-sulfonation after N-
hydroxylation, at higher
concentrations
potent
activation
79 12740904
SULT1A1 chemical arylamine, metabolite 3-aminobenzanthrone O-sulfonation after N-
hydroxylation, at higher
concentrations
potent
activation
79 12740904
SULT1A1 chemical azoaromatic amine 3-methoxy-4-
aminoazobenzene
O-sulfonation potent
activation
401 22072630
SULT1A1 chemical nitroarene 3-nitrobenzanthrone O-sulfonation after
nitroreduction to
hydroxylamine
potent
activation
73, 79, 364,
391, 401
16601755,
12740904,
12419844,
17483118,
22072630
SULT1A1 drug triphenylethyleneamin
e; antiestrogen,
estrogen receptor
modulator, metabolite
4-hydroxytamoxifen O-sulfonation activation 402, 403 12034366,
21537383
SULT1A1 chemical furaldehyde derivative 5-hydroxymethylfurfural O-sulfonation activation 322, 397,
400
15668106,
17936463,
22006426
SULT1A1 chemical nitroaromatic 5-nitroacenaphthene O-sulfonation potent
activation
401 22072630
SULT1A1 chemical PAH, metabolite 7-hydroxy-7,8,9,10-
tetrahydrobenzo[a]pyrene
O-sulfonation activation 395 9141497
SULT1A1 natural
compound
nephrotoxin,
Aristolochia fangchi
compound, nitroarene
aristolochic acids I and II O-sulfonation after
nitroreduction to
hydroxylamine
potent
activation
404 16161050
SULT1A1 chemical furan furan O-sulfonation after
oxidation
activation 322 15668106
SULT1A1 chemical furan derivative furfuryl alcohol O-sulfonation activation 405 21729924
SULT1A1 chemical arylamine, metabolite N-acetyl-N-hydroxy-3-
aminobenzanthrone
O-sulfonation, at higher
concentrations
potent
activation
79, 364 12740904,
12419844
SULT1A1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-acetylamino-3-
methyl-5-phenylpyridine
O-sulfonation activation 399 11154739
SULT1A1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene
(N-OH-2-AAF)
O-sulfonation activation 169, 406 10720750,
11535243
SULT1A1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-acetylaminol-5-
phenylpyridine
O-sulfonation activation 399 11154739
SULT1A1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-hydroxy-PhIP)
O-sulfonation potent
activation
393, 399 12067565,
11154739
SULT1A1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-3-
methylimidazo[4,5-
f]quinolone (N-hydroxy-IQ)
O-sulfonation potent
activation
407 16708048
SULT1A1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-6-
methyldipyrido[1,2-a:3′,2′-d]-
imidazole (N-hydroxy-Glu-P-
1)
O-sulfonation activation 408 7834621
SULT1A1 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-
aminobenzanthrone
O-sulfonation activation 401 17483118
SULT1A1 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-3-
aminobenzanthrone
O-sulfonation activation 391 17483118
SULT1A1 chemical arylamine, tobacco
smoke compound,
metabolite
N-hydroxy-4-aminobiphenyl
(N-OH-4-ABP)
O-sulfonation activation 409 7859374
SULT1A1 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-aminofluorene
(N-OH-4-AF)
O-sulfonation activation 408 7834621
SULT1A1 chemical nitroarene nitrofen O-sulfonation after
nitroreduction to
hydroxylamine
potent
activation
322, 390 15668106,
14754874
SULT1A1 chemical nitrosamine N-nitrosodimethylamine (N,
N-dimethylnitrosamine,
DMN)
O-sulfonation after
oxidation
activation 322 15668106
SULT1A1 chemical heterocyclic amine N-OH-4,4′-methylenebis(2-
chloroaniline) (N-OHMOCA)
O-sulfonation activation 408 7834621
SULT1A2 chemical PAH, metabolite (−)-1-hydroxyethylpyrene O-sulfonation activation 394 11535246
SULT1A2 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation activation 394, 410 11535246,
12464797
SULT1A2 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
O-sulfonation after
oxidation
activation 400 22006426
SULT1A2 chemical arylamine,
heterocyclic
2-hydroxylamino-3-methyl-
9H-pyrido[2,3-b]indole (N-
OH-MeAαC)
O-sulfonation activation 159 14729582
SULT1A2 chemical hydroxylamine,
heterocyclic
2-hydroxylamino-5-
phenylpyridine
O-sulfonation potent
activation
394, 410 11535246,
12464797
SULT1A2 chemical nitroarene 3-acetylaminobenzanthrone O-sulfonation after N-
hydroxylation, at higher
concentrations
potent
activation
79 12740904
SULT1A2 chemical arylamine, metabolite 3-aminobenzanthrone O-sulfonation after N-
hydroxylation, at higher
concentrations
potent
activation
79 12740904
SULT1A2 chemical nitroarene 3-nitrobenzanthrone O-sulfonation after
nitroreduction to
hydroxylamine
activation 73, 79 16601755,
12740904
SULT1A2 chemical furaldehyde derivative 5-hydroxymethylfurfural O-sulfonation activation 400 22006426
SULT1A2 chemical arylamine, metabolite N-acetyl-N-hydroxy-3-
aminobenzanthrone
O-sulfonation, at higher
concentrations
potent
activation
79, 388 12740904,
12419844
SULT1A2 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-acetylamino-3-
methyl-5-phenylpyridine
O-sulfonation activation 399 11154739
SULT1A2 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
O-sulfonation potent
activation
169, 394,
410
10720750,
11535246,
12464797
SULT1A2 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-acetylaminol-5-
phenylpyridine
O-sulfonation activation 399 11154739
SULT1A2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
O-sulfonation potent
activation
393, 399 12067565,
11154739
SULT1A2 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-aminofluorene
(N-OH-2-AF)
O-sulfonation potent
activation
401 22072630
SULT1A3 natural
compound
alkenylbenzene;
occurs in a variety of
foods including
essential oils of
tarragon, sweet basil,
sweet fennel, anis,
metabolite
1′-hydroxyestragole O-sulfonation activation 197, 401 21459083,
22072630
SULT1A3 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation activation 169, 394,
396
10720750,
11535246,
10657971
SULT1A3 chemical nitroalkane 2-nitropropane O-sulfonation, propane 2-
nitronate formation
activation 169, 396 1072075,
10657971
SULT1A3 natural
compound
alkenylbenzene;
occurs in a variety of
foods including
essential oils of
tarragon, sweet basil,
sweet fennel, anis
estragole O-sulfonation after C1′-
hydroxylation
activation 401 22072630
SULT1A3 chemical nitroarene nitrofen O-sulfonation after
nitroreduction to
hydroxylamine
activation 390 14754874
SULT1B1 chemical PAH, aldehyde 1-formylpyrene O-sulfonation activation 399 11154739
SULT1B1 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation activation 394 11535246
SULT1B1 chemical arylamine,
heterocyclic
2-hydroxylamino-3-methyl-
9H-pyrido[2,3-b]indole (N-
OH-MeAαC)
O-sulfonation activation 159 14729582
SULT1B1 chemical hydroxylamine,
heterocyclic
2-hydroxylamino-5-
phenylpyridine
O-sulfonation activation 394 11535246
SULT1B1 chemical PAH, metabolite 4-
hydroxycyclopenta[d,e.f]chry
sene
O-sulfonation potent
activation
169, 394 10720750,
11535246
SULT1B1 chemical PAH, metabolite 6-
hydroxymethylbenzo[a]pyren
e
O-sulfonation potent
activation
394 11535246
SULT1B1 natural
compound
nephrotoxin,
Aristolochia fangchi
compound, nitroarene
aristolochic acids I and II O-sulfonation after
nitroreduction to
hydroxylamine
activation 394 16161050
SULT1C1 chemical PAH, metabolite (−)-1-hydroxyethylpyrene O-sulfonation activation 392 11535246
SULT1C1 chemical arylamine,
heterocyclic
2-hydroxylamino-3-methyl-
9H-pyrido[2,3-b]indole (N-
OH-MeAαC)
O-sulfonation activation 169 14729582
SULT1C1 chemical nitroarene nitrofen O-sulfonation after
nitroreduction to
hydroxylamine
activation 390 14754874
SULT1C2 chemical PAH, metabolite (−)-1-hydroxyethylpyrene O-sulfonation activation 394 11535246
SULT1C2 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation activation 394 11535246
SULT1C2 chemical furan derivative 2,5-(bishydroxymethyl)furan O-sulfonation activation 411 21825114
SULT1C2 chemical furan derivative 5-methylfurfural O-sulfonation activation 411 21825114
SULT1C2 chemical furan derivative furfuryl alcohol O-sulfonation activation 411 21825114
SULT1C3 chemical PAH, metabolite (±)-, (+)-, and (−)-1-
hydroxyethylpyrene
O-sulfonation activation 397 17936463
SULT1C3 chemical methylenedioxyphenyl
, benzodioxole,
metabolite
1′-hydroxysafrole O-sulfonation, at high
conc.
activation 397 17936463
SULT1C3 chemical PAH, metabolite 6-
hydroxymethylanthanthrene
O-sulfonation potent
activation
397 17936463
SULT1C3 chemical PAH, metabolite 6-
hydroxymethylbenzo[a]pyren
e
O-sulfonation potent
activation
397 17936463
SULT1E1 chemical PAH, metabolite (±)-, (+)-, and (−)-1-
hydroxyethylpyrene
O-sulfonation potent
activation
169, 394,
397
10720750,
11535246,
17936463
SULT1E1 chemical PAH, metabolite 1-(1-pyrenyl)ethanol O-sulfonation activation 395 9141497
SULT1E1 chemical PAH, metabolite 10-hydroxy-7,8,9,10-
tetrahydrobenzo[a]pyrene
O-sulfonation activation 395 9141497
SULT1E1 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation potent
activation
394, 396,
397
11535246,
10657971,
17936463
SULT1E1 chemical PAH, metabolite 4-
hydroxycyclopenta[def]chrys
ene
O-sulfonation activation 169, 394 10720750,
11535246
SULT2A1 chemical PAH, metabolite (±)-, (+)-, and (−)-1-
hydroxyethylpyrene
O-sulfonation activation 169, 394,
397
10720750,
11535246,
17936463
SULT2A1 chemical PAH, metabolite 1-(1-pyrenyl)ethanol, I-HEP O-sulfonation activation 395 9141497
SULT2A1 chemical PAH, metabolite 1-hydroxy-3-
methylcholanthrene
O-sulfonation activation 395 9141497
SULT2A1 chemical PAH, metabolite 1-hydroxymethylpyrene O-sulfonation potent
activation
169, 394,
396
10720750,
11535246,
10657971
SULT2A1 chemical PAH, metabolite 2-hydroxymethylpyrene O-sulfonation activation 395 9141497
SULT2A1 drug pregnane,
antiandrogen,
metabolite
3α-hydroxycyproterone
acetate
O-sulfonation activation 394 11535246
SULT2A1 chemical PAH, metabolite 6-
hydroxymethylbenzo[a]pyren
e
O-sulfonation potent
activation
169, 394 10720750,
11535246
SULT2A1 chemical PAH, metabolite 7-hydroxy-12-
methylbenz[a]anthracene
O-sulfonation activation 394 9141497
SULT2A1 drug triphenylethyleneamin
e; antiestrogen,
estrogen receptor
modulator, metabolite
α-hydroxytamoxifen O-sulfonation activation 412, 413 9855017,
15371299
SULT2A1 drug thioxanthenone;
schistosomicide
hycanthone O-sulfonation potent
activation
394, 395 11535246,
9141497
SULT2E1 chemical PAH 1-acetylpyrene O-sulfonation potent
activation
399 11154739
SULT2E1 drug thioxanthenone;
schistosomicide
hycanthone O-sulfonation activation 394 11535246

Table 4. Detoxication Reactions.

enzyme category subcategory compound reaction references PubMed ID
AKR1B1 natural
compound
carbonyl, unsaturated 4-hydroxynonenal reduction 414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated acrolein reduction (low
activity)
414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated crotonaldehyde reduction (low
activity)
414 21329684
AKR1B1 natural
compound
GSH conjugate,
metabolite
GS-2-hexenal reduction (high
activity)
414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated GS-4-hydroxynonanal reduction (high
activity)
414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated GS-butanal reduction (high
activity)
414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated GS-propanal reduction 414 21329684
AKR1B1 natural
compound
GSH conjugate,
metabolite
GS-trans-2-hexenal reduction 414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated trans-2,4-hexedinal reduction 414 21329684
AKR1B1 natural
compound
carbonyl, unsaturated trans-2-hexenal reduction 414 21329684
AKR1B10 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
reduction 415 16381663
AKR1B10 natural
compound
carbonyl, unsaturated 4-hydroxynonenal reduction (high
activity)
414, 416,
417
21329684
19013440,
19563777,
AKR1B10 natural
compound
carbonyl, unsaturated 4-methylpentanal reduction 416 19013440
AKR1B10 natural
compound
carbonyl 4-oxonon-2-enal reduction 416 19013440
AKR1B10 natural
compound
carbonyl acrolein reduction 414, 417 21329684
19563777
AKR1B10 natural
compound
carbonyl crotonaldehyde reduction (high
activity)
414, 417 21329684
19563777
AKR1B10 natural
compound
GSH conjugate,
metabolite
GS-2-hexenal reduction 414 21329684
AKR1B10 natural
compound
GSH conjugate,
metabolite
GS-acrolein reduction 417 19563777
AKR1B10 natural
compound
carbonyl, unsaturated GS-butanal reduction 414 21329684
AKR1B10 natural
compound
GSH conjugate,
metabolite
GS-crotonaldehyde reduction 417 19563777
AKR1B10 natural
compound
carbonyl, unsaturated GS-propanal reduction (low
activity)
414 21329684
AKR1B10 natural
compound
GSH conjugate,
metabolite
GS-trans-2, 4-hexadienal reduction 417 19563777
AKR1B10 natural
compound
GSH conjugate,
metabolite
GS-trans-2-hexenal reduction (high
activity)
414, 417 21329684
19563777
AKR1B10 natural
compound
carbonyl, unsaturated trans-2, 4-hexadienal reduction 417 19563777
AKR1B10 natural
compound
carbonyl, unsaturated trans-2,4-hexedinal reduction 414 21329684
AKR1B10 natural
compound
carbonyl, unsaturated trans-2-hexenal reduction (high
activity)
414, 417 21329684
19563777
AKR1C1 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
reduction 418, 419 11037109,
11306090
AKR1C2 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
reduction 418, 419 11037109,
11306090
AKR1C4 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
reduction 418, 419 11037109,
11306090
AKR7A2 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 dialdehyde reduction 420, 421 10383892,
17537398
AKR7A3 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products,
metabolite
aflatoxin B1 dialdehyde reduction 420-422 10383892,
17537398,
18416522
CYP1A1 chemical nitroarene 2-nitroanisole demethylation, O-
hydroxylation, C2-,
C2-C5-, and C2-
C6-
423, 424 15144223,
17159769
CYP1A1 natural
compound
nephrotoxin,
Aristolochia fangchi
compound, nitroarene
aristolochic acid I hydroxylation, C8-
(major enzyme)
99 22086975
CYP1A1 chemical PAH benzo[a]pyrene hydroxylation, 3-
(low Km, or
medium Km,
medium activity, or
high activity)
44, 46, 48,
104-106,
425-427
11238186,
7581497,
8293790,
9806168,
11513247,
8037457,
7766605,
9152602,
7703357
CYP1A1 chemical PAH benzo[a]pyrene hydroxylation 3-
(low activity)
44, 138 11238186
9014198
CYP1A1 drug pyrido-carbazole;
antineoplastic, alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor, and DNA
binding
ellipticine hydroxylation, C7-
and C9- (major
enzyme, low
activity)
39, 187, 189 16936898,
15548707,
21683692
CYP1A1 chemical aza-aromatic Sudan I hydroxylation, C4′-
(high activity),
hydroxylation, C6-
(low activity);
oxidation, major
enzyme
136, 137 12384524,
17159775
CYP1A2 chemical heterocyclic amine 2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (MeIQx)
C8-oxidation
(carboxylic acid
form.)
428, 429 10220313,
11258970
CYP1A2 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) hydroxylation
(AFM1 formation,
major enzyme and
reaction);
hydroxylation,
C3α- (AFQ1
formation, low
activity);
demethylation, O-
(AFP1 formation,
very low activity)
176-178 7766804,
8261428,
12079611
CYP1A2 natural
compound
nephrotoxin,
Aristolochia fangchi
compound, nitroarene
aristolochic acid I hydroxylation, C8-
(major enzyme)
99 22086975
CYP1A2 chemical PAH benzo[a]pyrene 3- hydroxylation
(low activity)
46, 104,
106, 425-
427, 430
7581497,
9806168,
8037457,
7766605,
9152602,
7703357,
1551116
CYP1A2 drug pyrido-carbazole;
antineoplastic, alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine hydroxylation, C7-
and C9- (major
enzyme in liver,
low activity)
39, 187, 189 16936898,
15548707,
21683692
CYP1A2 drug pyrido-carbazole;
antineoplastic, alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine C7- hydroxylation
(major enzyme)
187 15548707
CYP1B1 chemical PAH benzo[a]pyrene 3-hydroxylation 104, 222,
426
9806168,
15958554,
9152602
CYP1B1 drug pyrido-carbazole;
antineoplastic, alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine hydroxylation, C7-
(very low activity)
and C9-
187 15548707
CYP2A6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
oxidation, N- 265 12975327
CYP2A6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
oxidation, N- 265 12975327
CYP2A6 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) hydroxylation
(AFM1 formation,
low activity);
hydroxylation,
C3α- (AFQ1
formation, low
activity);
demethylation, O-
(AFP1 formation,
major reaction), at
high substrate
concentrations
181 16385575
CYP2A13 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
oxidation, N- 265 12975327
CYP2A13 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) hydroxylation
(AFM1 formation,
low activity);
hydroxylation,
C3α- (AFQ1
formation, low
activity);
demethylation, O-
(AFP1 formation,
very low activity)
181 16385575
CYP2B6 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
oxidation, N- 265 12975327
CYP2C19 chemical PAH benzo[a]pyrene hydroxylation 3- 138, 425,
427
9014198,
7766605,
7703357,
CYP2C8 chemical PAH benzo[a]pyrene hydroxylation 3- 425, 427,
430
7766605,
7703357,
1551116
CYP2C9 chemical PAH benzo[a]pyrene hydroxylation 3-
(major enzyme)
138, 425,
427, 430
9014198,
7766605,
7703357,
1551116
CYP2D6 drug pyrido-carbazole;
antineoplastic, alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine hydroxylation, C7-
(low activity) and
C9-
187 15548707
CYP2E1 chemical nitroarene 2-nitroanisole demethylation, O-
hydroxylation, C2-,
C2-C5-, and C2-
C6- (major
enzyme)
423, 424 15144223,
17159769
CYP2E1 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)
oxidation, N- 265 12975327
CYP2E1 chemical PAH benzo[a]pyrene hydroxylation 3-
(low activity)
425, 427 7766605,
7703357
CYP3A4 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) hydroxylation,
C3α- (AFQ1
form.), medium
Km, medium
activity, major
reaction, major
enzyme
176-178,
339
7766804,
8261428,
12079611,
1643250
CYP3A4 chemical PAH benzo[a]pyrene hydroxylation 3-
(major enzyme)
138, 425-
427, 430
9014198,
7766605,
9152602,
7703357,
1551116
CYP3A4 drug pyrido-carbazole;
antineoplastic, alkaloid,
Apocyanaceae plants
compound,
topoisomerase II
inhibitor and DNA
binding
ellipticine hydroxylation, C9-
(very low activity)
187 15548707
CYP3A4 chemical aza-aromatic Sudan I hydroxylation, C4′-
and C6 (low
activity)
136 12384524
CYP3A5 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) hydroxylation,
C3α- (AFQ1
form.)
182, 365 16608170,
7893152
CYP3A7 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products
aflatoxin B1 (AFB1) hydroxylation, C3α
- (AFQ1 formation)
182 16608170
Epoxide
hydrolase,
EH
chemical haloalkene, metabolite chloroprene epoxide (1-
chloroethenyl oxirane)
hydrolysis 431 14565770
Epoxide
hydrolase,
EH
natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products,
metabolite
aflatoxin B1-8,9-epoxide hydrolysis,
aflatoxin-8,9-
dihydrodiol
formation
432, 433 8781383,
9115980
Epoxide
hydrolase,
EH
chemical PAH, metabolite benzo[a]pyrene-7,8-oxide hydrolysis to
benzo[a]pyrene-
7,8-diol
52, 220 21028851,
10409402
GST physiological
compound
estrogen, metabolite 4-hdroxyestrone-o-quinone covalent binding 434 18588320
GST chemical acrylic amide acrylamide GSH conjugation 435 19904761
GSTM chemical aromatic hydrocarbon,
alkyl benzene,
metabolite
styrene 7,8-oxide GSH conjugation 436, 437 3224538,
3692493
GSTA1 chemical PAH dibenzo[a,l]pyrene GSH conjugation
after oxidation
119 17509623
GSTA1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
GSH conjugation
after oxidation
119, 438 17509623,
9855012
GSTA1-1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-dihydrodiol 9,10-epoxide
GSH conjugation
(high activity)
439-441 8706254,
11849043,
12067250
GSTA1-1 drug oxazaphosporine;
anticancer, mitrogen
mustard, alkylating,
metabolite
4-hydroxycyclophosphamide GSH conjugation 442 7954469
GSTA1-1 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products,
metabolite
aflatoxin B1-8,9-epoxide GSH conjugation 375, 443 8330352,
9675258
GSTA1-1 chemical PAH, metabolite benzo[c]chrysene-9,10-diol
11,12-epoxide
GSH conjugation 439 8706254
GSTA1-1 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol 1,2-epoxide
GSH conjugation 439 8706254
GSTA1-1 chemical PAH, metabolite benzo[g]chrysene-11,12-diol
13,14-epoxide
GSH conjugation 439 8706254
GSTA1-1 chemical PAH, metabolite chrysene-trans-1,2-
dihydrodiol-3,4-epoxide
GSH conjugation 439 8706254
GSTA1-1 chemical PAH, metabolite dibenz[a,h]anthracene-3,4-
dihydrodiol 1,2-epoxide
GSH conjugation 439 8706254
GSTA1-1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol 13,14-epoxide
GSH conjugation
(high activity)
441 12067250
GSTA1-1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
reduction in
reaction with GST
(major enzyme)
406, 444 11535243,
8069858
GSTA1-1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene
(N-OH-2-AAF)
GSH conjugation 375 8330352
GSTA1-1 drug phosphoramide mustard
; anticancer, alkylating,
metabolite of
cyclophosphamide
phosphoramide mustard GSH conjugation 442 7954469
GSTA1-2 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating,
metabolite
4-hydroxycyclophosphamide GSH conjugation 442 7954469
GSTA1-2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
reduction in
reaction with GST
(low activity)
444 8069858
GSTA2-2 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products,
metabolite
aflatoxin B1-8,9-epoxide GSH conjugation 420 10383892
GSTA2-2 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
Reduction in
reaction with GST
(low activity)
406 11535243
GSTA2-2 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol 13,14-epoxide
GSH conjugation
(low activity)
441 12067250
GSTA3-3 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol 13,14-epoxide
GSH conjugation 441 12067250
GSTM1 chemical PAH, metabolite phenanthrene-9,10-epoxide GSH conjugation 445 16978029
GSTM1-1 natural
compound
difuranocoumarin;
mycotoxin, produced
by Aspergillus species
on food products,
metabolite
aflatoxin B1-8,9-epoxide GSH conjugation,
major enzyme
432, 443,
433
8781383,
9675258,
9115980
GSTM1-1 chemical hydroxylamine,
heterocyclic
amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
reduction in
reaction with GST
(low activity)
404 11535243
GSTM1-1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol 9,10-epoxide
GSH conjugation 440, 446 11849043,
9403173
GSTM1-1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
GSH conjugation
after oxidation
51, 447 17525473,
12507920
GSTM1-1 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating,
metabolite
4-hydroxycyclophosphamide GSH conjugation 442 7954469
GSTM1-1 chemical PAH benzo[a]pyrene GSH conjugation
after oxidation
51 17525473
GSTM1-1 chemical PAH, metabolite benzo[c]chrysene-9,10-diol
11,12-epoxide
GSH conjugation 446 9403173
GSTM1-1 chemical PAH, metabolite benzo[g]chrysene-11,12-diol
13,14-epoxide
GSH conjugation 446 9403173
GSTM1-1 chemical PAH, metabolite chrysene-trans-1,2-diol-3,4-
epoxide
GSH conjugation 446 9403173
GSTM1-1 chemical PAH dibenz[a,h]anthracene-3,4-
diol-1,2-epoxide
GSH conjugation 446 9403173
GSTM1-1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol 13,14-epoxide
GSH conjugation 446 9403173
GSTP1-1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol 9,10-epoxide
GSH conjugation 438, 440,
446, 448,
449
9855012,
11849043
9403173,
9299520,
9525277
GSTP1-1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
GSH conjugation
after oxidation
50, 450 16885195,
10344744
GSTP1-1 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating,
metabolite
4-hydroxycyclophosphamide GSH conjugation 442 7954469
GSTP1-1 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating,
metabolite
4-hydroxyifosfamide GSH conjugation 451 8555414
GSTP1-1 chemical quinoline 4-nitroquinoline 1-oxide
(NQO)
GSH conjugation 452, 453 11108662,
15766272
GSTP1-1 chemical PAH 5-methylchrysene GSH conjugation
after oxidation
83 18992797
GSTP1-1 chemical PAH, metabolite 5-methylchrysene-1,2-diol GSH conjugation
after oxidation
83 18992797
GSTP1-1 chemical PAH, metabolite 5-methylchrysene-1,2-diol
3,4-epoxide
GSH conjugation 454 9771942
GSTP1-1 chemical PAH, metabolite 6-methylchrysene-1,2-diol
3,4-epoxide
GSH-conjugation 454 9771942
GSTP1-1 chemical PAH benzo[a]pyrene GSH conjugation
after oxidation
50 16885195
GSTP1-1 chemical PAH, metabolite benzo[c]chrysene-9,10-diol
11,12-epoxide
GSH conjugation 446, 455 9403173,
9827546
GSTP1-1 chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol-1,2-epoxide
GSH conjugation 438, 446,
455, 456
9855012,
9403173,
9827546,
9850062
GSTP1-1 chemical PAH, metabolite benzo[g]chrysene-11,12-diol-
13,14-epoxide
GSH conjugation 438, 446,
455, 456
9855012,
9403173,
9827546,
9850062
GSTP1-1 chemical PAH, metabolite chrysene-trans-1,2-
dihydrodiol-3,4-epoxide
GSH conjugation 446, 448,
449
9403173,
9299520,
9525277
GSTP1-1 chemical PAH, metabolite dibenz[a,h]anthracene-3,4-
diol-1,2-epoxide
GSH-conjugation 446, 449 9403173,
9525277
GSTP1-1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol-13,14-epoxide
GSH conjugation 438, 446,
455, 457
9855012,
9403173,
9827546,
9687571
GSTP1-1 drug oxazaphosporine;
anticancer, nitrogen
mustard, alkylating,
metabolite
ifosfamide mustard GSH conjugation 451 8555414
GSTP1-1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
reduction in
reaction with GST
(low activity)
406, 444 11535243,
8069858
GSTP1-1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
GSH conjugation 375 8330352
GSTP1-1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
reduction in
reaction with GST
458 11196146
GSTT1-1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
reduction in
reaction with GST
(low activity)
406 11535243
GSTT2-1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-acetoxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-acetoxy-PhIP)
reduction in
reaction with GST
(low activity)
406 11535243
NAD(P)H-
dependent
quinone
oxidoredu
ctase,
NQO1
physiological
compound
estrogen, metabolite 4-hydroxyestrone-o-quinone reduction (low
activity)
434 18588320
NADH
cytochrom
e b5
reductase,
b5R;
cytochrom
e b5, CYB5
chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
reduction 459 17040106
NADH
cytochrom
e b5
reductase,
b5R;
cytochrom
e b5, CYB5
chemical arylamine, tobacco
smoke compound,
metabolite
N-hydroxy-4-aminobiphenyl
(N-OH-4-ABP)
reduction (low
activity)
459, 460 17040106,
21447608
NAT1 chemical heterocyclic amine 2-amino-3-
methylimidazo[4,5-
f]quinolone (IQ)
N-acetylation (low
activity)
389 8353847
NAT1 chemical arylamine 2-aminofluorene (2-AF) N-acetylation (low
activity)
389 8353847
NAT1 chemical PAH 2-naphthylamine N-acetylation (low
activity)
389 8353847
NAT1 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl
(4-ABP)
N-acetylation (low
activity)
389 8353847
NAT1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminobiphenyl
(N-acetoxy-4-ABP)
N-acetylation (low
activity)
389 8353847
NAT1 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene
(N-OH-2-AAF)
N-acetylation (low
activity)
389 8353847
NAT1 chemical arylamine, tobacco
smoke compound,
metabolite
N-hydroxy-4-aminobiphenyl
(N-OH-4-ABP)
N-acetylation (low
activity)
389 8353847
NAT1 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-aminofluorene
(N-OH-2-AF)
N-acetylation (low
activity)
389 8353847
NAT2 chemical heterocyclic amine 2-amino-3-
methylimidazo[4,5-
f]quinolone (IQ)
N-acetylation 389 8353847
NAT2 chemical arylamine 2-aminofluorene (2-AF) N-acetylation 389 8353847
NAT2 chemical arylamine 2-naphthylamine N-acetylation 389 8353847
NAT2 chemical arylamine, tobacco
smoke compound
4-aminobiphenyl
(4-ABP)
N-acetylation 389 8353847
NAT2 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminobiphenyl
(N-acetoxy-4-ABP)
N-acetylation 389 8353847
NAT2 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene
(N-OH-2-AAF)
N-acetylation 389 8353847
NAT2 chemical arylamine, tobacco
smoke compound,
metabolite
N-hydroxy-4-aminobiphenyl
(N-OH-4-ABP)
N-acetylation 389 8353847
NAT2 chemical hydroxylamine,
arylamine, metabolite
N-hydroxy-2-aminofluorene
(N-OH-2-AF)
N-acetylation 389 8353847
S-COMT physiological
compound
estrogen, metabolite 2-hydroxyestradiol O-methylation, 2-
OH and 3-OH
461, 462 11606384,
12360102
S-COMT physiological
compound
estrogen, metabolite 2-hydroxyestrone O-methylation, 2-
OH and 3-OH
462 12360102
S-COMT physiological
compound
estrogen, metabolite 4-hydroxyestradiol O-methylation, 4-
OH
462 12360102
S-COMT physiological
compound
estrogen, metabolite 4-hydroxyestrone O-methylation, 4-
OH
462 12360102
S-COMT chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-methylation 463 21622560
S-COMT chemical PAH, metabolite 12-methylbenz[a]anthracene-
3,4-diol
O-methylation 463 21622560
S-COMT chemical PAH, metabolite 5-methylchrysene-1,2-diol O-methylation 463 21622560
S-COMT chemical PAH, metabolite 5-methylchrysene-7,8-diol O-methylation 463 21622560
S-COMT chemical PAH, metabolite 7,12-
dimethylbenz[a]anthracene-
3,4-diol
O-methylation 463 21622560
S-COMT chemical PAH, metabolite 7-methylbenz[a]anthracene-
3,4-diol
O-methylation 463 21622560
S-COMT chemical PAH, metabolite benz[a]anthracene-3,4-diol O-methylation (low
activity)
463 21622560
S-COMT chemical PAH, metabolite benzo[c]phenanthrene-3,4-
diol
O-methylation 463 21622560
S-COMT chemical PAH, metabolite benzo[g]chrysene-11,12-diol O-methylation 463 21622560
S-COMT chemical PAH, metabolite chrysene-1,2-diol O-methylation 463 21622560
S-COMT chemical PAH, metabolite chrysene-3,4-diol O-methylation (low
activity)
463 21622560
SULT chemical heterocyclic amine 2-amino-3-
methylimidazo[4,5-
f]quinolone (IQ)
N-sulfamate
formation (low
activity)
464 7744696
SULT chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (N-OH-MeIQx)
N-sulfation after N-
hydroxylation
429, 465 11258970
8844796
UGT chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-3,8-
dimethylimidazo[4,5-
f]quinoxaline (N-OH-MeIQx)
N-glucuronidation 429, 465 11258970
8844796
UGT1A1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-glucuronidation 466 11929814
UGT1A1 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N2- (major
metabolite) and
N3-glucuronidation
467, 468 11408353,
17638922
UGT1A1 physiological
compound
estrogen, metabolite 2-hydroxyestradiol O-glucuronidation 469 15117964
UGT1A1 physiological
compound
estrogen, metabolite 2-hydroxyestrone O-glucuronidation 469 15117964
UGT1A1 physiological
compound
estrogen, metabolite 4-hydroxyestrone O-glucuronidation 469 15117964
UGT1A1 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation 470 21780761
UGT1A1 physiological
compound
estrogen 17β-estradiol O-glucuronidation 469 15117964
UGT1A1 physiological
compound
estrogen estrone O-glucuronidation 469 15117964
UGT1A1 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- (major
metabolite) and
N3-
glucuronidation,
major enzyme
146, 467,
468, 471,
472
11375903,
11408353,
17638922,
15310245,
15708579
UGT1A1 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation
(low activity)
402, 473,
474
12034366,
16480962,
17664247
UGT1A3 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N2- and N3-
glucuronidation
475 10357796
UGT1A3 physiological
compound
estrogen, metabolite 2-hydroxyestradiol O-glucuronidation
(low activity)
469 15117964
UGT1A3 physiological
compound
estrogen, metabolite 2-hydroxy-estrone O-glucuronidation
(low activity)
469 15117964
UGT1A3 physiological
compound
estrogen, metabolite 4-hydroxyestrone O-glucuronidation 469 15117964
UGT1A3 physiological
compound
estrogen 17β-estradiol O-glucuronidation 469 15117964
UGT1A3 physiological
compound
estrogen estrone O-glucuronidation 469 15117964
UGT1A3 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
N-glucuronidation
(low activity)
146 11375903
UGT1A3 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- and N3-
glucuronidation
(major metabolite)
146, 467,
468, 471
11375903,
11408353,
17638922,
15310245
UGT1A4 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N2- and N3-
glucuronidation
(major metabolite),
low activity
467, 468 11408353,
17638922
UGT1A4 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
N-glucuronidation 476-478 14871856,
14709623,
18238858
UGT1A4 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen N-glucuronidation 278, 402,
473, 474,
479
16884532,
12034366,
16480962,
17664247,
15135306
UGT1A4 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation 470 21780761
UGT1A4 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- (major
metabolite) and
N3-glucuronidation
467, 468,
471
11408353,
17638922,
15310245
UGT1A4 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine O-glucuronidation 478 18238858
UGT1A4 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator
tamoxifen N-glucuronidation 278 16884532
UGT1A6 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation
(low activity)
473 16480962
UGT1A6 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene
(N-OH-2AAF)
N-glucuronidation
(low activity)
146 11375903
UGT1A6 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N-glucuronidation
(low activity)
146 11375903
UGT1A7 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-glucuronidation 466 11929814
UGT1A7 physiological
compound
estrogen, metabolite 2-hydroxyestradiol O-glucuronidation 469 15117964
UGT1A7 physiological
compound
estrogen, metabolite 2-hydroxyestrone O-glucuronidation 469 15117964
UGT1A7 physiological
compound
estrogen, metabolite 4-hydroxyestrone O-glucuronidation 469 15117964
UGT1A7 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation
(low activity)
473, 474 16480962,
17664247
UGT1A7 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation 470 21780761
UGT1A7 physiological
compound
estrogen 17β-estradiol O-glucuronidation
(low activity)
469 15117964
UGT1A7 physiological
compound
estrogen estrone O-glucuronidation
(low activity)
469 15117964
UGT1A7 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
N-glucuronidation
(high activity)
146 11375903
UGT1A7 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- and N3-
glucuronidation
(low activity)
146, 467,
468, 471
11375903,
11408353,
17638922,
15310245
UGT1A8 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N2- and N3-
glucuronidation
466 10357796
UGT1A8 physiological
compound
estrogen, metabolite 2-hydroxyestradiol O-glucuronidation 469 15117964
UGT1A8 physiological
compound
estrogen, metabolite 2-hydroxyestrone O-glucuronidation 469 15117964
UGT1A8 physiological
compound
estrogen, metabolite 4-hydroxyestrone O-glucuronidation 469 15117964
UGT1A8 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation
(low activity)
473, 474 16480962,
17664247
UGT1A8 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation 470 21780761
UGT1A8 physiological
compound
estrogen 17β-estradiol O-glucuronidation 469 15117964
UGT1A8 physiological
compound
estrogen estrone O-glucuronidation
(low activity)
469 15117964
UGT1A8 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
N-glucuronidation
(low activity)
146 11375903
UGT1A8 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- (major
metabolite) and
N3-glucuronidation
146, 467,
468, 471
11375903,
11408353,
17638922,
15310245
UGT1A9 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-glucuronidation 466 11929814
UGT1A9 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N2- (major
metabolite) and
N3-
glucuronidation,
low activity
467, 468,
475
11408353,
17638922,
10357796
UGT1A9 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
O-glucuronidation 477, 480 14709623,
11038164
UGT1A9 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation
(low activity)
402, 473,
474
12034366,
16480962,
17664247
UGT1A9 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation
(high activity)
470 21780761
UGT1A9 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
N-glucuronidation
(high activity)
146 11375903
UGT1A9 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- and N3-
glucuronidation
(major metabolite)
146, 467,
468, 471,
475
11375903,
11408353,
17638922,
15310245,
10357796
UGT1A10 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-glucuronidation
(major enzyme)
466, 481 11929814,
16510539
UGT1A10 chemical heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-
b]pyridine (PhIP)
N2- and N3-
glucuronidation
468, 475 17638922,
10357796
UGT1A10 physiological
compound
estrogen, metabolite 2-hydroxyestradiol O-glucuronidation
(high activity)
469 15117964
UGT1A10 physiological
compound
estrogen, metabolite 2-hydroxyestrone O-glucuronidation 469 15117964
UGT1A10 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
O-glucuronidation 482 20007297
UGT1A10 physiological
compound
estrogen, metabolite 4-hydroxyestrone O-glucuronidation
(high activity)
469 15117964
UGT1A10 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation
(low activity)
473, 474 16480962,
17664247
UGT1A10 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation 468 21780761
UGT1A10 physiological
compound
estrogen 17β-estradiol O-glucuronidation
(high activity)
467 15117964
UGT1A10 physiological
compound
estrogen estrone O-glucuronidation
(high activity)
467 15117964
UGT1A10 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
N-glucuronidation
(low activity)
146 11375903
UGT1A10 chemical hydroxylamine,
heterocyclic amine,
metabolite
N-hydroxy-2-amino-1-
methyl-6-phenylimidazo[4,5-
b]pyridine (N-OH-PhIP)
N2- (major
metabolite) and
N3-
glucuronidation,
high activity
146, 465,
466, 469
11375903,
11408353,
17638922,
15310245
UGT2A1 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-glucuronidation 483 21164388
UGT2A1 chemical PAH, metabolite 5-methylchrysene-1,2-diol O-glucuronidation 481 21164388
UGT2B10 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
O-glucuronidation 478 18238858
UGT2B10 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine O-glucuronidation 478 18238858
UGT2B10 chemical tobacco-specific
nitrosamine
N’-nitrosoanatabine O-glucuronidation 478 18238858
UGT2B10 chemical tobacco-specific
nitrosamine
N’-nitrosoanatabine O-glucuronidation 468, 478 17638922,
18238858
UGT2B10 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
O-glucuronidation 478 18238858
UGT2B10 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
O-glucuronidation 468, 478 17638922,
18238858
UGT2B15 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation 402, 473,
474
12034366,
16480962,
17664247
UGT2B17 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
O-glucuronidation 484 17416778
UGT2B17 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation 474 17664247
UGT2B7 chemical PAH, metabolite (+)- and (−)-benzo[a]pyrene-
7,8-diol
O-glucuronidation 466 11929814
UGT2B7 chemical tobacco-specific
nitrosamine
4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL)
O-glucuronidation 476, 477,
480
14871856,
14709623,
11038164
UGT2B7 chemical PAH, metabolite dibenzo[a,l]pyrene-11,12-
diol
O-glucuronidation 470 21780761
UGT2B7 chemical hydroxamic acid,
heterocyclic amine,
metabolite
N-hydroxy-2-
acetylaminofluorene (N-OH-
2-AAF)
N-glucuronidation 146 11375903
UGT2B7 drug triphenylethyleneamine
; antiestrogen, estrogen
receptor modulator,
metabolite
4-hydroxytamoxifen O-glucuronidation 474 17664247

Table 2. Bioactivation of Natural Compounds.

enzyme category subcategory compound reaction remarks references PubMed ID
CYP1A1 natural
compound
indole, alkylating,
pulmonary toxin; higher
concentrations in
mammalian digestive
tract and coal tar
3-methylindole (skatole)
epoxidation (3-
methyloxindole
formation);
dehydrogenation
(desaturation, 3-
methyleneindolenine
form), low Km, medium
activity, high efficiency activation 75-78 8558432,
11408359,
12563100,
20795680
CYP1A1 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) epoxidation 8,9-;
oxidation
activation 41, 57, 61,
93, 94
8674051,
15279838,
11377247,
7923587,
8200084
CYP1A1 natural
compound
phenanthroic acid
derivative; nephrotoxin,
found in the
Aristolochiaceae family
of plants
aristolochic acid I nitroreduction potent
activation
96-99 11511187,
15386410,
16125300,
22086975
CYP1A1 natural
compound
phenanthroic acid
derivative; nephrotoxin,
found in the
Aristolochiaceae family
of plants
aristolochic acid II nitroreduction activation 96-99 11511187,
15386410,
16125300,
22086975
CYP1A1 physiological
compound
estrogen 17β−estradiol C2-hydroxylation (major
reaction, medium Km,
high activity, high
efficiency), major
metabolite and major
extrahepatic enzyme;
C4-hydroxylation (minor
reaction, medium Km,
medium efficiency, low
activity), oxidation, 3,4-
quinone formation
(lower activity);
oxidation, 2,3-quinone
formation; C16α-
hydroxylation (high Km,
low activity)
potent
activation
71, 106,
121-130
9721189,
8037457,
7826886,
9625734,
9054608,
9667077,
8930523,
11555828,
12865317,
15784278,
16112414,
17570247
CYP1A1 physiological
compound
estrogen estrone C2-hydroxylation (major
reaction, medium Km,
low activity), oxidation,
2,3-quinone formation;
C4-hydroxylation
(medium Km, low
activity, or medium
activity); C16α-
hydroxylation (minor
reaction, very low
activity)
activation 49, 127,
130, 131
10426814,
12865317,
17570247,
15805301
CYP1A1 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
oxidation activation 132, 133 11774366,
12214673
CYP1A2 natural
compound
furanoterpene produced
by sweet potatoes
infected with Fusarium
solani; pulmonary toxin,
alkylating
4-ipomeanol oxidation (major
enzyme)
activation 172, 173 1651809,
15892579
CYP1A2 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) epoxidation (both exo-
8,9- and endo-8,9-);
oxidation
activation 11, 12, 13,
41, 42, 57,
61, 93, 94,
162, 175-
182
2492107
2655891,
2509067,
8674051,
7955101,
15279838,
11377247,
7923587,
8200084,
10023085,
2162057
7766804,
8261428,
12079611,
1902334,
11782366,
16385575,
16608170
CYP1A2 natural
compound
phenanthroic acid
derivative; nephrotoxin,
found in the
Aristolochiaceae family
of plants
aristolochic acid I nitroreduction potent
activation
96-99 11511187,
15386410,
16125300,
22086975
CYP1A2 natural
compound
phenanthroic acid
derivative; nephrotoxin,
found in the
Aristolochiaceae family
of plants
aristolochic acid II nitroreduction potent
activation
96-99 11511187,
15386410,
16125300,
22086975
CYP1A2 natural
compound
bicyclic monoterpene Δ3-carene epoxidation (high Km,
medium activity)
activation 183 16379671
CYP1A2 physiological
compound
estrogen 17β-estradiol C2-hydroxylation (major
reaction, medium Km,
medium activity,
medium efficiency),
major metabolite and
major enzyme in liver;
C4-hydroxylation (minor
reaction); C16α-
hydroxylation (major
enzyme, high Km, no
activity, or low activity)
activation 71, 106,
122-124,
126-129,
190-194
9721189,
8037457,
9625734,
9054608,
9667077,
11555828,
12865317,
15784278,
16112414,
1449532,
9635876,
11454902,
11741520,
14703066
CYP1A2 natural
compound
alkenylbenzene; occurs
in a variety of foods
including essential oils of
tarragon, sweet basil,
sweet fennel, anis
estragole C1′-hydroxylation
(major enzyme, medium
Km, low activity)
potent
activation
195-197 17407329,
15914212,
21459083
CYP1A2 physiological
compound
estrogen estrone C2-hydroxylation
(medium Km, high
activity, major
metabolite); C4-
hydroxylation (medium
Km, medium activity,
very low activity);
C16α-hydroxylation
(minor reaction, very
low activity)
activation 49, 122,
123, 127,
128, 191,
192, 198
10426814,
9625734,
9054608,
12865317,
15784278,
9635876,
11454902,
16537715
CYP1A2 natural
compound
phenylpropene, from
Rhizoma acorigraminei
methyleugenol C1′-hydroxylation
(medium Km, major
enzyme)
activation 196, 199 15914212,
16411663
CYP1A2 natural
compound
furanoxanthone;
mycotoxin, produced by
Aspergillus species
sterigmatocystin oxidation activation 41 8674051
CYP1B1 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) oxidation activation 61, 210,
217
11377247,
16551781,
9106248
CYP1B1 physiological
compound
estrogen 17β-estradiol C4-hydroxylation (major
enzyme, medium Km,
medium activity,
medium and low
efficiency), oxidation,
3,4-quinone formation;
C2-hydroxylation (low
activity, minor reaction),
oxidation, 2,3-quinone
formation; C16α-
hydroxylation (minor
enzyme, medium and
high Km, low activity)
potent
activation
49, 71,
121-130,
194, 211,
221, 225-
228
10426814,
9721189,
7826886,
9625734,
9054608,
9667077,
8930523,
11555828,
12865317,
15784278,
16112414,
17570247,
14703066,
11719446,
11465393,
8790407,
7568105,
10862525,
10910054
CYP1B1 physiological
compound
estrogen estrone C4-hydroxylation (low
Km, major reaction); C2-
hydroxylation (low
activity, minor reaction),
oxidation, 2,3-quinone
formation;
potent
activation
49, 127,
128, 130,
198
10426814,
12865317,
15784278,
17570247,
16537715
CYP2A6 natural
compound
alkenylbenzene; occurs
in a variety of foods
including essential oils of
tarragon, sweet basil,
sweet fennel, anis
estragole
C1′-hydroxylation
(major enzyme, medium
Km, medium activity)
potent
activation
195, 197 17407329,
21459083
CYP2A6 natural
compound
furanocoumarin; anti-
psoriatic, photosensitizer,
found in several species
of plants
methoxalen (8-
methoxypsoralen,
xanthotoxin)
epoxidation
(furanoepoxide
formation) and
hydrolysis
activation 140 17584015
CYP2A6 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
hydroxylation C5′-
(lactol formation,
medium Km, high to
medium activity);
oxidation (major
enzyme)
activation 132-134,
244, 256-
258
11774366,
12214673,
11600130,
15651850,
10837014,
9276639,
7646564
CYP2A6 natural
compound
methylenedioxypheny,
benzodioxole
safrole C1′-hydroxylation
(major enzyme at low
concentrations), medium
Km, medium activity
activation 195, 196,
259, 260
17407329,
15914212,
15377158,
15310247
CYP2A13 natural
compound
indole, alkylating,
pulmonary toxin; in
higher concentrations in
mammalian digestive
tract and coal tar
3-methylindole, skatole dehydrogenation
(desaturation, 3-
methyleneindolenine
formation, low Km,
medium activity, high
efficiency); epoxidation
(3-methyloxindole
formation)
potent
activation
77, 261 20795680,
19608696
CYP2A13 chemical difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) epoxidation 8,9-;
oxidation
potent
activation
181, 265 16385575,
16917071
CYP2A13 natural
compound
furanocoumarin; anti-
psoriatic, photosensitiser,
found in bergamot
essential oil, in other
citrus essential oils, and
in grapefruit juice
bergapten (5-
methoxypsoralen)
epoxidation and
hydrolysis to dihydrodiol
activation 267 20798279
CYP2A13 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
hydroxylation C5′-
(lactol formation,
medium Km, high
activity) and C2′- (keto
alcohol formation,
medium Km, low
activity)
activation 258, 266 19074523,
15651850
CYP2C9 natural
compound
phenylpropene; from
Rhizoma acorigraminei
methyleugenol C1′-hydroxylation
(medium activity, high
Km), at high
concentration
activation 196, 199 15914212,
16411663
CYP2C19 natural
compound
furanoterpene produced
in sweet potatoes
infected with Fusarium
solani; pulmonary toxin,
alkylating
4-ipomeanol oxidation (major
enzyme)
activation 173 15892579
CYP2D6 natural
compound
furanoterpene produced
in sweet potatoes
infected with Fusarium
solani; pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 173 15892579
CYP2D6 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) oxidation activation 61 11377247
CYP2E1 natural
compound
furanoterpene produced
in sweet potatoes
infected with Fusariumsolani; pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 173 15892579
CYP2E1 natural
compound
carbamic acid derivative;
fermentation by-product
ethyl carbamate (urethane) oxidation to vinyl
carbamate epoxide
activation 107, 282,
310-312
1486866,
1664256,
9344892,
9150748,
11181492
CYP2E1 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
hydroxylation C5′-
(lactol formation, low
activity)
activation 134, 244,
247,
256, 265
11600130,
10837014,
1423839,
9276639,
7646564
CYP2F1 natural
compound
indole, alkylating,
pulmonary toxin; present
in higher concentrations
in mammalian digestive
tract and coal tar
3-methylindole, skatole dehydrogenation
(desaturation, 3-
methyleneindolenine
form., low Km, medium
activity, high efficiency),
major enzyme
potent
activation
75-79, 334,
335
8558432,
11408359,
12563100,
20795680,
10383923,
17962375
CYP2F1 natural
compound
furanoterpene produced
in sweet potatoes
infected with Fusarium
solani; pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 172 1651809
CYP2W1 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) oxidation activation 210 16551781
CYP2W1 natural
compound
furanoxanthone;
mycotoxin, produced by
Aspergillus species
sterigmatocystin oxidation activation 210 16551781
CYP3A4 natural
compound
furanoterpene produced
in sweet potatoes
infected with Fusarium
solani; pulmonary toxin,
alkylating
4-ipomeanol epoxidation; oxidation,
minor enzyme
activation 140, 172,
173
17584015,
1651809,
15892579
CYP3A4 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) epoxidation exo-C8,9-
(major activating
enzyme), oxidation
activation 11, 12, 41,
57, 61,
175-180,
182, 336,
339-341
2492107,
2655891,
7955101,
15279838,
11377247,
2162057,
7766804,
8261428,
12079611,
1902334,
11782366,
16608170,
9328287,
1643250,
7545582,
7850790
CYP3A4 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin G1 (AFG1) oxidation activation 11, 12, 107,
341-343
2492107,
2655891,
1486866,
8082563,
7850790,
352361,
12849689
CYP3A4 physiological
compound
estrogen 17β-estradiol C2-hydroxylation (major
reaction, major enzyme,
medium Km, medium
efficiency, high activity),
major metabolite and
major enzyme in liver;
oxidation, 2,3-quinone
formation (lower
activity); C4-
hydroxylation (minor
reaction, major enzyme,
medium Km, medium
activity, medium
efficiency); oxidation,
3,4-quinone formation;
C16α-hydroxylation
(high Km, low activity)
activation 107, 122-
124, 126-
130, 190-
193, 346,
347
1486866,
9625734,
9054608,
9667077,
11555828,
12865317,
15784278,
16112414,
17570247,
1449532,
9635876,
11454902,
11741520,
10821664,
12124305
CYP3A4 physiological
compound
estrogen estrone C2-hydroxylation (high
Km, major metabolite,
low activity); oxidation,
2,3-quinone formation;
C4-hydroxylation (high
Km, low activity, major
enzyme); C16α-
hydroxylation (high Km,
low activity, major
enzyme)
activation 49, 122-
124, 127,
128, 130,
191, 192
10426814,
9625734,
9054608,
9667077,
12865317,
15784278,
17570247,
9635876,
11454902
CYP3A4 natural
compound
alkaloid, pyrrolizidine,
genotoxic
monocrotaline dehydrogenation activation 356 15649625
CYP3A4 natural
compound
nitrosamine, tobacco-
specific
N’-nitrosonornicotine (N-
nitrosonornicotine, NNN)
hydroxylation C2′- (keto
alcohol formation);
oxidation
activation 132, 133,
256, 257
11774366,
12214673,
9276639,
7646564
CYP3A4 natural
compound
pyrrolizidine alkaloid
from Senecio retrorsus
retrorsine dehydrogenation activation 356 15649625
CYP3A4 natural
compound
pyrrolizidine alkaloid,
food contaminant (meat,
milk, and honey)
riddelliine dehydrogenation activation 356 15649625
CYP3A4 natural
compound
pyrrolizidine alkaloid,
genotoxic
senecionine dehydrogenation activation 107, 357 1486866,
2009596
CYP3A4 natural
compound
furanoxanthone;
mycotoxin, produced by
Aspergillus species
sterigmatocystin oxidation activation 11, 12, 66,
107, 336,
341
2492107,
2655891,
9685642,
1486866,
9328287,
7850790
CYP3A5 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) epoxidation exo-8,9-
(major reaction);
oxidation
activation 182, 365 16608170,
7893152
CYP3A5 physiological
compound
estrogen 17β-estradiol C2-hydroxylation; C4-
hydroxylation (major
reaction); C16α-
hydroxylation (low
activity)
activation 127, 128,
191, 192,
347
12865317,
15784278,
9635876,
11454902,
12124305
CYP3A5 chemical tobacco-specific
nitrosamine
N’-nitrosoanabasine oxidation activation 132, 133 11774366,
12214673
CYP3A7 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin B1 (AFB1) epoxidation exo-C8,9-;
oxidation
activation 107, 182,
336, 338,
341, 366
1486866,
16608170,
9328287,
9493761,
7850790,
9044840
CYP3A7 natural
compound
difuranocoumarin;
mycotoxin, produced by
Aspergillus species on
food products
aflatoxin G1 (AFG1) oxidation activation 341 7850790
CYP3A7 physiological
compound
estrogen 17β-estradiol C2-hydroxylation
(medium Km, low
activity, major reaction);
C4-hydroxylation (low
activity, high Km);
C16α-hydroxylation
(very low activity, high
Km)
activation 127, 128,
347
12865317,
15784278,
12124305,
CYP3A7 physiological
compound
estrogen estrone C2-hydroxylation
(medium Km, medium
activity); C4-
hydroxylation (low
activity, medium Km);
C16α-hydroxylation
(medium Km, medium
activity)
activation 127, 128 12865317,
15784278
CYP3A7 natural
compound
furanoxanthone;
mycotoxin, produced by
Aspergillus species
sterigmatocystin oxidation activation 336, 338,
341
9328287,
9493761,
7850790
CYP4B1 natural
compound
furanoterpene produced
in sweet potatoes
infected with Fusarium
solani; pulmonary toxin,
alkylating
4-ipomeanol oxidation activation 172 1651809
CYP19A1
(aromatase)
physiological
compound
estrogen estradiol 17β- C2-hydroxylation
(medium Km)
activation 125, 369 8930523,
8476762
CYP19A1
(aromatase)
physiological
compound
estrogen estrone C2-hydroxylation
(medium Km)
activation 125, 369 8930523,
8476762
SULT1A1 natural
compound
1-methoxy-3-
indolylmethyl
glucosinolate breakdown
product, in many
Brassica vegetables
1-methoxy-3-
indolylmethyl-alcohol
O-sulfonation activation 398 20846518
SULT1A1 natural
compound
nephrotoxin, Aristolochia
fangchi compound,
nitroarene
aristolochic acids I and II O-sulfonation after
nitroreduction to
hydroxylamine
potent
activation
404 16161050
SULT1A3 natural
compound
alkenylbenzene; occurs
in a variety of foods
including essential oils of
tarragon, sweet basil,
sweet fennel, anis,
metabolite
1′-hydroxyestragole O-sulfonation activation 197, 401 21459083,
22072630
SULT1A3 natural
compound
alkenylbenzene; occurs
in a variety of foods
including essential oils of
tarragon, sweet basil,
sweet fennel, anis
estragole O-sulfonation after C1′-
hydroxylation
activation 401 22072630
SULT1B1 natural
compound
nephrotoxin, Aristolochia
fangchi compound,
nitroarene
aristolochic acids I and II O-sulfonation after
nitroreduction to
hydroxylamine
activation 394 16161050

Table 3. Activation of Drugs.

enzyme category subcategory compound reaction remarks references PubMed ID
COX-1 drug pyrido-carbazole; antineoplastic,
alkaloid, Apocyanaceae plant
compound, topoisomerase II inhibitor,
and DNA binding
ellipticine oxidation activation 39, 40 16936898,
21753906
CYP1A1 drug imidazole; anticancer, alkylating dacarbazine N-demethylation (major
extrahepatic enzyme)
activation 111 10473105
CYP1A1 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide oxidation (at high conc.) activation 87 20507880
CYP1A2 drug imidazole; anticancer, alkylating dacarbazine N-demethylation (major
enzyme)
potent
activation
111 10473105
CYP1A2 drug pyrido-carbazole; antineoplastic,
alkaloid, apocyanaceae plant
compound, topoisomerase II inhibitor
and DNA binding
ellipticine hydroxylation, C12- and
C13- (low activity)
activation 39, 40, 185-
189
16936898,
21753906,
11755121,
12123750,
15548707,
17197724,
21683692
CYP1A2 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide oxidation (at high
concentration)
activation 87 20507880
CYP1B1 drug pyrido-carbazole; antineoplastic,
alkaloid, Apocyanaceae plant
compound, topoisomerase II inhibitor
and DNA binding
ellipticine oxidation activation 39, 185-188 16936898,
11755121,
12123750,
15548707,
17197724
CYP2A6 drug oxazaphosporine; anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (minor
enzyme, high Km); oxidation
activation 101, 108,
251-254
11377097,
19501186,
8242617,
9010702,
10348794,
10692561
CYP2A6 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation (minor
reaction, high Km); oxidation
(at high concentration)
activation 87, 251, 253 20507880,
8242617,
10348794
CYP2B6 drug oxazaphosporine; anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (major
enzyme, major reaction, high
Km, high activity); oxidation
potent
activation
74, 101, 108,
251-254, 271,
275
11360624,
11377097,
19501186,
8242617,
9010702,
10348794,
10692561,
9280407,
15919850
CYP2B6 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (S)-(high
Km, major enzyme);
oxidation (at high
concentrations)
activation 87, 251-254,
275-277, 355
20507880,
8242617,
10348794,
10692561,
15919850,
10534317,
15821045,
16854777
CYP2C8 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation (minor
enzyme, high Km), oxidation
(at high concentrations)
activation 87, 251, 253 20507880,
8242617,
10348794
CYP2C9 drug oxazaphosporine; anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (low Km,
low activity, major enzyme at
low concentration); oxidation
activation 101, 108,
251-254
11377097,
19501186,
8242617,
9010702,
10348794,
10692561
CYP2C9 Drug Oxazaphosporine; Anticancer,
Nitrogen mustard alkylating
Ifosfamide C4-hydroxylation (low Km),
Oxidation (at high
concentrations)
activation 87, 251 8242617,
20507880
CYP2C9 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation (low Km),
oxidation (at high
concentration)
activation 86, 251 20507880,
8242617
CYP2C19 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (S)-
(minor reaction, high Km),
oxidation (at high
concentration)
activation 87, 251, 253,
276
20507880,
8242617,
10348794,
10534317
CYP2D6 drug pyrido-carbazole; antineoplastic,
alkaloid, Apocyanaceae plant
compound, topoisomerase II inhibitor
and DNA binding
ellipticine oxidation N2-; hydroxylation,
C13-(low activity)
activation 39, 40, 187,
188
16936898,
21753906,
15548707,
17197724
CYP2D6 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide oxidation (at high
concentration)
activation 87 20507880
CYP2E1 drug platinum-containing; anticancer cisplatin oxidation activation 303, 304 16251482,
17761302
CYP2E1 drug imidazole; anticancer, alkylating dacarbazine N-demethylation activation 111 10473105
CYP3A4 drug oxazaphosporine; anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation; oxidation activation 108, 251-254,
275, 344
19501186,
8242617,
9010702,
10348794,
10692561,
9923542,
15919850
CYP3A4 drug pyrido-carbazole; antineoplastic,
alkaloid, Apocyanaceae plants
compound, topoisomerase II inhibitor
and DNA binding
ellipticine hydroxylation, C13- (major
enzyme) and C12- (minor
reaction); oxidation N2-
(major enzyme)
potent
activation
39, 40, 287-
290, 345
16936898,
21753906,
11755121,
12123750,
15548707,
17197724,
20576524
CYP3A4 drug estradiol derivative; estrogen,
contraceptive
17α-ethynylestradiol
(ethinylestradiol
17α-)
oxygenation (2-
hydroxylation, 17α-
inactivation)
activation 140, 348 17584015,
17251390
CYP3A4 drug antimitotic, epipodophyllotoxin,
topoisomerase II inhibitor
etoposide (VP-16) O-demethylation (catechol
formation), high Km, high
activity, major enzyme
activation 349-351 8114683,
9456308,
17168690
CYP3A4 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (R)- (high
Km, high activity); oxidation
at high concentration
potent
activation
87, 251, 275-
277, 344,
352-355
20507880,
8242617,
10692561,
15919850,
10534317,
15821045,
9923542,
8161344,
10101149,
10348794,
16854777
CYP3A4 drug triphenylethyleneamine; antiestrogen,
estrogen receptor modulator
tamoxifen Cα-hydroxylation (major
enzyme); catechol formation;
oxidation, at high
concentration
activation 87, 354, 358-
364
20507880,
10348797,
12018981,
12971802,
14678348,
15159443,
16533026,
12124303,
12419838
CYP3A5 drug oxazaphosporine; anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation (very low
activity) activation to
cytotoxic metabolites
activation 253 10348794
CYP3A5 drug estradiol derivative; estrogen,
contraceptive
17α-ethynylestradiol
(ethinylestradiol,
17α-)
oxygenation (2-
hydroxylation, 17α-
mechanism-based
inactivation)
activation 140, 348 17584015,
17251390
CYP3A5 drug antimitotic, epipodophyllotoxin,
topoisomerase II inhibitor
etoposide (VP-16) O-demethylation (catechol
formation), medium Km, high
activity, minor enzyme
activation 349 8114683
CYP3A5 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation,
stereoselective for (R)-
activation 253, 276,
277, 353, 355
10348794,
10534317,
15821045,
10101149,
16854777
CYP3A7 drug oxazaphosporine; anticancer, nitrogen
mustard, alkylating
cyclophosphamide C4-hydroxylation activation 253, 275 10348794,
15919850
CYP3A7 drug oxazaphosporine; anticancer, nitrogen
mustard alkylating
ifosfamide C4-hydroxylation
stereoselective for (R)- (high
Km, medium (S-) and high
(R-) activity, minor enzyme
and reaction)
activation 253, 275 10348794,
15919850
Lactoperox
idase
(LPO)
drug pyrido-carbazole; antineoplastic,
alkaloid, Apocyanaceae plants
compound, topoisomerase II inhibitor
and DNA binding
Ellipticine oxidation activation 39, 40 16936898,
21753906
Myelopero
xidase
(MPO)
drug pyrido-carbazole; antineoplastic,
alkaloid, apocyanaceae plants
compound, topoisomerase II inhibitor
and DNA binding
ellipticine oxidation activation 39, 40 16936898,
21753906
NADPH-
cytochrom
e P450
reductase
(POR)
drug dihydroxyanthraquinone, laxative danthron reduction activation 385 11697035
SULT1A1 drug triphenylethyleneamine; antiestrogen,
estrogen receptor modulator,
metabolite
4-hydroxytamoxifen O-sulfonation activation 402, 403 12034366,
21537383
SULT2A1 drug pregnane, antiandrogen, metabolite 3α-
hydroxycyproterone
acetate
O-sulfonation activation 394 11535246
SULT2A1 drug triphenylethyleneamine; antiestrogen,
estrogen receptor modulator,
metabolite
α-hydroxytamoxifen O-sulfonation activation 412, 413 9855017,
15371299
SULT2A1 drug thioxanthenone, schistosomicide hycanthone O-sulfonation potent
activation
394, 395 11535246,
9141497
SULT2E1 drug thioxanthenone, schistosomicide hycanthone O-sulfonation activation 394 11535246

The classification of compounds into Tables 2 and 3 is somewhat arbitrary. Most of the data on activation of carcinogenic chemicals is with “chemicals” and only a limited amount with drugs and physiological compounds/natural products. We selected some compounds found in nature that are known to be carcinogens under some conditions, e.g. estrogens. Natural products are included (although one could also consider the PAHs to be natural, too). The set of drugs is mainly those used to treat cancer by DNA alkylation, topoisomerase poisons, etc. These compounds are often tumorigenic themselves and have been included. The term “chemicals” is used to describe these components that do not fit well into the natural product or drug classification. Even here there is room for change, e.g. many of the nitrosamines can be formed from secondary amines in vivo.

Another point that should be made is that we use the term carcinogen broadly, including some compounds that are “cancer suspects” and might have caused cancer at very high doses in experimental animal models. Inclusion in the tables here does not necessarily carry an endorsement as a human carcinogen for any regulatory purposes. Some of the compounds cited here are used effectively as drugs, and some are physiological compounds known to be important in normal homeostasis, e.g. estrogens.

The analysis of greatest interest is the activation of chemical carcinogens, and the results are summarized in Figure 2 as well as in Table 1, the main point of this review. The most striking aspect is the dominant role of the P450 enzymes. Interestingly, beyond these the AKR enzymes have a role that exceeds that of any other enzyme group, driven by their reported roles in PAH activation to quinones.485

Of the P450s, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—account for 77% of the reported activations (Figure 2B). The Family 1 enzymes are prominent in the activation of PAHs and heterocyclic aromatic amines, plus arylamines and a variety of other compounds. The values for P450s 2A6 and 2E1 are driven by their roles in the metabolism of N-nitrosamines and a variety of low Mr commodity chemicals, including several vinyl monomers.282

INTERPRETATIONS OF THE ASSIGNMENT RESULTS

Activation vs. Detoxication

We have presented separate tables for activation (Tables 1-3) and detoxication of carcinogens (Table 4). However, distinguishing a role for an enzyme in this regard may be difficult. E.g. there is the classic case of the action of epoxide hydrolase in benzo[a]pyrene activation (Figure 3).486 Another example has a single enzyme forming two different products from the same substrate, the P450 3A4-catalyzed oxidation of AFB1 to AFQ1 (3-hydroxylation, detoxication) and AFB1 8,9-exo-epoxide (activation) (Figure 4).176 The activation of the anticancer drug ellipticine is catalyzed by cyclooxygenases, peroxidases, and P450 enzymes (Tables 1, 2). Hydroxylations at positions C12- and C13, as well as N2-oxidation, are associated to the activation of ellipticine to toxic metabolites. These reactions are catalyzed mainly by the P450 1A1, 1A2, 1B1, and 3A4 enzymes. The same P450 enzymes catalyze detoxication of ellipticine by hydroxylation at the C7- and C9-positions, and the major enzymes considered are P450s 1A1 and 1A2 (Table 4). It has been reported that the balance of activation vs. deactivation of this drug is dependent on cytochrome b5, in that cytochrome b5 enhances production of 12-hydroxy and 13-hydroxyellipticine and thus changes the product ratio in a favor of increased formation of covalent ellipticine-DNA adducts. The effect of cytochrome b5 might be even more pronounced in vivo, in that it has been reported that ellipticine increases levels of cytochrome b5 in rat liver.39,187,189

Figure 3.

Figure 3

Diol-epoxide pathway of benzo[a]pyrene activation.486

Figure 4.

Figure 4

Oxidation of AFB1 by P450 3A4.176

Another issue involves tissue selectivity. As a case in point, GSH transferases catalyze the conjugation of bifunctional electrophiles (e.g., ethylene dibromide, Figure 5) with GSH to form half-mustards and then episulfonium ions.377 These reactive species can react with DNA and are considered to be involved in chemical carcinogenesis. However, if such reactions occur in erythrocytes there is no DNA and this might be considered a detoxication.

Figure 5.

Figure 5

Conjugation of ethylene dibromide with GSH.377

Selectivity of activation vs. detoxication reactions is observed in the acetylation of N-hydroxy heterocyclic and aromatic amines (Table 1 vs. Table 4). The vast majority of heterocyclic amines do not undergo detoxication by N-acetylation because most heterocyclic amines are poor substrates for NATs. These compounds do undergo bioactivation by NATs via O-acetylation, following P450-mediated N-oxidation of the exocyclic amine groups. In contrast to heterocyclic amines, many aromatic amines do undergo detoxication by N-acetylation with NATs.

As mentioned before, chemical carcinogens are activated by a number of enzymes, of which the major ones are P450, SULT, AKR, and NAT (Figure 2 and Table 2), while the data on activation of natural/physiological compounds show that primarily P450 (92%, of which the major ones are 1A1, 1A2, 1B1, and Subfamily 3A) and SULT (8%) enzymes participate in their activation (Table 3). Similarly to general chemicals, drugs are activated by P450s (76%), SULT (12%), LPO (7%), and COX (5%) enzymes. Major P450 enzymes assigned are 3A4 (20%) and 1A2 (11%), and participation of others is low (Table 2).

When considering activation vs. detoxication reactions for a specific compound and/or reaction, attention should be given to the experimental conditions applied and the properties of the compounds and metabolites formed. For instance, 2-nitroanisole is (under oxidative conditions) detoxicated by C2-, C5-, and C6-hydroxylations catalyzed by P450 2E1, 1A1, and 2B6 enzymes (2E1 being the major one). However, under anaerobic conditions activation by nitroreduction prevails due to catalysis by XOR. In addition, 2-nitroanisole and its metabolite 2-nitrophenol induce P450 1A2 and NQO1 (in rats), thus providing the possibility to influence their own detoxication and/or activation pathways.423,424

Our approach here has been to list enzymes under both activation and detoxication in cases that are deemed to be duplicative.

Influence of the Diversities of Different Chemical Classes

In making the assignments shown in Figure 2, the number of compounds available can be considered a contributor to the reported results. For instance, it is known that P450s 1A1 and 1B1 (and AKR enzymes) can oxidize many PAHs.220,485,486 Many of these are available, given the long-standing interest in individual PAHs,4 and have been tested with P450s.41,109,229 Likewise, many arylamines and heterocyclic aromatic amines are known and have been tested with P450 1A2.12 Further, many N-nitrosamines (and vinyl monomers) have been tested with P450s 2A6 and 2E1.247,282 It is possible that, in the future, the availability of a large number of analogs in another class of carcinogens might lead to more testing and shift the balance of the results in Figure 2.

Another point to be made here is that our classification includes compounds shown to be pro-mutagens, to bind covalently to DNA, etc. We do not have evidence that all of the compounds listed in our tables actually cause tumors in experimental animals or humans, although we believe that there is a likelihood that they do at some dose (readers are referred to the National Toxicology Program, International Agency on Cancer Research, and other sources for in vivo cancer results and classifications of human carcinogens).

Types of Reactions

Another analysis involves the type of reactions involved in bioactivation reactions (Figure 6). As seen there, 11 reactions account for 94% of the total, each representing 5-12%. The O-acetylation and O-sulfonation conjugation collectively account for 18%. Nitroreductions (6%) plus other reductions (0.3%) constitute 6.3%. Most of the other reactions are oxidations, together accounting for ~ 73%. Of these, N-hydroxylation (10%) and C-hydroxylation (11%) are the most prominent.

Figure 6.

Figure 6

Analysis of types of activation reactions (data of Table 1, total of 799 reactions). See text for discussion.

The results support the general view that there are many ways to activate procarcinogens (Figures 1, 3-5). As with the classification by enzymes (vide infra) there are caveats about representation based on the number of compounds experimentally available.

We have not analyzed the entries in Table 1 in the context of the chemical nature of the substrate, but this is rather obvious from the nature of Figure 6. Epoxidations involve olefins and aryl rings, nitro reductions involve nitro groups, N-hydroxylations involve arylamines and heterocyclic amines (O-acetylation involves the products), and O-sulfonation involves hydroxylarylamines and benzylic allylic alcohols. Cα-Hydroxylation is prominent for N-nitrosamines. Thus, a single group of chemicals does not dominate.

Weaker Activations

Several enzymes and their reactions have been included in the analyses, although the evidence for significance of their roles in rather weak. There was not a logical reason to delete these from our analysis nor a means of setting a strict benchmark for strong vs. weak roles because of the diversity of assays used. Further, “weak activation” (included in Table 1) might become “activation” or “potent activation” either following ingestion of certain enzyme inducers and/or the expression of a more active variant of the enzyme, as exemplified in several animal models.27

In this regard, we had reported a major role for P450 2C9 in benzo[a]pyrene 3-hydroxylation in human liver.430 Although this reaction has been studied for many years and is the basis of the classic “AHH” activity,487 it is generally not considered to be a bioactivation process, especially in liver. P450 enzymes such as those in the P450 2D6 and Subfamily 2C have been tested for several activities and do have low levels of activity (Table 1), but there is little if any evidence that these drug-metabolizing enzymes have major roles in chemical carcinogenesis in humans.

Similar points can also be raised about the activation of AFB1. Although a number of forms of human P450 have some capability of activating AFB1 (Table 1),139 the evidence is very limited that most of these have relevance. The established target of AFB1 in the liver, and enzymes that are predominantly expressed in other tissues are not very relevant. The existing literature clearly shows roles of primarily two P450s, 3A4 and 1A2.432,443,488 P450 3A4 forms the highly mutagenic exo-8,9-poxide; P450 1A2 forms a roughly equimolar mixture of the dangerous exo-plus the endo-epoxide, the latter of which is essentially non-genotoxic.176,432,489 The situation is complicated in that both of these enzymes also catalyze AFB1 detoxication reactions, 3α-hydroxylation in the case of P450 3A4 (AFQ1) and 9a-hydroxylation in the case of P450 1A2 (AFM1).176

The information presented in this review is relevant in the context of translational studies. A case in point involves P450 2D6 and lung cancer. The interest began even before the characterization of P450 2D6, with a report that individuals with lung cancer showed a low representation of phenotypically poor metabolizers of debrisoquine, subsequently confirmed as a P450 2D6 prototypic substrate.490 These results led to the consideration of the hypothesis that P450 2D6 is involved in the bioactivation of a major carcinogen leading to lung cancer. The level of P450 2D6 in lung tissue is low,491 but it is conceivable that systemic exposure to an entity produced in the liver could be involved. However, attempts to identify a major role of P450 2D6 in the activation of carcinogens have been resoundingly negative.492,493 Further, studies on the genotoxicity of crude cigarette smoke condensates and liver microsomes showed a role for P450 1A2 but not P450 2D6, based on the use of inhibitors etc.149

An alternate hypothesis, given the lack of evidence for a role of P450 2D6 in bioactivation of carcinogens, is that the CYP2D6 gene is linked to the expression of an oncogene. However, no evidence for this hypothesis exists and the known major genetic defect regulating P450 2D6 is aberrant RNA splicing, which is not likely to involve co-regulation of nearby genes.494 Additional epidemiology studies have generally not confirmed a major effect of P450 2D6 expression related to any kind of lung cancer.495,496 In our opinion, resources could be used more effectively if sound experimental studies preceded expensive epidemiological studies with marginal bases of biological causality.

Analysis of Enzymes Involved in Detoxication

Analysis of the data on detoxication is presented in Figure 7. GST and UGT reactions account for > 50% of the reactions, which is not surprising. Two other transferases, NAT and COMT, are also prominent. The fraction attributed to AKR reactions is surprisingly high. Also surprising is the low fraction attributed to epoxide hydrolase, which seem surprising in light of the notoriety of epoxides in toxicology and drug metabolism circles.497 However, epoxide hydrolase is rather ineffective in hydrolyzing some of the most reactive epoxides498 and AFB1 8,9-epoxides.433 However, the roles of epoxide hydrolase and sulfotransferases in detoxication may be underestimated because of the nature of the reactions that have been reported to date with the human enzymes. We suspect that there is more literature using animal epoxide hydrolases that has not been re-done with the human enzymes, and the overall picture (Figure 7) might be misleading. The results of Figure 7 can be contrasted with those in Figures 2 and 6, when the SULT enzymes figure in many bioactivation reactions. However, judging sulfotransferases to be primary bioactivation enzymes, as opposed to detoxication, may not be a proper conclusion. P450s are involved in ~ 14% of the detoxication reactions with carcinogens (Figure 7), but this estimate may not be accurate. As with all of the enzymes of interest here, the assays for bioactivation (e.g. Ames test, umu assays, covalent binding) are often easier to set up than those that would accurately measure detoxication, and the literature may be misleading as to the relative importance of the detoxication enzymes.

Figure 7.

Figure 7

Figure 7

Analysis of detoxication reactions. A: Enzymes involved in detoxication. B: Reactions involved in detoxication. Data are from Table 4 (total of 281 reactions). See text for discussion.

Potential Roles of “Orphan” Enzymes

The analysis of enzymes and P450s (Figure 2) is based on existing knowledge (of the enzymes, as well as the carcinogens), and the pattern might change with time. With the (human) P450s, ~ 1/4 can still be considered “orphans,” in the sense that limited information is available about their catalytic activities and their roles in physiological processes.499 Further, only limited information is available about roles in carcinogen metabolism. An exception in this regard is P450 2W1, which has been shown (like P450 1B1) to activate several classes of carcinogens.210 Of interest is the reported expression of P450 2W1 only in tumor tissue.500 Another orphan P450, P450 4F11, was found not to have appreciable activity towards any carcinogens tested.501

The role of P450 2S1 in the activation of carcinogens is controversial, as well as almost all other potential substrates. Following the initial discovery of human P450 2S1,502 it was reported that the enzyme would oxidize naphthalene.503 However, this report was not confirmed and no evidence for a role of P450 2S1 in the activation of any carcinogens was seen.210 Further, the only substrate reported and independently confirmed for P450 2S1 is the drug candidate 1,4-bis{[2-dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione (AQ4N).504,505 Some carcinogens can be activated by P450 2S1 in the presence of oxygen surrogates (hydroperoxides)506,507 but the significance of these reactions is unknown, in that P450 2S1 has been demonstrated to be rapidly reduced by NADPH-P450 reductase in the usual manner.505 Nevertheless, expression of P450 2S1 in a mammalian cell line did lead to the formation of products of benzo[a]pyrene, indicating some mechanism of function.506,507

A number of the other P450 orphans have been expressed508 but apparently roles in carcinogen metabolism have not been investigated. This same statement can be applied to other enzymes under consideration, regarding recently discovered gene products.

We should point out that our analyses are based largely on studies done with the “wild type,” or most abundant genetic variants, in the human population. A treatment of all of the implicaitons of variations is beyond the scope of this review and indeed the catalytic efficiencies of only a subset of the variants of these enzymes has been determined with any substrates (e.g., http://www.cypalleles.ki.se/) and few with carcinogens. However, if a racial group exists in which the frequency of a fuctional polymorphism is high, then the balance of enzyme involvement (e.g., Figure 2B) could be shifted.

COMPARISONS OF PATTERNS FOR THE METABOLISM OF DRUGS AND CARCINOGENS

We25,509-512 and others22-24 have presented compilations of the roles of P450s and other enzymes involved in the metabolism of drugs. Comprehensive and up-to-date information on the metabolism of chemicals (including drugs and physiological compounds) in humans and animal models is available in a form of Web searchable absorption-distribution-metabolism-excretion (ADME) database (http://jp.fujitsu.com/group/kyushu/en/services/admedatabase/). The generally accepted view is that, for the drugs that undergo metabolism, almost 75% involve P450 reactions.23-25 Five P450s—1A2, 2C9, 2C19, 2D6, and 3A4—are involved in ~ 90% of these P450 reactions.23-25 This situation, i.e. a large segment of drug metabolism being controlled by a few enzymes, has been useful in being able to rapidly define metabolism issues in drug development.

In an analysis made previously with a total of 7906 entries (metabolic reactions catalyzed by P450s with different compounds as substrates),513 2065 entries are related to P450 Subfamily 3A enzymes, i.e. 26% of the total. Making similar analysis for clinically significant drugs,513 P450 3A4 and 3A5 enzymes participated in 34% of the total P450-catalyzed metabolic reactions, less than the ~50% presented by others.23,24 The contribution of the P450 Subfamily 3A enzymes may be overestimated, or the differences may reflect the time period sampled or the possible differences between sets of drugs published in the open literature vs. proprietary drugs and those in development used in the analyses.

The results shown in Figure 2 can be compared to drug metabolism. The first point is that a similar fraction of the total bioactivation (68%) is due to P450 enzymes (Figure 2A). The five P450s involved in drug metabolism are “replaced” with six—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—that collectively account for 77% of the P450-mediated reactions.

The numbers resulting from the present analysis of updated earlier data513 on all compounds fit better to the data we report in the activation of the carcinogens by human P450s, and can be used for comparisons. E.g., participation of P450s 1A1, 1A2 and 2E1 in carcinogen activation reactions is 20, 17, and 11%, respectively, and their participation in total metabolic reactions presented here is 7, 10, and 5%, respectively. The participation of P450 1B1 in activation is 11%, and in total metabolism reactions is 3%. However, the participation of P450 3A4 in activation reactions is 10% and its participation in all metabolic reactions is 20%.

The participation of P450 2C9 in activation reactions is ~2% and in total metabolism reactions is 9%; the participation of P450 2C19 in activation reactions is 1% and in total metabolism reactions is 8%. Finally, the apparent participation of P450 2D6 in activation reactons is ~2% and in total metabolism reactions is 10%. We make the general conclusion that the contribution of “toxicologically significant” enzymes (e.g. P450s 1A1, 1A2, 1B1, 2A6, 2E1) is greater in activation reactions and less in considerations of total metabolism. The opposite is the case for generally-detoxicating enzymes, e.g. P450s 2D6, 3A4 (with exceptions), and the 2C Subfamily.

APPLICATIONS

The information presented here is intended to provide a summary to readers who are interested in the literature on human enzymes involved in chemical carcinogenesis reported to date. Further, the analyses (Figure 2) have uses in themselves, despite the stated caveats, in evaluating the individual enzymes.

The analysis provides some guidance in translational applications. For instance, the information presented in Figure 2 can direct the efforts of those in the field of molecular epidemiology of cancer as to which genes and single nucleotide polymorphisms might be most profitable to study. Likewise, some guidance is provided to those in the field of chemoprevention as to which enzymes and reactions might be most useful to inhibit or induce. Such considerations also apply in general issues of risk assessment, in evaluating issues such as inducibility and inter-individual variation.

The analysis (Figure 2) is also useful in basic research. For one thing, it was a matter of curiosity for us—after studying the area for so long513—to know which P450s are most prominent in chemical carcinogenesis. Thus, justification is clearly provided for studying the six P450s cited in Figure 2B (1A1, 1A2, 1B1, 2A6, 2E1, 3A4). Of the six, only P450 1A1 has not been reported at the level of a crystal structure. However, none of these P450 structures has been solved with a carcinogen bound. An overall hope is to use our knowledge of structure-activity relationships to predict which new chemicals will be activated and whether products will be toxic or carcinogenic. In addition, there are numerous basic questions regarding how P450s, including those cited here, such as: What is the molecular basis of catalytic selectivity? What factors determine rates of particular P450 reactions? What is the molecular basis of the cooperativity seen in P450s, including some of those described here, e.g. P450 3A4 and also P450 1A2 (with pyrene).514

It should be emphasized again that almost all of the work cited here was done in the past 25 years.27 In dealing with an effort of this scope, we might have overlooked some useful papers in the field and apologize to those authors in advance. An Excel file of an expansion of Table 1 is included for the ease of those readers who wish to search it or use it to develop or update their own databases.

Supplementary Material

1_si_001

ACKNOWLEDGEMENT

We thank L. M. Folkman and particulary K. Trisler for assistance in preparation of the manuscript. We also acknowledge the pioneering efforts of Dr. Frederick J. DiCarlo and his contributions to the area of xenobiotic metabolism. This review is dedicated to the memory of two eminent cancer researchers who passed away recently, Drs. Fred F. Kadlubar and Donald M. Jerina. Both played major roles in the work summarized here and are missed in this field.

FUNDING SOURCES

This study was supported in part by National Institutes of Health grants R37 CA090426 and R01 ES010546 (F.P.G.).

ABBREVIATIONS

AF

aflatoxin

AGT or MGMT (used in tables)

O6-alkylguanine DNA-alkyltransferase

AKR

aldo-keto reductase

COX (used in tables) or PTGS

cyclooxygenase (prostaglandin synthase)

P450 or CYP (used in tables)

cytochrome P450

FMO

microsomal flavin-containing monoxygenase

GST

glutathione (GSH) transferase

HAA

heterocyclic arylamine

NAT

N-acetyltransferase

NPR or POR (used in tables)

NADPH-P450 reductase

NQO

NADPH-quinone reductase

PAH

polycyclic aromatic hydrocarbon

SULT

sulfotransferase

UGT

UDP glucuronosyl transferase

XOR

xanthine oxidoreductase

Footnotes

Footnote 1: For convenience we will use the term “carcinogens” to refer to both carcinogens that act directly (e.g., modifying DNA) and to procarcinogens (i.e., those that require metabolism to be converted to act on biological targets). In the tables the term “chemicals” is used for those chemicals that are not drugs or natural products.

REFERENCES

  • (1).Hill J, Baldwin R. In: Cautions Against the Immoderate Use of Snuff. 2nd ed Jackson J, editor. London: 1761. [Google Scholar]
  • (2).Rehn L. Über Blasentumoren bei Fuchsinarbeitern. Archiv. Clin. Chirgurie. 1895;50:588–600. [Google Scholar]
  • (3).Yamagiwa K, Ichikawa K. Experimentelle Studie über die Pathogenese der Epithelialgeschwulste. Mitt. Med. Fak. Tokio. 1915;15:295–344. [Google Scholar]
  • (4).Cook JW, Hewett CL, Hieger I. The isolation of a cancer-producing hydrocarbon from coal tar. Parts I, II, and III. J. Chem. Soc. 1933:394–405. [Google Scholar]
  • (5).Fieser LF. Carcinogenic activity, structure and chemical reactivity of polynuclear hydrocarbons. Am. J. Cancer. 1938;34:37–124. [Google Scholar]
  • (6).Miller EC, Miller JA. The presence and significance of bound amino azodyes in the livers of rats fed p-dimethylaminoazobenzene. Cancer Res. 1947;7:468–480. [Google Scholar]
  • (7).Miller EC. Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res. 1951;11:100–108. [PubMed] [Google Scholar]
  • (8).Miller JA. Carcinogenesis by chemicals: an overview. G. H. A. Clowes Memorial Lecture. Cancer Res. 1970;30:559–576. [PubMed] [Google Scholar]
  • (9).Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U. S. A. 1973;70:2281–2285. doi: 10.1073/pnas.70.8.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (10).Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol. 1991;4:391–407. doi: 10.1021/tx00022a001. [DOI] [PubMed] [Google Scholar]
  • (11).Shimada T, Guengerich FP. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. U. S. A. 1989;86:462–465. doi: 10.1073/pnas.86.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (12).Shimada T, Iwasaki M, Martin MV, Guengerich FP. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK1002. Cancer Res. 1989;49:3218–3228. [PubMed] [Google Scholar]
  • (13).Shimada T, Martin MV, Pruess-Schwartz D, Marnett LJ, Guengerich FP. Roles of individual human cytochrome P450 enzymes in the bioactivation of benzo[a]pyrene, 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, and othe dihydrodiol derivatves of polycyclic aromatic hydrocarbons. Cancer Res. 1989;49:6304–6312. [PubMed] [Google Scholar]
  • (14).Thier R, Pemble SE, Taylor JB, Humphreys WG, Persmark M, Ketterer B, Guengerich FP. Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc. Natl. Acad. Sci. U. S. A. 1993;90:8576–8580. doi: 10.1073/pnas.90.18.8576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (15).Glatt H, Bartsch I, Christoph S, Coughtrie MWH, Falany CN, Hagen M, Landsiedel R, Pabel U, Phillips DH, Seidel A, Yamazoe Y. Sulfotransferase-mediated activation of mutagens studied using heterologous expression systems. Chem.-Biol. Interact. 1998;109:195–219. doi: 10.1016/s0009-2797(97)00133-6. [DOI] [PubMed] [Google Scholar]
  • (16).Kellerman G, Luyten-Kellerman M, Shaw CR. Genetic variation of aryl hydrocarbon hydroxylase in human lymphocytes. Am. J. Human Genet. 1973;25:327–331. [PMC free article] [PubMed] [Google Scholar]
  • (17).Kellerman G, Shaw CR, Luyten-Kellerman M. Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. New Engl. J. Med. 1973;298:934–937. doi: 10.1056/NEJM197311012891802. [DOI] [PubMed] [Google Scholar]
  • (18).Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992;2:116–127. doi: 10.1097/00008571-199206000-00003. [DOI] [PubMed] [Google Scholar]
  • (19).Pantuck EJ, Pantuck CB, Garland WA, Min BH, Wattenberg LW, Anderson KE, Kappas A, Conney AH. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin. Pharmacol. Therapeut. 1979;25:88–95. doi: 10.1002/cpt197925188. [DOI] [PubMed] [Google Scholar]
  • (20).Wattenberg LW. Inhibition of neoplasia by minor dietary constituents. Cancer Res. Suppl. 1983;43:2448–2453. [PubMed] [Google Scholar]
  • (21).Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Therapeut. 1994;270:414–423. [PubMed] [Google Scholar]
  • (22).Evans WE, Relling MV. Pharmacogenomics: translating function genomics into rational therapeutics. Science. 1999;286:487–491. doi: 10.1126/science.286.5439.487. [DOI] [PubMed] [Google Scholar]
  • (23).Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos. 2004;32:1201–1208. doi: 10.1124/dmd.104.000794. [DOI] [PubMed] [Google Scholar]
  • (24).Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 2005;4:825–833. doi: 10.1038/nrd1851. [DOI] [PubMed] [Google Scholar]
  • (25).Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: Structure, Mechanism, and Biochhemistry. 3rd ed Kluwer Academic-Plenum Press; New York: 2005. pp. 377–530. [Google Scholar]
  • (26).Jiang H, Vudathala DK, Blair IA, Penning TM. Competing roles of aldo-keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells role of AKRs in P4501B1 induction. Chem. Res. Toxicol. 2006;19:68–78. doi: 10.1021/tx0502488. [DOI] [PubMed] [Google Scholar]
  • (27).Guengerich FP. Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 1988;48:2946–2954. [PubMed] [Google Scholar]
  • (28).Palackal NT, Burczynski ME, Harvey RG, Penning TM. Metabolic activation of polycyclic aromatic hydrocarbon trans-dihydrodiols by ubiquitously expressed aldehyde reductase (AKR1A1) Chem.-Biol. Interact. 2001;130-132:815–824. doi: 10.1016/s0009-2797(00)00237-4. [DOI] [PubMed] [Google Scholar]
  • (29).Burczynski ME, Lin HK, Penning TM. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res. 1999;59:607–614. [PubMed] [Google Scholar]
  • (30).Palackal NT, Burczynski ME, Harvey RG, Penning TM. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones. Potential role in polycyclic aromatic hydrocarbon activation. Biochemistry. 2001;40:10901–10910. doi: 10.1021/bi010872t. [DOI] [PubMed] [Google Scholar]
  • (31).Jiang H, Shen YM, Quinn AM, Penning TM. Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (±)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Chem. Res. Toxicol. 2005;18:365–374. doi: 10.1021/tx0497245. [DOI] [PubMed] [Google Scholar]
  • (32).Ruan Q, Gelhaus SL, Penning TM, Harvey RG, Blair IA. Aldo-keto reductase- and cytochrome P450-dependent formation of benzo[a]pyrene-derived DNA adducts in human bronchoalveolar cells. Chem. Res. Toxicol. 2007;20:424–431. doi: 10.1021/tx060180b. [DOI] [PubMed] [Google Scholar]
  • (33).Quinn AM, Harvey RG, Penning TM. Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10. Chem. Res. Toxicol. 2008;21:2207–2215. doi: 10.1021/tx8002005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (34).Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab. Pharmacokinet. 2006;21:257–276. doi: 10.2133/dmpk.21.257. [DOI] [PubMed] [Google Scholar]
  • (35).Palackal NT, Lee SH, Harvey RG, Blair IA, Penning TM. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J. Biol. Chem. 2002;277:24799–24808. doi: 10.1074/jbc.M112424200. [DOI] [PubMed] [Google Scholar]
  • (36).Burczynski ME, Sridhar GR, Palackal NT, Penning TM. The reactive oxygen species- and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J. Biol. Chem. 2001;276:2890–2897. doi: 10.1074/jbc.M006655200. [DOI] [PubMed] [Google Scholar]
  • (37).Penning TM, Jin Y, Steckelbroeck S, Lanisnik Rizner T, Lewis M. Structure-function of human 3α-hydroxysteroid dehydrogenase genes and proteins. Mol. Cell Endocrinol. 2004;215:63–72. doi: 10.1016/j.mce.2003.11.006. [DOI] [PubMed] [Google Scholar]
  • (38).Wiese FW, Thompson PA, Kadlubar FF. Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis. 2001;22:5–10. doi: 10.1093/carcin/22.1.5. [DOI] [PubMed] [Google Scholar]
  • (39).Stiborová M, Rupertová M, Schmeiser HH, Frei E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2006;150:13–23. doi: 10.5507/bp.2006.002. [DOI] [PubMed] [Google Scholar]
  • (40).Stiborová M, Paljaková J, Martinkova E, Borek-Dohalská L, Eckschlager T, Kizek R, Frei E. Ellipticine cytotoxicity to cancer cell lines—a comparative study. Interdiscip. Toxicol. 2011;4:98–105. doi: 10.2478/v10102-011-0017-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (41).Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, Sutter TR. Activation of chemically diverse procarcinogens by human cytochrome P450 1B1. Cancer Res. 1996;56:2979–2984. [PubMed] [Google Scholar]
  • (42).Shimada T, Gillam EM, Sandhu P, Guo Z, Tukey RH, Guengerich FP. Activation of procarcinogens by human cytochrome P450 enzymes expressed in Escherichia coli. Simplified bacterial systems for genotoxicity assays. Carcinogenesis. 1994;15:2523–2529. doi: 10.1093/carcin/15.11.2523. [DOI] [PubMed] [Google Scholar]
  • (43).Shimada T, Oda Y, Gillam EMJ, Guengerich FP, Inoue K. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab. Dispos. 2001;29:1176–1182. [PubMed] [Google Scholar]
  • (44).Schwarz D, Kisselev P, Cascorbi I, Schunck WH, Roots I. Differential metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants. Carcinogenesis. 2001;22:453–459. doi: 10.1093/carcin/22.3.453. [DOI] [PubMed] [Google Scholar]
  • (45).Shou M, Korzekwa KR, Crespi CL, Gonzalez FJ, Gelboin HV. The role of 12 cDNA-expressed human, rodent, and rabbit cytochromes P450 in the metabolism of benzo[a]pyrene and benzo[a]pyrene trans-7,8-dihydrodiol. Mol. Carcinog. 1994;10:159–168. doi: 10.1002/mc.2940100307. [DOI] [PubMed] [Google Scholar]
  • (46).Doehmer J, Holtkamp D, Soballa V, Raab G, Schmalix W, Seidel A, Greim H, Jacob J. Cytochrome P450 mediated reactions studied in genetically engineered V79 Chinese hamster cells. Pharmacogenetics. 1995;5:91–96. doi: 10.1097/00008571-199512001-00008. [DOI] [PubMed] [Google Scholar]
  • (47).Kisselev P, Schwarz D, Platt KL, Schunck WH, Roots I. Epoxidation of benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 in reconstituted membranes. Eur. J. Biochem. 2002;269:1799–1805. doi: 10.1046/j.1432-1033.2002.02848.x. [DOI] [PubMed] [Google Scholar]
  • (48).Schmalix WA, Maser H, Kiefer F, Reen R, Wiebel FJ, Gonzalez F, Seidel A, Glatt H, Greim H, Doehmer J. Stable expression of human cytochrome P450 1A1 cDNA in V79 Chinese hamster cells and metabolic activation of benzo[a]pyrene. Eur. J. Pharmacol. 1993;248:251–261. doi: 10.1016/0926-6917(93)90052-r. [DOI] [PubMed] [Google Scholar]
  • (49).Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM, Inoue K. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis. 1999;20:1607–1614. doi: 10.1093/carcin/20.8.1607. [DOI] [PubMed] [Google Scholar]
  • (50).Kushman ME, Kabler SL, Fleming MH, Ravoori S, Gupta RC, Doehmer J, Morrow CS, Townsend AJ. Expression of human glutathione S-transferase P1 confers resistance to benzo[a]pyrene or benzo[a]pyrene 7,8-dihydrodiol mutagenesis, macromolecular alkylation and formation of stable N2-Gua-BPDE adducts in stably tranfected V79MZ cells co-expressing hCYP1A1. Carcinogenesis. 2007;28:207–214. doi: 10.1093/carcin/bgl125. [DOI] [PubMed] [Google Scholar]
  • (51).Kushman ME, Kabler SL, Ahmad S, Doehmer J, Morrow CS, Townsend AJ. Protective efficacy of hGSTM1-1 against B[a]P and (+)- or (−)-B[a]P-7,8-dihydrodiol cytotoxicity, mutagenicity, and macromolecular adducts in V79 cells coexpressing hCYP1A1. Toxicol. Sci. 2007;99:51–57. doi: 10.1093/toxsci/kfm133. [DOI] [PubMed] [Google Scholar]
  • (52).Gelhaus SL, Harvey RG, Penning TM, Blair IA. Regulation of benzo[a]pyrene-mediated DNA- and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human lung cells. Chem. Res. Toxicol. 2011;24:89–98. doi: 10.1021/tx100297z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (53).Yamazaki H, Hatanaka N, Kizu R, Hayakawa K, Shimada N, Guengerich FP, Nakajima M, Yokoi T. Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1. Mut. Res. 2000;472:129–38. doi: 10.1016/s1383-5718(00)00138-8. [DOI] [PubMed] [Google Scholar]
  • (54).Hatanaka N, Yamazaki H, Oda Y, Guengerich FP, Nakajima M, Yokoi T. Metabolic activation of carcinogenic 1-nitropyrene by human cytochrome P450 1B1 in Salmonella typhimurium strain expressing an O-acetyltransferase in SOS/umu assay. Mut. Res. 2001;497:223–233. doi: 10.1016/s1383-5718(01)00254-6. [DOI] [PubMed] [Google Scholar]
  • (55).Oda Y, Watanabe T, Terao Y, Nukaya H, Wakabayashi K. Genotoxic activation of 2-phenylbenzotriazole-type compounds by human cytochrome P4501A1 and N-acetyltransferase expressed in Salmonella typhimurium umu strains. Mut. Res. 2008;654:52–57. doi: 10.1016/j.mrgentox.2008.04.013. [DOI] [PubMed] [Google Scholar]
  • (56).Marumoto S, Oda Y, Miyazawa M. Antigenotoxic activity of naturally occurring furanocoumarins. Environ. Mol. Mutagen. 2011;52:646–57. doi: 10.1002/em.20665. [DOI] [PubMed] [Google Scholar]
  • (57).Yamazaki Y, Fujita K, Nakayama K, Suzuki A, Nakamura K, Yamazaki H, Kamataki T. Establishment of ten strains of genetically engineered Salmonella typhimurium TA1538 each co-expressing a form of human cytochrome P450 with NADPH-cytochrome P450 reductase sensitive to various promutagens. Mut. Res. 2004;562:151–62. doi: 10.1016/j.mrgentox.2004.06.003. [DOI] [PubMed] [Google Scholar]
  • (58).Hammons GJ, Milton D, Stepps K, Guengerich FP, Tukey RH, Kadlubar FF. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant cytochrome P450 enzymes. Carcinogenesis. 1997;18:851–854. doi: 10.1093/carcin/18.4.851. [DOI] [PubMed] [Google Scholar]
  • (59).Crofts FG, Sutter TR, Strickland PT. Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1 and P4501B1. Carcinogenesis. 1998;19:1969–1973. doi: 10.1093/carcin/19.11.1969. [DOI] [PubMed] [Google Scholar]
  • (60).Cheung C, Loy S, Li GX, Liu AB, Yang CS. Rapid induction of colon carcinogenesis in CYP1A-humanized mice by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate. Carcinogenesis. 2011;32:233–239. doi: 10.1093/carcin/bgq235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (61).Oda Y, Aryal P, Terashita T, Gillam EM, Guengerich FP, Shimada T. Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mut. Res. 2001;492:81–90. doi: 10.1016/s1383-5718(01)00154-1. [DOI] [PubMed] [Google Scholar]
  • (62).Josephy PD, Batty SM, Boverhof DR. Recombinant human P450 forms 1A1, 1A2, and 1B1 catalyze the bioactivation of heterocyclic amine mutagens in Escherichia coli lacZ strains. Environ. Mol. Mutagen. 2001;38:12–8. doi: 10.1002/em.1045. [DOI] [PubMed] [Google Scholar]
  • (63).Edwards RJ, Murray BP, Murray S, Schulz T, Neubert D, Gant TW, Thorgeirsson SS, Boobis AR, Davies DS. Contribution of CYP1A1 and CYP1A2 to the activation of heterocyclic amines in monkeys and human. Carcinogenesis. 1994;15:829–836. doi: 10.1093/carcin/15.5.829. [DOI] [PubMed] [Google Scholar]
  • (64).Bendaly J, Zhao S, Neale JR, Metry KJ, Doll MA, States JC, Pierce WM, Jr., Hein DW. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2. Cancer Epidemiol. Biomarkers Prev. 2007;16:1503–1509. doi: 10.1158/1055-9965.EPI-07-0305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (65).Williams JA, Stone EM, Millar BC, Gusterson BA, Grover PL, Phillips DH. Determination of the enzymes responsible for activation of the heterocyclic amine 2-amino-3-methylimidazo (4,5-f) quinoline in the human breast. Pharmacogenetics. 1999;8:519–528. doi: 10.1097/00008571-199812000-00009. [DOI] [PubMed] [Google Scholar]
  • (66).Guengerich FP, Shimada T. Activation of procarcinogens by human cytochrome P450 enzymes. Mut. Res. 1998;400:201–213. doi: 10.1016/s0027-5107(98)00037-2. [DOI] [PubMed] [Google Scholar]
  • (67).Sasaki JC, Arey J, Eastmond DA, Parks KK, Phousongphouang PT, Grosovsky AJ. Evidence for oxidative metabolism in the genotoxicity of the atmospheric reaction product 2-nitronaphthalene in human lymphoblastoid cell lines. Mut. Res. 1999;445:113–25. doi: 10.1016/s1383-5718(99)00118-7. [DOI] [PubMed] [Google Scholar]
  • (68).Miyazaki M, Sugawara E, Yoshimura T, Yamazaki H, Kamataki T. Mutagenic activation of betel quid-specific N-nitrosamines catalyzed by human cytochrome P450 co-expressed with NADPH-cytochrome P450 reductase in Salmonella typhimurium YG7108. Mut. Res. 2005;581:165–71. doi: 10.1016/j.mrgentox.2004.12.002. [DOI] [PubMed] [Google Scholar]
  • (69).Aiub CA, Mazzei JL, Pinto LF, Felzenszwalb I. Evaluation of nitroreductase and acetyltransferase participation in N-nitrosodiethylamine genotoxicity. Chem.-Biol. Interact. 2006;161:146–154. doi: 10.1016/j.cbi.2006.03.012. [DOI] [PubMed] [Google Scholar]
  • (70).Oda Y, Hirayama T, Watanabe T. Genotoxic activation of the environmental pollutant 3,6-dinitrobenzo[e]pyrene in Salmonella typhimurium umu strains expressing human cytochrome P450 and N-acetyltransferase. Toxicol. Lett. 2009;188:258–262. doi: 10.1016/j.toxlet.2009.04.010. [DOI] [PubMed] [Google Scholar]
  • (71).Shimada T, Wunsch RM, Hanna IH, Sutter TR, Guengerich FP, Gillam EM. Recombinant human cytochrome P450 1B1 expression. Escherichia coli. Arch. Biochem. Biophys. 1998;357:111–120. doi: 10.1006/abbi.1998.0808. [DOI] [PubMed] [Google Scholar]
  • (72).Arlt VM, Henderson CJ, Wolf CR, Schmeiser HH, Phillips DH, Stiborová M. Bioactivation of 3-aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone: evidence for DNA adduct formation mediated by cytochrome P450 enzymes and peroxidases. Cancer Lett. 2006;234:220–231. doi: 10.1016/j.canlet.2005.03.035. [DOI] [PubMed] [Google Scholar]
  • (73).Stiborová M, Arlt VM, Henderson CJ, Wolf CR, Frei E, Schmeiser HH, Phillips DH. Molecular mechanism of genotoxicity of the environmental pollutant 3-nitrobenzanthrone. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005;149:191–197. doi: 10.5507/bp.2005.025. [DOI] [PubMed] [Google Scholar]
  • (74).Wu J, Dong H, Cai Z, Yu Y. Stable expression of human cytochrome CYP2B6 and CYP1A1 in Chinese hamster CHL cells. Their use in micronucleus assays. Chin. Med. Sci. J. 1997;12:148–155. [PubMed] [Google Scholar]
  • (75).Thornton-Manning J, Appleton JL, Gonzalez FJ, Yost GS. Metabolism of 3-methylindole by vaccinia-expressed P450 enzymes. Correlation of 3-methyleneindolenine formation and protein-binding. J. Pharmacol. Exp. Ther. 1999;276:21–29. [PubMed] [Google Scholar]
  • (76).Lanza DL, Yost GS. Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome P450 enzymes. Drug Metab. Dispos. 2001;29:950–953. [PubMed] [Google Scholar]
  • (77).Nichols WK, Mehta R, Skordos K, Mace K, Pfeifer AM, Carr BA, Minko T, Burchiel SW, Yost GS. 3-Methylindole-induced toxicity to human bronchial epithelial cell lines. Toxicol. Sci. 2003;71:229–236. doi: 10.1093/toxsci/71.2.229. [DOI] [PubMed] [Google Scholar]
  • (78).Weems JM, Lamb JG, D’Agostino J, Ding X, Yost GS. Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation. A comparison to the prototype cigarette smoke mutagens B(a)P and NNK. Chem. Res. Toxicol. 2010;23:1682–1690. doi: 10.1021/tx100147z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (79).Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Seidel A, Frank H, Schmeiser HH, Phillips DH. Activation of 3-nitrobenzanthrone and its metabolites by human acetyltransferases, sulfotransferases and cytochrome P450 expressed in Chinese hamster V79 cells. Int. J. Cancer. 2003;105:583–592. doi: 10.1002/ijc.11143. [DOI] [PubMed] [Google Scholar]
  • (80).Arlt VM, Stiborová M, Hewer A, Schmeiser HH, Phillips DH. Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone. Evidence for reductive activation by human NADPH cytochrome P450 reductase. Cancer Res. 2003;63:2752–2761. [PubMed] [Google Scholar]
  • (81).Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 2004;95:1–6. doi: 10.1111/j.1349-7006.2004.tb03162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (82).Koehl W, Amin S, Staretz ME, Ueng Y-F, Yamazaki H, Tateishi T, Guengerich FP, Hecht SS. Metabolism of 5-methylchrysene and 6-methylchrysene by human hepatic and pulmonary cytochrome P450 enzymes. Cancer Res. 1996;56:316–324. [PubMed] [Google Scholar]
  • (83).Ahmad S, Kabler SL, Rudd L, Amin S, Doehmer J, Morrow CS, Townsend AJ. Cytotoxicity and mutagenicity of 5-methylchrysene and its 1,2-dihydrodiol in V79MZ cells modified to express human CYP1A1 or CYP1B1, in the presence or absence of human GSTP1 coexpression. Toxicol. Lett. 2008;183:99–104. doi: 10.1016/j.toxlet.2008.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (84).Yamazaki H, Mimura M, Oda Y, Gonzalez FJ, El-Bayoumy K, Chae HY, Guengerich FP, Shimada T. Activation of trans-1,2-dihydro-1,2-dihydroxy-6-aminochrysene to genotoxic metabolites by rat and human cytochromes P450. Carcinogenesis. 1994;15:465–470. doi: 10.1093/carcin/15.3.465. [DOI] [PubMed] [Google Scholar]
  • (85).Yamazaki H, Mimura M, Oda Y, Inui Y, Shiraga T, Iwasaki K, Guengerich FP, Shimada T. Roles of different forms of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes. Carcinogenesis. 1993;14:1271–1278. doi: 10.1093/carcin/14.7.1271. [DOI] [PubMed] [Google Scholar]
  • (86).Buters J, Quintanilla-Martinez L, Schober W, Soballa VJ, Hintermair J, Wolff T, Gonzalez FJ, Greim H. CYP1B1 determines susceptibility to low doses of 7,12-dimethylbenz[a]anthracene-induced ovarian cancers in mice correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis. 2003;24:327–334. doi: 10.1093/carcin/24.2.327. [DOI] [PubMed] [Google Scholar]
  • (87).Hashizume T, Yoshitomi S, Asahi S, Uematsu R, Matsumura S, Chatani F, Oda H. Advantages of human hepatocyte-derived transformants expressing a series of human cytochrome P450 isoforms for genotoxicity examination. Toxicol. Sci. 2010;116:488–497. doi: 10.1093/toxsci/kfq154. [DOI] [PubMed] [Google Scholar]
  • (88).Gabelova A, Bacova G, Ruzekova L, Farkasova T. Role of cytochrome P4501A1 in biotransformation of a tissue specific sarcomagen N-methyldibenzo[c,g]carbazole. Mut. Res. 2000;469:259–269. doi: 10.1016/s1383-5718(00)00087-5. [DOI] [PubMed] [Google Scholar]
  • (89).Gabelova A, Farkasova T, Bacova G, Robichova S. Mutagenicity of 7H-dibenzo[c,g]carbazole and its tissue specific derivatives in genetically engineered Chinese hamster V79 cell lines stably expressing cytochrome P450. Mut. Res. 2002;517:135–45. doi: 10.1016/s1383-5718(02)00055-4. [DOI] [PubMed] [Google Scholar]
  • (90).Gabelova A, Binkova B, Valovicova Z, Sram RJ. DNA adduct formation by 7H-dibenzo[c,g]carbazole and its tissue- and organ-specific derivatives in Chinese hamster V79 cell lines stably expressing cytochrome P450 enzymes. Environ. Mol. Mutagen. 2004;44:448–458. doi: 10.1002/em.20073. [DOI] [PubMed] [Google Scholar]
  • (91).Gábelová A, Valovičová Z, Mesárosová M, Trilecová L, Hrubá E, Marvanová S, Krčmár P, Milcová A, Schmuczerová J, Vondráček J, Machala M, Topinka J. Genotoxicity of 7H-dibenzo[c,g]carbazole and its tissue-specific derivatives in human hepatoma HepG2 cells is related to CYP1A1/1A2 expression. Environ. Mol. Mutagen. 2011;52:636–645. doi: 10.1002/em.20664. [DOI] [PubMed] [Google Scholar]
  • (92).Roberts-Thompson SJ, McManus ME, Tukey RH, Gonzalez FJ, Holder GM. Metabolism of polycyclic aza-aromatic carcinogens catalyzed by four expressed human cytochromes P450. Cancer Res. 1995;55:1052–1059. [PubMed] [Google Scholar]
  • (93).Penman BW, Chen L, Gelboin HV, Gonzalez FJ, Crespi CL. Development of a human lymphoblastoid cell line constitutively expressing human CYP1A1 cDNA substrate specificity with model substrates and promutagens. Carcinogenesis. 1994;15:1931–1937. doi: 10.1093/carcin/15.9.1931. [DOI] [PubMed] [Google Scholar]
  • (94).Sengstag C, Eugster HP, Würgler FE. High promutagen activating capacity of yeast microsomes containing human cytochrome P-450 1A and human NADPH-cytochrome P-450 reductase. Carcinogenesis. 1994;15:837–843. doi: 10.1093/carcin/15.5.837. [DOI] [PubMed] [Google Scholar]
  • (95).Oda Y, Totsuka Y, Wakabayashi K, Guengerich FP, Shimada T. Activation of aminophenylnorharman, aminomethylphenylnorharman and aminophenylharman to genotoxic metabolites by human N-acetyltransferases and cytochrome P450 enzymes expressed in Salmonella typhimurium umu tester strains. Mutagenesis. 2006;21:411–416. doi: 10.1093/mutage/gel047. [DOI] [PubMed] [Google Scholar]
  • (96).Stiborová M, Frei E, Wiessler M, Schmeiser HH. Human enzymes involved in the metabolic activation of carcinogenic aristolochic acids. Evidence for reductive activation by cytochromes P450 1A1 and 1A2. Chem. Res. Toxicol. 2001;14:1128–1137. doi: 10.1021/tx010059z. [DOI] [PubMed] [Google Scholar]
  • (97).Stiborová M, Frei E, Hodek P, Wiessler M, Schmeiser HH. Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH-cytochrome P450 reductase and prostaglandin H synthase mediate the formation of aristolochic acid-DNA adducts found in patients with urothelial cancer. Int. J. Cancer. 2005;113:189–197. doi: 10.1002/ijc.20564. [DOI] [PubMed] [Google Scholar]
  • (98).Stiborová M, Sopko B, Hodek P, Frei E, Schmeiser HH, Hudecek J. The binding of aristolochic acid I to the active site of human cytochromes P450 1A1 and 1A2 explains their potential to reductively activate this human carcinogen. Cancer Lett. 2005;229:193–204. doi: 10.1016/j.canlet.2005.06.038. [DOI] [PubMed] [Google Scholar]
  • (99).Stiborová M, Levová K, Bárta F, Shi Z, Frei E, Schmeiser HH, Nebert DW, Phillips DH, Arlt VM. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol. Sci. 2012;125:345–358. doi: 10.1093/toxsci/kfr306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (100).Fontaine SM, Hoyer PB, Halpert JR, Sipes IG. Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene. Drug Metab. Dispos. 2001;29:1236–1242. [PubMed] [Google Scholar]
  • (101).Yoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol. In Vitro. 2001;15:245–256. doi: 10.1016/s0887-2333(01)00011-x. [DOI] [PubMed] [Google Scholar]
  • (102).Takemoto K, Yamazaki H, Nakajima M, Yokoi T. Genotoxic activation of benzophenone and its two metabolites by human cytochrome P450s in SOS/umu assay. Mut. Res. 2002;519:199–204. doi: 10.1016/s1383-5718(02)00141-9. [DOI] [PubMed] [Google Scholar]
  • (103).Durant JL, Lafleur AL, Busby WF, Jr., Donhoffner LL, Penman BW, Crespi CL. Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mut. Res. 1999;446:1–14. doi: 10.1016/s1383-5718(99)00135-7. [DOI] [PubMed] [Google Scholar]
  • (104).Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis. 1998;19:1847–1853. doi: 10.1093/carcin/19.10.1847. [DOI] [PubMed] [Google Scholar]
  • (105).Schwarz D, Kisselev P, Honeck H, Cascorbi I, Schunck WH, Roots I. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system. Xenobiotica. 2001;31:345–356. doi: 10.1080/00498250110055947. [DOI] [PubMed] [Google Scholar]
  • (106).Guo Z, Gillam EM, Ohmori S, Tukey RH, Guengerich FP. Expression of modified human cytochrome P450 1A1 in Escherichia coli: Effects of 5′ substitution, stabilization, purification, spectral characterization, and catalytic properties. Arch. Biochem. Biophys. 1994;312:436–446. doi: 10.1006/abbi.1994.1330. [DOI] [PubMed] [Google Scholar]
  • (107).Guengerich FP, Shimada T, Raney KD, Yun CH, Meyer DJ, Ketterer B, Harris TM, Groopman JD, Kadlubar FF. Elucidation of catalytic specificities of human cytochrome P450 and glutathione S-transferase enzymes and relevance to molecular epidemiology. Environ. Health Perspect. 1992;98:75–80. doi: 10.1289/ehp.929875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (108).Hashizume T, Yoshitomi S, Asahi S, Matsumura S, Chatani F, Oda H. In vitro micronucleus test in HepG2 transformants expressing a series of human cytochrome P450 isoforms with chemicals requiring metabolic activation. Mut. Res. 2009;677:1–7. doi: 10.1016/j.mrgentox.2009.03.009. [DOI] [PubMed] [Google Scholar]
  • (109).Baum M, Amin S, Guengerich FP, Hecht SS, Kohl W, Eisenbrand G. Metabolic activation of benzo[c]phenanthrene by cytochrome P450 enzymes in human liver and lung. Chem. Res. Toxicol. 2001;14:686–693. doi: 10.1021/tx000240s. [DOI] [PubMed] [Google Scholar]
  • (110).Seaton MJ, Schlosser PM, Bond JA, Medinsky MA. Benzene metabolism by human liver microsomes in relation to cytochrome P4502E1. Carcinogenesis. 1994;15:1799–1806. doi: 10.1093/carcin/15.9.1799. [DOI] [PubMed] [Google Scholar]
  • (111).Reid JM, Kuffel MJ, Miller JK, Rios R, Ames MM. Metabolic activation of dacarbazine by human cytochromes P450: The role of CYP1A1, CYP1A2, and CYP2E1. Clin. Cancer Res. 1999;5:2192–2197. [PubMed] [Google Scholar]
  • (112).Yuan ZX, Kumar S, Sikka HC. Comparative metabolism of the aza polynuclear aromatic hydrocarbon dibenz[a,h]acridine by recombinant human and rat cytochrome P450s. Chem. Res. Toxicol. 17:672–678. doi: 10.1021/tx049979i. [DOI] [PubMed] [Google Scholar]
  • (113).Luch A, Coffing SL, Tang YM, Schneider A, Soballa V, Greim H, Jefcoate CR, Seidel A, Greenlee WF, Baird WM, Doehmer J. Stable expression of human cytochrome P450 1B1 in V79 Chinese hamster cells and metabolically catalyzed DNA adduct formation of dibenzo[a,l]pyrene. Chem. Res. Toxicol. 1998;11:686–695. doi: 10.1021/tx970236p. [DOI] [PubMed] [Google Scholar]
  • (114).Luch A, Schober W, Soballa VJ, Raab G, Greim H, Jacob J, Doehmer J, Seidel A. Metabolic activation of dibenzo[a,l]pyrene by human cytochrome P450 1A1 and P450 1B1 expressed in V79 Chinese hamster cells. Chem. Res. Toxicol. 1999;12:353–364. doi: 10.1021/tx980240g. [DOI] [PubMed] [Google Scholar]
  • (115).Luch A, Kishiyama S, Seidel A, Doehmer J, Greim H, Baird WM. The K-region trans-8,9-diol does not significantly contribute as an intermediate in the metabolic activation of dibenzo[a,l]pyrene to DNA-binding metabolites by human cytochrome P450 1A1 or 1B1. Cancer Res. 1999;59:4603–4609. [PubMed] [Google Scholar]
  • (116).King LC, Adams L, Allison J, Kohan MJ, Nelson G, Desai D, Amin S, Ross JA. A quantitative comparison of dibenzo[a,l]pyrene-DNA adduct formation by recombinant human cytochrome P450 microsomes. Mol. Carcinog. 1999;26:74–82. [PubMed] [Google Scholar]
  • (117).Shou M, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo[a,l]pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis. 1996;17:2429–2433. doi: 10.1093/carcin/17.11.2429. [DOI] [PubMed] [Google Scholar]
  • (118).Schober W, Luch A, Soballa VJ, Raab G, Stegeman JJ, Doehmer J, Jacob J, Seidel A. On the species-specific biotransformation of dibenzo[a,l]pyrene. Chem.-Biol. Interact. 2006;161:37–48. doi: 10.1016/j.cbi.2006.02.007. [DOI] [PubMed] [Google Scholar]
  • (119).Kushman ME, Kabler SL, Ahmad S, Doehmer J, Morrow CS, Townsend AJ. Cytotoxicity and mutagenicity of dibenzo[a,l]pyrene and (±)-dibenzo[a,l]pyrene-11,12-dihydrodiol in V79MZ cells co-expressing either hCYP1A1 or hCYP1B1 together with human glutathione-S-transferase A1. Mut. Res. 2007;624:80–87. doi: 10.1016/j.mrfmmm.2007.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (120).Shimada T, Guengerich FP. Inhibition of human cytochrome P450 A1-, 1A2-, and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2006;19:288–294. doi: 10.1021/tx050291v. [DOI] [PubMed] [Google Scholar]
  • (121).Spink DC, Hayes CL, Young NR, Christou M, Sutter TR, Jefcoate CR, Gierthy JF. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17β-estradiol 4-hydroxylase. J. Steroid Biochem. Mol Biol. 1994;51:251–258. doi: 10.1016/0960-0760(94)90037-x. [DOI] [PubMed] [Google Scholar]
  • (122).Yamazaki H, Shaw PM, Guengerich FP, Shimada T. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem. Res. Toxicol. 1998;11:659–665. doi: 10.1021/tx970217f. [DOI] [PubMed] [Google Scholar]
  • (123).Shou M, Korzekwa KR, Brooks EN, Krausz KW, Gonzalez FJ, Gelboin HV. Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis. 1997;18:207–214. doi: 10.1093/carcin/18.1.207. [DOI] [PubMed] [Google Scholar]
  • (124).Niwa T, Yabusaki Y, Honma K, Matsuo N, Tatsuta K, Ishibashi F, Katagiri M. Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998;6:539–547. doi: 10.1080/004982598239290. [DOI] [PubMed] [Google Scholar]
  • (125).Okubo K, Jinbo M, Toma Y, Shimizu Y, Yanaihara T. Aromatase and estrogen 2-hydroxylase activities of human placental microsomes in pregnancy-induced hypertension. Endocr. J. 1996;43:363–368. doi: 10.1507/endocrj.43.363. [DOI] [PubMed] [Google Scholar]
  • (126).Badawi AF, Cavalieri EL, Rogan EG. Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16α-hydroxylation of 17β-estradiol. Metabolism. 2001;50:1001–1003. doi: 10.1053/meta.2001.25592. [DOI] [PubMed] [Google Scholar]
  • (127).Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT. Characterization of the oxidative metabolites of 17β-estradiol and estrone formed by 15 selectively expressed human cytochrome P450 isoforms. Endocrinology. 2003;144:3382–3398. doi: 10.1210/en.2003-0192. [DOI] [PubMed] [Google Scholar]
  • (128).Zhu BT, Lee AJ. NADPH-dependent metabolism of 17β-estradiol and estrone to polar and nonpolar metabolites by human tissues and cytochrome P450 isoforms. Steroids. 2005;70:225–244. doi: 10.1016/j.steroids.2005.01.002. [DOI] [PubMed] [Google Scholar]
  • (129).Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227:115–124. doi: 10.1016/j.canlet.2004.10.007. [DOI] [PubMed] [Google Scholar]
  • (130).Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 2007;56:887–894. doi: 10.1016/j.metabol.2007.03.001. [DOI] [PubMed] [Google Scholar]
  • (131).Kisselev P, Schunck WH, Roots I, Schwarz D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17β-estradiol and estrone. Cancer Res. 2005;65:2972–2978. doi: 10.1158/0008-5472.CAN-04-3543. [DOI] [PubMed] [Google Scholar]
  • (132).Fujita K, Kamataki T. Predicting the mutagenicity of tobacco-related N-nitrosamines in humans using 11 strains of Salmonella typhimurium YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. Environ. Mol. Mutagen. 2001;38:339–346. doi: 10.1002/em.10036. [DOI] [PubMed] [Google Scholar]
  • (133).Kamataki T, Fujita K, Nakayama K, Miyamoto M, Ariyoshi N. Role of human cytochrome P450 (CYP) in the metabolic activation of nitrosamine derivatives: application of genetically engineered Salmonella expressing human CYP. Drug Metab. Rev. 2002;34:667–676. doi: 10.1081/dmr-120005668. [DOI] [PubMed] [Google Scholar]
  • (134).Fujita K, Kamataki T. Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: Application of genetically engineered Salmonella typhimurium YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reductase. Mut. Res. 2001;483:35–41. doi: 10.1016/s0027-5107(01)00223-8. [DOI] [PubMed] [Google Scholar]
  • (135).Schober W, Pusch G, Oeder S, Reindl H, Behrendt H, Buters JT. Metabolic activation of phenanthrene by human and mouse cytochromes P450 and pharmacokinetics in CYP1A2 knockout mice. Chem.-Biol. Interact. 2010;183:57–66. doi: 10.1016/j.cbi.2009.09.008. [DOI] [PubMed] [Google Scholar]
  • (136).Stiborová M, Martinek V, Rydlova H, Hodek P, Frei E. Sudan I is a potential carcinogen for humans. Evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002;62:5678–5684. [PubMed] [Google Scholar]
  • (137).Stiborová M, Martinek V, Schmeiser HH, Frei E. Modulation of CYP1A1-mediated oxidation of carcinogenic azo dye Sudan I and its binding to DNA by cytochrome b5. Neuro Endocrinol. Lett. 2006;27(Suppl.2):35–39. [PubMed] [Google Scholar]
  • (138).Gautier JC, Leceour S, Cosme J, Perret A, Urban P, Beaune P, Pompon D. Contribution of human cytochrome P450 to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol metabolism, as predicted from heterologous expression in yeast. Pharmacogenetics. 1996;6:489–499. doi: 10.1097/00008571-199612000-00002. [DOI] [PubMed] [Google Scholar]
  • (139).Aoyama T, Gonzalez FJ, Gelboin HV. Human cDNA-expressed cytochrome P450 IA2 mutagen activation and substrate specificity. Mol. Carcinog. 1989;2:192–198. doi: 10.1002/mc.2940020405. [DOI] [PubMed] [Google Scholar]
  • (140).Kalgutkar AS, Obach RS, Maurer TS. Mechanism-based inactivation of cytochrome P450 enzymes: Chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr. Drug Metab. 2007;8:407–447. doi: 10.2174/138920007780866807. [DOI] [PubMed] [Google Scholar]
  • (141).Duarte MP, Palma BB, Gilep AA, LaiRes A, Oliveira JS, Usanov SA, Rueff J, Kranendonk M. The stimulatory role of human cytochrome b5 in the bioactivation activities of human CYP1A2, 2A6 and 2E1. A new cell expression system to study cytochrome P450 mediated biotransformation. Mutagenesis. 2005;20:93–100. doi: 10.1093/mutage/gei012. [DOI] [PubMed] [Google Scholar]
  • (142).Duarte MP, Palma BB, LaiRes A, Oliveira JS, Rueff J, Kranendonk M. Escherichia coli BTC, a human cytochrome P450 competent tester strain with a high sensitivity towards alkylating agents involvement of alkyltransferases in the repair of DNA damage induced by aromatic amines. Mutagenesis. 2005;20:199–208. doi: 10.1093/mutage/gei028. [DOI] [PubMed] [Google Scholar]
  • (143).Duarte MP, Palma BB, Gilep AA, LaiRes A, Oliveira JS, Usanov SA, Rueff J, Kranendonk M. The stimulatory role of human cytochrome b5 in the bioactivation activities of human CYP1A2, 2A6 and 2E1. A new cell expression system to study cytochrome P450-mediated biotransformation (a corrigendum report on Duarte et al. (2005) Mutagenesis 20, 93-100) Mutagenesis. 2007;22:75–81. doi: 10.1093/mutage/gei012. [DOI] [PubMed] [Google Scholar]
  • (144).Loeppky RN, Fuchs A, Janzowski C, Humberd C, Goelzer P, Schneider H, Eisenbrand G. Probing the mechanism of the carcinogenic activation of N-nitrosodiethanolamine with deuterium isotope effects. In vivo induction of DNA single-strand breaks and related in vitro assays. Chem. Res. Toxicol. 1998;11:1556–1566. doi: 10.1021/tx9801716. [DOI] [PubMed] [Google Scholar]
  • (145).Yamada K, Suzuki T, Hakura A, Mizutani T, Saeki K. Metabolic activation of 10-aza-substituted benzo[a]pyrene by cytochrome P450 1A2 in human liver microsomes. Mut. Res. 2004;557:159–165. doi: 10.1016/j.mrgentox.2003.10.007. [DOI] [PubMed] [Google Scholar]
  • (146).Yueh MF, Nguyen N, Famourzadeh M, Strassburg CP, Oda Y, Guengerich FP, Tukey RH. The contribution of UDP-glucuronosyltransferase 1A9 on CYP1A2-mediated genotoxicity by aromatic and heterocyclic amines. Carcinogenesis. 2001;22:943–950. doi: 10.1093/carcin/22.6.943. [DOI] [PubMed] [Google Scholar]
  • (147).Oda Y. Analysis of the involvement of human N-acetyltransferase 1 in the genotoxic activation of bladder carcinogenic arylamines using a SOS/umu assay system. Mut. Res. 2004;554:399–406. doi: 10.1016/j.mrfmmm.2004.06.033. [DOI] [PubMed] [Google Scholar]
  • (148).Gonzalez FJ, Gelboin HV. Role of human cytochromes P450 in the metabolic activation of chemical carcinogenesis and toxins. Drug Metab. Rev. 1994;26:165–183. doi: 10.3109/03602539409029789. [DOI] [PubMed] [Google Scholar]
  • (149).Shimada T, Guengerich FP. Activation of amino-α-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes. Cancer Res. 1991;51:5284–5291. [PubMed] [Google Scholar]
  • (150).Turesky RJ, Constable A, Richoz J, Varga N, Markovic J, Martin MV, Guengerich FP. Activation of heterocyclic aromatic amines by rat and human liver microsomes and by purified rat and human cytochrome P450 1A2. Chem. Res. Toxicol. 1998;11:925–936. doi: 10.1021/tx980022n. [DOI] [PubMed] [Google Scholar]
  • (151).Aryal P, Terashita T, Guengerich FP, Shimada T, Oda Y. Use of genetically engineered Salmonella typhimurium OY1002/1A2 strain coexpressing human cytochrome P450 1A2 and NADPH-cytochrome P450 reductase and bacterial O-acetyltransferase in SOS/umu assay. Environ. Mol. Mutagen. 2000;36:121–126. doi: 10.1002/1098-2280(2000)36:2<121::aid-em6>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  • (152).Turesky RJ, Constable A, Fay LB, Guengerich FP. Interspecies differences between rat and human P450 1A2 in the metabolism of heterocyclic aromatic amines. Cancer Lett. 1999;143:109–112. doi: 10.1016/s0304-3835(99)00137-8. [DOI] [PubMed] [Google Scholar]
  • (153).Turesky R, Guengerich FP, Guillouzo A, Langouët S. Metabolism of heterocyclic aromatic amines by human hepatocytes and cytochrome P4501A2. Mut. Res. 2002;506-507:187–95. doi: 10.1016/s0027-5107(02)00165-3. [DOI] [PubMed] [Google Scholar]
  • (154).Kim D, Guengerich FP. Selection of human cytochrome P450 1A2 mutants with enhanced catalytic activity for heterocyclic amine N-hydroxylation. Biochemistry. 2004;43:981–938. doi: 10.1021/bi035593f. [DOI] [PubMed] [Google Scholar]
  • (155).Zhou H, Josephy PD, Kim D, Guengerich FP. Functional characterization of four allelic variants of human cytochrome P450 1A2. Arch. Biochem. Biophys. 2004;422:23–30. doi: 10.1016/j.abb.2003.11.019. [DOI] [PubMed] [Google Scholar]
  • (156).Walters DG, Young PJ, Agus C, Knize MG, Boobis AR, Gooderham NJ, Lake BG. Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Carcinogenesis. 2004;25:1659–1669. doi: 10.1093/carcin/bgh164. [DOI] [PubMed] [Google Scholar]
  • (157).Cheung C, Ma X, Krausz KW, Kimura S, Feigenbaum L, Dalton TP, Nebert DW, Idle JR, Gonzalez FJ. Differential metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in mice humanized for CYP1A1 and CYP1A2. Chem. Res. Toxicol. 2005;18:1471–1478. doi: 10.1021/tx050136g. [DOI] [PubMed] [Google Scholar]
  • (158).Josephy PD, Bibeau KL, Evans DH. Activation of MeIQ (2-amino-3,4-dimethylimidazo-[4,5-f]quinoline) by sequence variants of recombinant human cytochrome P450 1A2. Environ. Mol. Mutagen. 2000;35:328–335. [PubMed] [Google Scholar]
  • (159).Glatt H, Pabel U, Meinl W, Frederiksen H, Frandsen H, Muckel E. Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9H-pyrido [2,3-b]indole (MeAαC) in recombinant test systems expressing human xenobiotic-metabolizing enzymes. Carcinogenesis. 2004;25:801–807. doi: 10.1093/carcin/bgh077. [DOI] [PubMed] [Google Scholar]
  • (160).Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF. Human cytochrome P-450PA (P-4501A2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc. Natl. Acad. Sci. U.S.A. 1989;86:7696–7700. doi: 10.1073/pnas.86.20.7696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (161).Barcelo S, Mace K, Pfeifer AM, Chipman JK. Production of DNA strand breaks by N-nitrosodimethylamine and 2-amino-3-methylimidazo[4,5-f]quinoline in THLE cells expressing human CYP isoenzymes and inhibition by sulforaphane. Mut. Res. 1998;402:111–120. doi: 10.1016/s0027-5107(97)00288-1. [DOI] [PubMed] [Google Scholar]
  • (162).Kranendonk M, Fisher CW, Roda R, Carreira F, Theisen P, LaiRes A, Rueff J, Vermeulen NP, Estabrook RW. Escherichia coli MTC, a NADPH cytochrome P450 reductase competent mutagenicity tester strain for the expression of human cytochrome P450. Comparison of three types of expression systems. Mut. Res. 1999;439:287–300. doi: 10.1016/s1383-5718(98)00193-4. [DOI] [PubMed] [Google Scholar]
  • (163).Kim D, Kadlubar FF, Teitel CH, Guengerich FP. Formation and reduction of aryl and heterocyclic nitroso compounds and significance in the flux of hydroxylamines. Chem. Res. Toxicol. 2004;17:529–536. doi: 10.1021/tx034267y. [DOI] [PubMed] [Google Scholar]
  • (164).Raza H, King RS, Squires RB, Guengerich FP, Miller DW, Freeman JP, Lang NP, Kadlubar FF. Metabolism of 2-amino-α-carboline, a food-borne heterocyclic amine mutagen and carcinogen, by human and rodent liver microsomes and by human cytochrome P4501A2. Drug Metab. Dispos. 1996;24:395–400. [PubMed] [Google Scholar]
  • (165).Josephy PD, Evans DH, Parikh A, Guengerich FP. Metabolic activation of aromatic amine mutagens by simultaneous expression of human cytochrome P450 1A2, NADPH-cytochrome P450 reductase, and N-acetyltransferase in Escherichia coli. Chem. Res. Toxicol. 1998;11:70–74. doi: 10.1021/tx970171q. [DOI] [PubMed] [Google Scholar]
  • (166).Stanley LA, Skare JA, Doyle E, Powrie R, D’Angelo D, Elcombe CR. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes. Toxicology. 2005;210:147–157. doi: 10.1016/j.tox.2005.01.019. [DOI] [PubMed] [Google Scholar]
  • (167).Scheuenpflug J, Krebsfanger N, Doehmer J. Heterologous co-expression of human cytochrome P450 1A2 and polymorphic forms of N-acetyltransferase 2 for studies on aromatic amines in V79 Chinese hamster cells. Altern. Lab. Anim. 2005;33:561–577. doi: 10.1177/026119290503300609. [DOI] [PubMed] [Google Scholar]
  • (168).Kappers WA, van Och FM, de Groene EM, Horbach GJ. Comparison of three different in vitro mutation assays used for the investigation of cytochrome P450-mediated mutagenicity of nitro-polycyclic aromatic hydrocarbons. Mut. Res. 2000;466:143–159. doi: 10.1016/s1383-5718(00)00015-2. [DOI] [PubMed] [Google Scholar]
  • (169).Glatt H, Engelke CE, Pabel U, Teubner W, Jones AL, Coughtrie MW, Andrae U, Falany CN, Meinl W. Sulfotransferases: Genetics and role in toxicology. Toxicol. Lett. 2000;112-113:341–348. doi: 10.1016/s0378-4274(99)00214-3. [DOI] [PubMed] [Google Scholar]
  • (170).Anderson KE, Hammons GJ, Kadlubar FF, Potter JD, Kaderlik KR, Ilett KF, Minchin RF, Teitel CH, Chou HC, Martin MV, Guengerich FP, Barone GW, Lang NP, Peterson LA. Metabolic activation of aromatic amines by human pancreas. Carcinogenesis. 1997;18:1085–1092. doi: 10.1093/carcin/18.5.1085. [DOI] [PubMed] [Google Scholar]
  • (171).Nakajima M, Itoh M, Sakai H, Fukami T, Katoh M, Yamazaki H, Kadlubar FF, Imaoka S, Funae Y, Yokoi T. CYP2A13 expressed in human bladder metabolically activates 4-aminobiphenyl. Int. J. Cancer. 2006;119:2520–2526. doi: 10.1002/ijc.22136. [DOI] [PubMed] [Google Scholar]
  • (172).Czerwinski M, McLemore TL, Philpot RM, Nhamburo PT, Korzekwa K, Gelboin HV, Gonzalez FJ. Metabolic activation of 4-ipomeanol by complementary DNA-expressed human cytochromes P-450. Evidence for species-specific metabolism. Cancer Res. 1991;51:4636–4638. [PubMed] [Google Scholar]
  • (173).Baer BR, Rettie AE, Henne KR. Bioactivation of 4-ipomeanol by CYP4B1. Adduct characterization and evidence for an enedial intermediate. Chem. Res. Toxicol. 2005;18:855–864. doi: 10.1021/tx0496993. [DOI] [PubMed] [Google Scholar]
  • (174).Chae Y-H, Thomas T, Guengerich FP, Fu PP, El-Bayoumy K. Comparative metabolism of 1-, 2-, and 4-nitropyrene by human hepatic and pulmonary microsomes. Cancer Res. 1999;59:1473–1480. [PubMed] [Google Scholar]
  • (175).Aoyama T, Yamano S, Guzelian PS, Gelboin HV, Gonzalez FJ. 5 of 12 forms of vaccinia virus-expressed human hepatic cytochrome-P450 metabolically activate aflatoxin B1. Proc. Natl. Acad. Sci. U. S. A. 1990;87:4790–4793. doi: 10.1073/pnas.87.12.4790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (176).Ueng Y-F, Shimada T, Yamazaki H, Guengerich FP. Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995;8:218–225. doi: 10.1021/tx00044a006. [DOI] [PubMed] [Google Scholar]
  • (177).Gallagher EP, Wienkers LC, Stapleton PL, Kunze KL, Eaton DL. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Cancer Res. 1994;54:101–108. [PubMed] [Google Scholar]
  • (178).Van Vleet TR, Klein PJ, Coulombe RA., Jr. Metabolism and cytotoxicity of aflatoxin B1 in cytochrome P-450-expressing human lung cells. J. Toxicol. Environ. Health A. 2002;65:853–867. doi: 10.1080/00984100290071216. [DOI] [PubMed] [Google Scholar]
  • (179).Ramsdell HS, Parkinson A, Eddy AC, Eaton DL. Bioactivation of aflatoxin B1 by human liver microsomes: Role of cytochrome P450 IIIA enzymes. Toxicol. Appl. Pharmacol. 1991;108:436–447. doi: 10.1016/0041-008x(91)90090-2. [DOI] [PubMed] [Google Scholar]
  • (180).Van Vleet TR, Mace K, Coulombe RA., Jr. Comparative aflatoxin B(1) activation and cytotoxicity in human bronchial cells expressing cytochromes P450 1A2 and 3A4. Cancer Res. 2002;62:105–112. [PubMed] [Google Scholar]
  • (181).He XY, Tang L, Wang SL, Cai QS, Wang JS, Hong JY. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. J. Cancer. 2006;118:2665–2671. doi: 10.1002/ijc.21665. [DOI] [PubMed] [Google Scholar]
  • (182).Kamdem LK, Meineke I, Godtel-Armbrust U, Brockmoller J, Wojnowski L. Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1. Chem. Res. Toxicol. 2006;19:577–86. doi: 10.1021/tx050358e. [DOI] [PubMed] [Google Scholar]
  • (183).Duisken M, Benz D, Peiffer TH, Blomeke B, Hollendert J. Metabolism of 3-carene by human cytochrome P450 enzymes. Identification and characterization of two new metabolites. Curr. Drug Metab. 2005;6:593–601. doi: 10.2174/138920005774832614. [DOI] [PubMed] [Google Scholar]
  • (184).Shou MG, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo[a,h]anthracene by cDNA-expresed human cytochromes P450. Arch. Biochem. Biophys. 1996;328:201–207. doi: 10.1006/abbi.1996.0161. [DOI] [PubMed] [Google Scholar]
  • (185).Stiborová M, Bieler CA, Wiessler M, Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol. 2001;62:1675–1684. doi: 10.1016/s0006-2952(01)00806-1. [DOI] [PubMed] [Google Scholar]
  • (186).Frei E, Bieler CA, Arlt VM, Wiessler M, Stiborová M. Covalent binding of the anticancer drug ellipticine to DNA in V79 cells transfected with human cytochrome P450 enzymes. Biochem. Pharmacol. 2002;64:289–295. doi: 10.1016/s0006-2952(02)01072-9. [DOI] [PubMed] [Google Scholar]
  • (187).Stiborová M, Sejbal J, Borek-Dohalska L, Aimova D, Poljakova J, Forsterova K, Rupertova M, Wiesner J, Hudecek J, Wiessler M, Frei E. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. 2004;64:8374–8380. doi: 10.1158/0008-5472.CAN-04-2202. [DOI] [PubMed] [Google Scholar]
  • (188).Stiborová M, Borek-Dohalska L, Aimova D, Kotrbova V, Kukackova K, Janouchova K, Rupertova M, Ryslava H, Hudecek J, Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes— similarity between human and rat systems. Gen. Physiol, Biophys. 2006;25:245–261. [PubMed] [Google Scholar]
  • (189).Kotrbová V, Mrázová B, Moserová M, Martínek V, Hodek P, Hudeček J, Frei E, Stiborová M. Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem. Pharmacol. 82:669–680. doi: 10.1016/j.bcp.2011.06.003. [DOI] [PubMed] [Google Scholar]
  • (190).Kerlan V, Dreano Y, Bercovici JP, Beaune PH, Floch HH, Berthou F. Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes. Biochem. Pharmacol. 1992;44:1745–1756. doi: 10.1016/0006-2952(92)90068-t. [DOI] [PubMed] [Google Scholar]
  • (191).Huang Z, Guengerich FP, Kaminsky LS. 16α-Hydroxylation of estrone by human cytochrome P4503A4/5. Carcinogenesis. 1998;19:867–872. doi: 10.1093/carcin/19.5.867. [DOI] [PubMed] [Google Scholar]
  • (192).Lee AJ, Kosh JW, Conney AH, Zhu BT. Characterization of the NADPH-dependent metabolism of 17β-estradiol to multiple metabolites by human liver microsomes and selectively expressed human cytochrome P450 3A4 and 3A5. J. Pharmacol. Exp. Ther. 2001;298:420–432. [PubMed] [Google Scholar]
  • (193).Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH. Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol. Sin. 2001;22:148–154. [PubMed] [Google Scholar]
  • (194).Modugno F, Knoll C, Kanbour-Shakir A, Romkes M. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res. Treat. 2003;82:191–197. doi: 10.1023/B:BREA.0000004376.21491.44. [DOI] [PubMed] [Google Scholar]
  • (195).Jeurissen SM, Punt A, Boersma MG, Bogaards JJ, Fiamegos YC, Schilter B, van Bladeren PJ, Cnubben NH, Rietjens IMMC. Human cytochrome P450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes. Chem. Res. Toxicol. 2007;20:798–806. doi: 10.1021/tx700012d. [DOI] [PubMed] [Google Scholar]
  • (196).Rietgens IMMC, Boersma MG, van der Woude H, Jeurissen SM, Schutte MF, Alink GM. Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. Mut. Res. 2002;574:124–138. doi: 10.1016/j.mrfmmm.2005.01.028. [DOI] [PubMed] [Google Scholar]
  • (197).Chen XW, Serag ES, Sneed KB, Zhou SF. Herbal bioactivation, molecular targets and the toxicity relevance. Chem.-Biol. Interact. 2011;192:161–176. doi: 10.1016/j.cbi.2011.03.016. [DOI] [PubMed] [Google Scholar]
  • (198).Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM. Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol. Biomarkers Prev. 2006;15:551–558. doi: 10.1158/1055-9965.EPI-05-0801. [DOI] [PubMed] [Google Scholar]
  • (199).Jeurissen SM, Bogaards JJ, Boersma MG, ter Horst JP, Awad HM, Fiamegos YC, van Beek TA, Alink GM, Sudholter EJ, Cnubben NH, Rietjens IM. Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol. Chem. Res. Toxicol. 2006;19:111–116. doi: 10.1021/tx050267h. [DOI] [PubMed] [Google Scholar]
  • (200).Urban P, Jobert AS, Laine R, Pompon D. Cytochrome P450 (CYP) mutants and substrate-specificity alterations: segment-directed mutagenesis applied to human CYP1A1. Biochem. Soc. Trans. 2001;29:128–135. doi: 10.1042/0300-5127:0290128. [DOI] [PubMed] [Google Scholar]
  • (201).Stiborová M, Miksanova M, Sulc M, Rydlova H, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for the carcinogenicity of the environmental pollutant and suspected human carcinogen o-anisidine. Int. J. Cancer. 2005;116:667–678. doi: 10.1002/ijc.21122. [DOI] [PubMed] [Google Scholar]
  • (202).Kim H, Wang RS, Elovaara E, Raunio H, Pelkonen O, Aoyama T, Vainio H, Nakajima T. Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica. 1997;27:657–665. doi: 10.1080/004982597240253. [DOI] [PubMed] [Google Scholar]
  • (203).Nakajima T, Elovaara E, Gonzalez FJ, Gelboin HV, Raunio H, Pelkonen O, Vainio H, Aoyama T. Styrene metabolism by cDNA-expressed human hepatic and pulmonary cytochromes P450. Chem. Res. Toxicol. 1994;7:891–896. doi: 10.1021/tx00042a026. [DOI] [PubMed] [Google Scholar]
  • (204).Wenker MA, Kezic S, Monster AC, De Wolff FA. Metabolism of styrene in the human liver in vitro. Interindividual variation and enantioselectivity. Xenobiotica. 2001;31:61–72. doi: 10.1080/00498250010031638. [DOI] [PubMed] [Google Scholar]
  • (205).Lewis DF, Sams C, Loizou GD. A quantitative structure-activity relationship analysis on a series of alkyl benzenes metabolized by human cytochrome P450 2E1. J. Biochem. Mol. Toxicol. 2003;17:47–52. doi: 10.1002/jbt.10055. [DOI] [PubMed] [Google Scholar]
  • (206).Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF. Epoxidation of styrene by human cyt P450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophys. Chem. 2003;104:291–296. doi: 10.1016/s0301-4622(02)00383-6. [DOI] [PubMed] [Google Scholar]
  • (207).Fukami T, Katoh M, Yamazaki H, Yokoi T, Nakajima M. Human cytochrome P450 2A13 efficiently metabolizes chemicals in air pollutants: naphthalene, styrene, and toluene. Chem. Res. Toxicol. 2008;21:720–725. doi: 10.1021/tx700325f. [DOI] [PubMed] [Google Scholar]
  • (208).Guengerich FP, Chun Y-J, Kim D, Gillam EMJ, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mut. Res. 2003;523-524:173–182. doi: 10.1016/s0027-5107(02)00333-0. [DOI] [PubMed] [Google Scholar]
  • (209).Mammen JS, Pittman GS, Li Y., Abou-, Zahr F, Bejjani BA, Bell DA, Strickland PT, Sutter TR. Single amino acid mutations, but not common polymorphisms, decrease the activity of CYP1B1 against (−)-benzo[a]pyrene-7R-trans-7,8-dihydrodiol. Carcinogenesis. 2003;24:1247–1255. doi: 10.1093/carcin/bgg088. [DOI] [PubMed] [Google Scholar]
  • (210).Wu Z-L, Sohl CD, Shimada T, Guengerich FP. Recombinant enzymes over-expressed in bacteria show broad catalytic specificity of human cytochrome P450 2W1 and limited activity of human cytochrome P450 2S1. Mol. Pharmacol. 2006;69:2007–2014. doi: 10.1124/mol.106.023648. [DOI] [PubMed] [Google Scholar]
  • (211).Chun Y-J, Kim S, Kim D, Lee SK, Guengerich FP. A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res. 2001;61:8164–8170. [PubMed] [Google Scholar]
  • (212).Arlt VM, Hewer A, Sorg BL, Schmeiser HH, Phillips DH, Stiborová M. 3-Aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone, forms DNA adducts after metabolic activation by human and rat liver microsomes. Evidence for activation by cytochrome P450 1A1 and P450 1A2. Chem. Res. Toxicol. 2004;17:1092–1101. doi: 10.1021/tx049912v. [DOI] [PubMed] [Google Scholar]
  • (213).Smith TJ, Guo Z, Gonzalez FJ, Guengerich FP, Stoner GD, Yang CS. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human lung and liver microsomes and cytochromes P-450 expressed in hepatoma cells. Cancer Res. 1992;52:1757–1763. [PubMed] [Google Scholar]
  • (214).Smith TJ, Stoner GD, Yang CS. Activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human lung microsomes by cytochromes P450, lipoxygenase, and hydroperoxides. Cancer Res. 1995;55:5566–5573. [PubMed] [Google Scholar]
  • (215).Patten CJ, Smith TJ, Murphy SE, Wang MH, Lee J, Tynes RE, Koch P, Yang CS. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemical inhibitors on this activation in human liver microsomes. Arch. Biochem. Biophys. 1996;333:127–138. doi: 10.1006/abbi.1996.0373. [DOI] [PubMed] [Google Scholar]
  • (216).Abdel-Rahman SZ, Salama SA, Au WW, Hamada FA. Role of polymorphic CYP2E1 and CYP2D6 genes in NNK-induced chromosome aberrations in cultured human lymphocytes. Pharmacogenetics. 10:239–249. doi: 10.1097/00008571-200004000-00005. [DOI] [PubMed] [Google Scholar]
  • (217).Crespi CL, Penman BW, Steimel DT, Smith T, Yang CS, Sutter TR. Development of a human lymphoblastoid cell line constitutively expressing human CYP1B1 cDNA. Substrate specificity with model substrates and promutagens. Mutagenesis. 1997;12:83–9. doi: 10.1093/mutage/12.2.83. [DOI] [PubMed] [Google Scholar]
  • (218).Ketelslegers HB, Godschalk RW, Eskens BJ, Dallinga JW, Gottschalk RW, van Schooten FJ, van Delft JH, Kleinjans JC. Potential role of cytochrome P450-1B1 in the metabolic activation of 4-aminobiphenyl in humans. Mol. Carcinog. 2009;48:685–691. doi: 10.1002/mc.20530. [DOI] [PubMed] [Google Scholar]
  • (219).Chae YH, Yun C-H, Guengerich FP, Kadlubar FF, El-Bayoumy K. Roles of human hepatic and pulmonary cytochrome P450 enzymes in the metabolism of the environmental carcinogen 6-nitrochrysene. Cancer Res. 1993;53:2028–2034. [PubMed] [Google Scholar]
  • (220).Shimada T, Gillam EM, Oda Y, Tsumura F, Sutter TR, Guengerich FP, Inoue K. Metabolism of benzo[a]pyrene to trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase. Chem. Res. Toxicol. 1999;12:623–629. doi: 10.1021/tx990028s. [DOI] [PubMed] [Google Scholar]
  • (221).Shimada T, Watanabe J, Inoue K, Guengerich FP, Gillam EMJ. Specificity of 17β-oestradiol and benzo[a]pyrene oxidation by polymorphic human cytochrome P4501B1 variants substituted at residues 48, 119 and 432. Xenobiotica. 2001;31:163–176. doi: 10.1080/00498250110043490. [DOI] [PubMed] [Google Scholar]
  • (222).Aklillu E, Ovrebo S, Botnen IV, Otter C, Ingelman-Sundberg M. Characterization of common CYP1B1 variants with different capacity for benzo[a]pyrene-7,8-dihydrodiol epoxide formation from benzo[a]pyrene. Cancer Res. 2005;65:5105–5111. doi: 10.1158/0008-5472.CAN-05-0113. [DOI] [PubMed] [Google Scholar]
  • (223).Einolf HJ, Story WT, Marcus CB, Larsen MC, Jefcoate CR, Greenlee WF, Yagi H, Jerina DM, Amin S, Park SS, Gelboin HV, Baird WM. Role of cytochrome P450 enzyme induction in the metabolic activation of benzo[c]phenentrene in human cell lines and mouse epidermis. Chem. Res. Toxicol. 1997;10:609–617. doi: 10.1021/tx960174n. [DOI] [PubMed] [Google Scholar]
  • (224).Mahadevan B, Luch A, Atkin J, Haynes M, Nguyen T, Baird WM. Inhibition of human cytochrome P450 1B1 further clarifies its role in the activation of dibenzo[a,l]pyrene in cells in culture. J. Biochem. Mol. Toxicol. 2007;21:101–109. doi: 10.1002/jbt.20168. [DOI] [PubMed] [Google Scholar]
  • (225).Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17β-Estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. U.S.A. 1996;93:9776–9781. doi: 10.1073/pnas.93.18.9776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (226).Liehr JG, Ricci MJ, Jefcoate CR, Hannigan EV, Hokanson JA, Zhu BT. 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: Implications for the mechanism of uterine tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 1995;92:9220–9224. doi: 10.1073/pnas.92.20.9220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (227).Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics. 2000;10:343–353. doi: 10.1097/00008571-200006000-00008. [DOI] [PubMed] [Google Scholar]
  • (228).Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: Association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res. 2000;60:3440–3444. [PubMed] [Google Scholar]
  • (229).Sun Y-W, Guengerich FP, Sharma AK, Boyiri T, Amin S, El-Bayoumy K. Human cytochrome P450s 1A1 and 1B1 catalyze ring oxidation but not nitroreduction of environmental pollutants mono-nitropyrene isomers in primary cultures of human breast cells and cultured MCF-10A and MCF-7 cell lines. Chem. Res. Toxicol. 2004;17:1077–1085. doi: 10.1021/tx049889d. [DOI] [PubMed] [Google Scholar]
  • (230).Wormhoudt LW, Ploemen JH, de Waziers I, Commandeur JN, Beaune PH, van Bladeren PJ, Vermeulen NPE. Inter-individual variability in the oxidation of 1,2-dibromoethane. Use of heterologously expressed human cytochrome P450 and human liver microsomes. Chem.-Biol. Interact. 1996;101:175–192. doi: 10.1016/0009-2797(96)03723-4. [DOI] [PubMed] [Google Scholar]
  • (231).Seaton MJ, Follansbee MH, Bond JA. Oxidation of 1,2-epoxy-3-butene to 1,2 3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes. Carcinogenesis. 1995;16:2287–2293. doi: 10.1093/carcin/16.10.2287. [DOI] [PubMed] [Google Scholar]
  • (232).Elfarra AA, Krause RJ, Selzer RR. Biochemistry of 1,3-butadiene metabolism and its relevance to 1,3-butadiene-induced carcinogenicity. Toxicology. 1996;113:23–30. doi: 10.1016/0300-483x(96)03423-3. [DOI] [PubMed] [Google Scholar]
  • (233).Krause RJ, Elfarra AA. Oxidation of butadiene monoxide to meso- and (±)-diepoxybutane by cDNA-expressed human cytochrome P450s and by mouse, rat, and human liver microsomes. Evidence for preferential hydration of meso-diepoxybutane in rat and human liver microsomes. Arch. Biochem. Biophys. 1997;337:176–184. doi: 10.1006/abbi.1996.9781. [DOI] [PubMed] [Google Scholar]
  • (234).Ding X, Spink DC, Bhama JK, Sheng JJ, Vaz AD, Coon MJ. Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450. Mol. Pharmacol. 1996;49:1113–1121. [PubMed] [Google Scholar]
  • (235).Liu C, Zhuo X, Gonzalez FJ, Ding X. Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2A6: Role in metabolic activation of nasal toxicants. Mol. Pharmacol. 1996;50:781–788. [PubMed] [Google Scholar]
  • (236).Gan J, Skipper PL, Tannenbaum SR. Oxidation of 2,6-dimethylaniline by recombinant human cytochrome P450s and human liver microsomes. Chem. Res. Toxicol. 2001;14:672–677. doi: 10.1021/tx000181i. [DOI] [PubMed] [Google Scholar]
  • (237).Jalas JR, Ding X, Murphy SE. Comparative metabolism of the tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol by rat cytochrome P450 2A3 and human cytochrome P450 2A13. Drug Metab. Dispos. 2003;31:1199–1202. doi: 10.1124/dmd.31.10.1199. [DOI] [PubMed] [Google Scholar]
  • (238).Chiang HC, Wang CY, Lee HL, Tsou TC. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation—a mammalian cell-based mutagenesis approach. Toxicol. Appl. Pharmacol. 2011;253:145–152. doi: 10.1016/j.taap.2011.03.022. [DOI] [PubMed] [Google Scholar]
  • (239).Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X. Human cytochrome P450 CYP2A13: Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 2000;60:5074–5079. [PubMed] [Google Scholar]
  • (240).He XY, Shen J, Ding X, Lu AYH, Hong JY. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. Drug Metab. Dispos. 2004;32:1516–1521. doi: 10.1124/dmd.104.001370. [DOI] [PubMed] [Google Scholar]
  • (241).Seidel A, Soballa VJ, Raab G, Greim H, Grimmer G, Jacob J, Doehmer J. Regio- and stereoselectivity of metabolism of benzo[c]phenanthrene mediated by genetically engineered V79 Chinese hamster cells expressing rat and human cytochromes P450. Environ. Toxicol. Pharmacol. 1998;5:179–196. doi: 10.1016/s1382-6689(97)10073-4. [DOI] [PubMed] [Google Scholar]
  • (242).Zhang X, D’Agostino J, Wu H, Zhang QY, von Weymarn L, Murphy SE, Ding X. CYP2A13: Variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J. Pharmacol. Exp. Ther. 2007;323:570–578. doi: 10.1124/jpet.107.127068. [DOI] [PubMed] [Google Scholar]
  • (243).Wong HL, Murphy SE, Hecht SS. Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic N’-nitrosonornicotine, N-nitrosopiperidine, and N-nitrosopyrrolidine. Chem. Res. Toxicol. 2005;18:61–69. doi: 10.1021/tx0497696. [DOI] [PubMed] [Google Scholar]
  • (244).Kushida H, Fujita K, Suzuki A, Yamada M, Endo T, Nohmi T, Kamataki T. Metabolic activation of N-alkylnitrosamines in genetically engineered Salmonella typhimurium expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis. 2000;21:1227–1232. [PubMed] [Google Scholar]
  • (245).Kushida H, Fujita K, Suzuki A, Yamada M, Nohmi T, Kamataki T. Development of a Salmonella tester strain sensitive to promutagenic N-nitrosamines. Expression of recombinant CYP2A6 and human NADPH-cytochrome P450 reductase in S. typhimurium YG7108. Mut. Res. 2000;471:135–143. doi: 10.1016/s1383-5718(00)00117-0. [DOI] [PubMed] [Google Scholar]
  • (246).Smith GB, Bend JR, Bedard LL, Reid KR, Petsikas D, Massey TE. Biotransformation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in peripheral human lung microsomes. Drug Metab. Dispos. 2003;31:1134–1141. doi: 10.1124/dmd.31.9.1134. [DOI] [PubMed] [Google Scholar]
  • (247).Yamazaki H, Inui Y, Yun C-H, Mimura M, Guengerich FP, Shimada T. Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis. 1992;13:1789–1794. doi: 10.1093/carcin/13.10.1789. [DOI] [PubMed] [Google Scholar]
  • (248).Yun CH, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal cytochrome P450 2A6. Mol. Pharmacol. 1994;40:679–685. [PubMed] [Google Scholar]
  • (249).Yun CH, Shimada T, Guengerich FP. Contributions of human liver cytochrome P450 enzymes to the N-oxidation of 4,4′-methylene-bis(2-chloroaniline) Carcinogenesis. 1992;13:217–222. doi: 10.1093/carcin/13.2.217. [DOI] [PubMed] [Google Scholar]
  • (250).Gemma S, Vittozzi L, Testai E. Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab. Dispos. 2003;31:266–274. doi: 10.1124/dmd.31.3.266. [DOI] [PubMed] [Google Scholar]
  • (251).Chang TKH, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and iphosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993;53:5629–5637. [PubMed] [Google Scholar]
  • (252).Bohnenstengel F, Hofmann U, Eichelbaum M, Kroemer HK. Characterization of the cytochrome P450 involved in side chain oxidation of cyclophosphamide in humans. Eur. J. Clin. Pharmacol. 1996;51:297–301. doi: 10.1007/s002280050201. [DOI] [PubMed] [Google Scholar]
  • (253).Roy P, Yu LJ, Crespi CL, Waxman DJ. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 1999;27:655–666. [PubMed] [Google Scholar]
  • (254).Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. 2000;59:961–972. doi: 10.1016/s0006-2952(99)00410-4. [DOI] [PubMed] [Google Scholar]
  • (255).Thornton-Manning JR, Nikula KJ, Hotchkiss JA, Avila KJ, Rohrbacher KD, Ding X, Dahl AR. Nasal cytochrome P450 2A: Identification, regional localization, and metabolic activity toward hexamethylphosphoramide, a known nasal carcinogen. Toxicol. Appl. Pharmacol. 1997;142:22–30. doi: 10.1006/taap.1996.7975. [DOI] [PubMed] [Google Scholar]
  • (256).Patten CJ, Smith TJ, Friesen MJ, Tynes RE, Yang CS, Murphy SE. Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N’-nitrosonornicotine α-hydroxylation by human liver microsomes. Carcinogenesis. 1997;18:1623–1630. doi: 10.1093/carcin/18.8.1623. [DOI] [PubMed] [Google Scholar]
  • (257).Berkman CE, Park SB, Wrighton SA, Cashman JR. In vitro-in vivo correlations of human (S)-nicotine metabolism. Biochem. Pharmacol. 1995;50:565–570. doi: 10.1016/0006-2952(95)00168-y. [DOI] [PubMed] [Google Scholar]
  • (258).Wong HL, Murphy SE, Hecht SS. Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic nitrosamines: N’-nitrosonornicotine enantiomers, N-nitrosopiperidine, and N-nitrosopyrrolidine. Chem. Res. Toxicol. 2005;18:61–69. doi: 10.1021/tx0497696. [DOI] [PubMed] [Google Scholar]
  • (259).Jeurissen SM, Bogaards JJ, Awad HM, Boersma MG, Brand W, Fiamegos YC, van Beek TA, Alink GM, Sudholter EJ, Cnubben NH, Rietjens IMCM. Human cytochrome P450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1′-hydroxysafrole. Chem. Res. Toxicol. 2004;17:1245–1250. doi: 10.1021/tx040001v. [DOI] [PubMed] [Google Scholar]
  • (260).Ueng Y-F, Hsieh CH, Don MJ, Chi CW, Ho LK. Identification of the main human cytochrome P450 enzymes involved in safrole 1′-hydroxylation. Chem. Res. Toxicol. 2004;17:1151–1156. doi: 10.1021/tx030055p. [DOI] [PubMed] [Google Scholar]
  • (261).D’Agostino J, Zhuo X, Shadid M, Morgan DG, Zhang X, Humphreys WG, Shu YZ, Yost GS, Ding X. The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract. Drug Metab. Dispos. 2009;37:2018–2027. doi: 10.1124/dmd.109.027300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (262).Bao Z, He XY, Ding X, Prabhu S, Hong JY. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab. Dispos. 2005;33:258–261. doi: 10.1124/dmd.104.002105. [DOI] [PubMed] [Google Scholar]
  • (263).Wong HL, Zhang X, Zhang QY, Gu J, Ding X, Hecht SS, Murphy SE. Metabolic activation of the tobacco carcinogen 4-(methylnitrosamino)-(3-pyridyl)-1-butanone by cytochrome P450 2A13 in human fetal nasal microsomes. Chem. Res. Toxicol. 2005;18:913–918. doi: 10.1021/tx0500777. [DOI] [PubMed] [Google Scholar]
  • (264).Zhang X, Su T, Zhang QY, Gu J, Caggana M, Li H, Ding X. Genetic polymorphisms of the human CYP2A13 gene: Identification of single-nucleotide polymorphisms and functional characterization of an Arg257Cys variant. J. Pharmacol. Exp. Ther. 2002;302:416–423. doi: 10.1124/jpet.302.2.416. [DOI] [PubMed] [Google Scholar]
  • (265).Wang SL, He XY, Shen J, Wang JS, Hong JY. The missense genetic polymorphisms of human CYP2A13. Functional significance in carcinogen activation and identification of a null allelic variant. Toxicol. Sci. 2006;94:38–45. doi: 10.1093/toxsci/kfl081. [DOI] [PubMed] [Google Scholar]
  • (266).Schlicht KE, Berg JZ, Murphy SE. Effect of CYP2A13 active site mutation N297A on metabolism of coumarin and tobacco-specific nitrosamines. Drug Metab. Dispos. 2009;37:665–671. doi: 10.1124/dmd.108.025072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (267).Goto T, Moriuchi H, Fu X, Ikegawa T, Matsubara T, Chang G, Uno T, Morigaki K, Isshiki K, Imaishi H. The effects of single nucleotide polymorphisms in CYP2A13 on metabolism of 5-methoxypsoralen. Drug Metab. Dispos. 2010;38:2110–2116. doi: 10.1124/dmd.110.034553. [DOI] [PubMed] [Google Scholar]
  • (268).White IN, De Matteis F. The role of CYP forms in the metabolism and metabolic activation of HCFCs and other halocarbons. Toxicol. Lett. 2001;124:121–128. doi: 10.1016/s0378-4274(00)00288-5. [DOI] [PubMed] [Google Scholar]
  • (269).White IN, Razvi N, Gibbs AH, Davies AM, Manno M, Zaccaro C, Matteis FD, Pahler A, Dekant W. Neoantigen formation and clastogenic action of hydrochlorofluorocarbons-123 and perchloroethylene in human MCL-5 cells. Toxicol. Lett. 2001;124:129–138. doi: 10.1016/s0378-4274(00)00281-2. [DOI] [PubMed] [Google Scholar]
  • (270).Mimura M, Baba T, Yamazaki H, Ohmori S, Inui Y, Gonzalez FJ, Guengerich FP, Shimada T. Characterization of cytochrome P-450 2B6 in human liver microsomes. Drug Metab. Dispos. 1993;21:1048–1056. [PubMed] [Google Scholar]
  • (271).Code EL, Crespi CL, Penman BW, Gonzalez FJ, Chang TK, Waxman DJ. Human cytochrome P4502B6. Interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab. Dispos. 25:985–993. [PubMed] [Google Scholar]
  • (272).Dicke KE, Skrlin SM, Murphy SE. Nicotine and 4-(methylnitrosoamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab. Dispos. 2005;33:1760–1764. doi: 10.1124/dmd.105.006718. [DOI] [PubMed] [Google Scholar]
  • (273).Fontaine SM, Mash EA, Hoyer PB, Sipes IG. Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome P450 enzyme systems. Drug Metab. Dispos. 2001;29:179–184. [PubMed] [Google Scholar]
  • (274).Coleman S, Linderman R, Hodgson E, Rose RL. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ. Health Perspect. 2000;108:1151–1157. doi: 10.1289/ehp.001081151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (275).Chen CS, Jounaidi Y, Waxman DJ. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab. Dispos. 2005;33:1261–1267. doi: 10.1124/dmd.105.004788. [DOI] [PubMed] [Google Scholar]
  • (276).Roy P, Tretyakov O, Wright J, Waxman DJ. Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab. Dispos. 1999;27:1309–1318. [PubMed] [Google Scholar]
  • (277).McCune JS, Risler LJ, Phillips BR, Thummel KE, Blough D, Shen DD. Contribution of CYP3A5 to hepatic and renal ifosfamide N-dechloroethylation. Drug Metab. Dispos. 2005;33:1074–1081. doi: 10.1124/dmd.104.002279. [DOI] [PubMed] [Google Scholar]
  • (278).Sun D, Chen G, Dellinger RW, Duncan K, Fang JL, Lazarus P. Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidation by human UGT1A4 variants. Breast Cancer Res. 2006;8:R50. doi: 10.1186/bcr1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (279).Jacobson PA, Green K, Birnbaum A, Remmel RP. Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to TEPA. Cancer Chemother. Pharmacol. 2002;49:461–467. doi: 10.1007/s00280-002-0453-3. [DOI] [PubMed] [Google Scholar]
  • (280).Ma M, Umemura T, Mori Y, Gong Y, Saijo Y, Sata F, Kawai T, Kishi R. Influence of genetic polymorphisms of styrene-metabolizing enzymes and smoking habits on levels of urinary metabolites after occupational exposure to styrene. Toxicol. Lett. 2005;160:84–91. doi: 10.1016/j.toxlet.2005.06.011. [DOI] [PubMed] [Google Scholar]
  • (281).Penman BW, Reece J, Smith T, Yang CS, Gelboin HV, Gonzalez FJ, Crespi CL. Characterization of a human cell line expressing high levels of cDNA-derived CYP2D6. Pharmacogenetics. 1993;3:28–39. doi: 10.1097/00008571-199302000-00003. [DOI] [PubMed] [Google Scholar]
  • (282).Guengerich FP, Kim D-H, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 1991;4:168–179. doi: 10.1021/tx00020a008. [DOI] [PubMed] [Google Scholar]
  • (283).Cheung C, Yu AM, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, Gonzalez FJ. The cyp2e1-humanized transgenic mouse: Role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab. Dispos. 2005;33:449–457. doi: 10.1124/dmd.104.002402. [DOI] [PubMed] [Google Scholar]
  • (284).Doherty AT, Ellard S, Parry EM, Parry JM. An investigation into the activation and deactivation of chlorinated hydrocarbons to genotoxins in metabolically competent human cells. Mutagenesis. 1996;11:247–274. doi: 10.1093/mutage/11.3.247. [DOI] [PubMed] [Google Scholar]
  • (285).Simmonds AC, Reilly CA, Baldwin RM, Ghanayem BI, Lanza DL, Yost GS, Collins KS, Forkert PG. Bioactivation of 1,1-dichloroethylene to its epoxide by CYP2E1 and CYP2F enzymes. Drug Metab. Dispos. 2004;32:1032–1039. [PubMed] [Google Scholar]
  • (286).Nieusma JL, Claffey DJ, Koop DR, Chen W, Peter RM, Nelson SD, Ruth JA, Ross D. Oxidation of 1,3-butadiene to (R)- and (S)-butadiene monoxide by purified recombinant cytochrome P450 2E1 from rabbit, rat and human. Toxicol. Lett. 1998;95:123–129. doi: 10.1016/s0378-4274(98)00026-5. [DOI] [PubMed] [Google Scholar]
  • (287).Nedelcheva V, Gut I, Soucek P, Frantík E. Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes. Chem.-Biol. Interact. 1998;115:53–70. doi: 10.1016/s0009-2797(98)00058-1. [DOI] [PubMed] [Google Scholar]
  • (288).Herbst J, Köster U, Kerssebaum R, Dekant W. Role of P4502E1 in the metabolism of 1,1,2,2,-tetrafluoro-1-(2,2,2-trifluoroethoxy)ethane. Xenobiotica. 1994;24:507–516. doi: 10.3109/00498259409043253. [DOI] [PubMed] [Google Scholar]
  • (289).Urban G, Speerschnaider P, Dekant W. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes. The role of cytochrome P450 2E1. Chem. Res. Toxicol. 1994;7:170–176. doi: 10.1021/tx00038a009. [DOI] [PubMed] [Google Scholar]
  • (290).Doroshyenko O, Fuhr U, Kunz D, Frank D, Kinzig M, Jetter A, Reith Y, Lazar A, Taubert D, Kirchheiner J, Baum M, Eisenbrand G, Berger FI, Bertow D, Berkessel A, Sörgel F, Schömig E, Tomalik-Scharte D. In vivo role of cytochrome P450 2E1 and glutathione-S-transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiol. Biomarkers Prev. 2009;18:433–443. doi: 10.1158/1055-9965.EPI-08-0832. [DOI] [PubMed] [Google Scholar]
  • (291).Koyama N, Yasui M, Oda Y, Suzuki S, Satoh T, Suzuki T, Matsuda T, Masuda S, Kinae N, Honma M. Genotoxicity of acrylamide in vitro. Acrylamide is not metabolically activated in standard in vitro systems. Environ. Mol. Mutagen. 2011;52:11–19. doi: 10.1002/em.20560. [DOI] [PubMed] [Google Scholar]
  • (292).Kedderis GL, Batra R, Koop DR. Epoxidation of acrylonitrile by rat and human cytochromes P450. Chem. Res. Toxicol. 1993;6:866–871. doi: 10.1021/tx00036a017. [DOI] [PubMed] [Google Scholar]
  • (293).Nedelcheva V, Gut I, Soucek P, Tichavska B, Tynkova L, Mraz J, Guengerich FP, Ingelman-Sundberg M. Metabolism of benezene in human liver microsomes. Individual variations in relation to CYP2E1 expression. Arch. Toxicol. 1999;73:33–40. doi: 10.1007/s002040050583. [DOI] [PubMed] [Google Scholar]
  • (294).Powley MW, Carlson GP. Cytochromes P450 involved with benzene metabolism in hepatic and pulmonary microsomes. J. Biochem. Mol. Toxicol. 2000;14:303–309. doi: 10.1002/1099-0461(2000)14:6<303::AID-JBT2>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  • (295).Sheets PL, Yost GS, Carlson GP. Benzene metabolism in human lung cell lines BEAS-2B and A549 and cells overexpressing CYP2F1. J. Biochem. Mol. Toxicol. 2004;18:92–99. doi: 10.1002/jbt.20010. [DOI] [PubMed] [Google Scholar]
  • (296).Boysen G, Scarlett CO, Temple B, Combs TP, Brooks NL, Borchers CH, Swenberg JA. Identification of covalent modifications in P450 2E1 by 1,2-epoxy-3-butene in vitro. Chem.-Biol. Interact. 2007;166:170–175. doi: 10.1016/j.cbi.2007.01.007. [DOI] [PubMed] [Google Scholar]
  • (297).Raucy JL. Risk assessment toxicity from chemical exposure resulting from enhanced expression of CYP2E1. Toxicology. 1995;105:217–224. doi: 10.1016/0300-483x(95)03216-3. [DOI] [PubMed] [Google Scholar]
  • (298).Zangar RC, Benson JM, Burnett VL, Springer DL. Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem.-Biol. Interact. 2000;125:233–243. doi: 10.1016/s0009-2797(00)00149-6. [DOI] [PubMed] [Google Scholar]
  • (299).Raucy JL, Krane JC, Lasker JM. Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit. Rev. Toxicol. 1993;23:1–20. doi: 10.3109/10408449309104072. [DOI] [PubMed] [Google Scholar]
  • (300).Takahashi S, Takahashi T, Mizobuchi S, Matsumi M, Morita K, Miyazaki M, Namba M, Akagi R, Hirakawa M. Increased cytotoxicity of carbon tetrachloride in a human hepatoma cell line overexpressing cytochrome P450 2E1. J. Int. Med. Res. 2002;30:400–405. doi: 10.1177/147323000203000406. [DOI] [PubMed] [Google Scholar]
  • (301).Lipscomb JC, Barton HA, Tornero-Velez R, Evans MV, Alcasey S, Snawder JE, Laskey J. The metabolic rate constants and specific activity of human and rat hepatic cytochrome P-450 2E1 toward toluene and chloroform. J. Toxicol. Environ. Health A. 2004;67:537–53. doi: 10.1080/15287390490425588. [DOI] [PubMed] [Google Scholar]
  • (302).Himmelstein MW, Carpenter SC, Hinderliter PM, Snow TA, Valentine R. The metabolism of β-chloroprene: preliminary in-vitro studies using liver microsomes. Chem.-Biol. Interact. 2001;135-136:267–84. doi: 10.1016/s0009-2797(01)00214-9. [DOI] [PubMed] [Google Scholar]
  • (303).Lu Y, Cederbaum AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol. Sci. 2006;89:515–523. doi: 10.1093/toxsci/kfj031. [DOI] [PubMed] [Google Scholar]
  • (304).Lu Y, Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: Modulation by ERK, ROS, glutathione, and thioredoxin. Free Radic. Biol. Med. 2007;43:1061–1075. doi: 10.1016/j.freeradbiomed.2007.06.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (305).Dai Y, Rashba-Step J, Cederbaum AI. Stable expression of human cytochrome P4502E1 in HepG2 cells. Characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry. 1993;32:6928–6937. doi: 10.1021/bi00078a017. [DOI] [PubMed] [Google Scholar]
  • (306).Liu LG, Yan H, Yao P, Zhang W, Zou LJ, Song FF, Li K, Sun XF. CYP2E1-dependent hepatotoxicity and oxidative damage after ethanol administration in human primary hepatocytes. World J. Gastroenterol. 2005;11:4530–4535. doi: 10.3748/wjg.v11.i29.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (307).Cederbaum AI. CYP2E1. Biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt. Sinai J. Med. 2006;73:657–672. [PubMed] [Google Scholar]
  • (308).Shimada M, Liu L, Nussler N, Jonas S, Langrehr JM, Ogawa T, Kaminishi M, Neuhaus P, Nussler AK. Human hepatocytes are protected from ethanol-induced cytotoxicity by DADS via CYP2E1 inhibition. Toxicol. Lett. 2006;163:242–249. doi: 10.1016/j.toxlet.2005.11.003. [DOI] [PubMed] [Google Scholar]
  • (309).Magne L, Blanc E, Legrand B, Lucas D, Barouki R, Rouach H, Garlatti M. ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. J. Hepatol. 2011;54:729–737. doi: 10.1016/j.jhep.2010.07.023. [DOI] [PubMed] [Google Scholar]
  • (310).Forkert PG, Lee RP. Metabolism of ethyl carbamate by pulmonary cytochrome P450 and carboxylesterase isozymes. Involvement of CYP 2E1 and hydrolase A. Toxicol. Appl. Pharmacol. 1997;146:245–254. doi: 10.1006/taap.1997.8233. [DOI] [PubMed] [Google Scholar]
  • (311).Hubner P, Groux PM, Weibel B, Sengstag C, Horlbeck J, Leong-Morgenthaler PM, Luthy J. Genotoxicity of ethyl carbamate (urethane) in Salmonella, yeast and human lymphoblastoid cells. Mutat. Res. 1997;390:11–19. doi: 10.1016/s0165-1218(96)00160-7. [DOI] [PubMed] [Google Scholar]
  • (312).Forkert PG, Lee RP, Reid K. Involvement of CYP2E1 and carboxylesterase enzymes in vinyl carbamate metabolism in human lung microsomes. Drug Metab. Dispos. 2001;29:258–263. [PubMed] [Google Scholar]
  • (313).Peterson LA, Cummings ME, Vu CC, Matter BA. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial. Drug Metab. Dispos. 2005;33:1453–1458. doi: 10.1124/dmd.105.004432. [DOI] [PubMed] [Google Scholar]
  • (314).Mraz J, Jheeta P, Gescher A, Hyland R, Thumel K, Threadgill MD. Investigation of the mechanistic basis of N,N-dimethylformamide toxicity. Metabolism of N,N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chem. Res. Toxicol. 1993;6:197–207. doi: 10.1021/tx00032a009. [DOI] [PubMed] [Google Scholar]
  • (315).Amato G, Grasso E, Longo V, Gervasi PG. Oxidation of N,N-dimethylformamide and N,N-diethylformamide by human liver microsomes and human recombinant P450s. Toxicol. Lett. 2001;124:11–19. doi: 10.1016/s0378-4274(01)00324-1. [DOI] [PubMed] [Google Scholar]
  • (316).Hyland R, Gescher A, Thumel K, Schiller C, Jheeta P, Mynett K, Smith AW, Mraz J. Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1. Mol. Pharmacol. 1992;41:259–266. [PubMed] [Google Scholar]
  • (317).Liu Y, Glatt H. Mutagenicity of N-nitrosodiethanolamine in a V79-derived cell line expressing two human biotransformation enzymes. Mut. Res. 2008;643:64–69. doi: 10.1016/j.mrfmmm.2008.06.003. [DOI] [PubMed] [Google Scholar]
  • (318).Cooper MT, Porter TD. Cytochrome b(5) coexpression increases the CYP2E1-dependent mutagenicity of dialkylnitrosamines in methyltransferase-deficient strains of Salmonella typhimurium. Mut. Res. 2001;484:61–68. doi: 10.1016/s0027-5107(01)00236-6. [DOI] [PubMed] [Google Scholar]
  • (319).Zhuge J, Luo Y, Yu YN. Heterologous expression of human cytochrome P450 2E1 in HepG2 cell line. World J. Gastroenterol. 2003;9:2732–2736. doi: 10.3748/wjg.v9.i12.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (320).Nakagawa T, Sawada M, Gonzalez FJ, Yokoi T, Kamataki T. Stable expression of human CYP2E1 in Chinese hamster cells: High sensitivity to N,N-dimethylnitrosamine in cytotoxicity testing. Mutat. Res. 1996;354:181–186. doi: 10.1016/s0165-1161(96)90015-1. [DOI] [PubMed] [Google Scholar]
  • (321).Lin HL, Parsels LA, Maybaum J, Hollenberg PF. N-Nitrosodimethylamine-mediated cytotoxicity in a cell line expressing P450 2E1. Evidence for apoptotic cell death. Toxicol. Appl. Pharmacol. 1999;157:117–124. doi: 10.1006/taap.1999.8651. [DOI] [PubMed] [Google Scholar]
  • (322).Glatt H, Schneider H, Liu Y. V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mut. Res. 2005;580:41–52. doi: 10.1016/j.mrgentox.2004.11.005. [DOI] [PubMed] [Google Scholar]
  • (323).Bellec G, Dreano Y, Bail JP, Menez JF, Berthou F. Cytochrome P450 hydroxylation of carbon atoms of the alkyl chain of symmetrical N-nitrosodialkylamines by human liver microsomes. Mutat. Res. 1997;377:199–209. doi: 10.1016/s0027-5107(97)00073-0. [DOI] [PubMed] [Google Scholar]
  • (324).Bellec G, Dreano Y, Lozach P, Menez JF, Berthou F. Cytochrome P450 metabolic dealkylation of nine N-nitrosodialkylamines by human liver microsomes. Carcinogenesis. 1996;17:2029–2034. doi: 10.1093/carcin/17.9.2029. [DOI] [PubMed] [Google Scholar]
  • (325).Teiber JF, Hollenberg PF. Identification of the human liver microsomal cytochrome P450s involved in the metabolism of N-nitrosodi-n-propylamine. Carcinogenesis. 2000;21:1559–1566. [PubMed] [Google Scholar]
  • (326).Ekins S, Wrighton SA. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 1999;31:719–754. doi: 10.1081/dmr-100101942. [DOI] [PubMed] [Google Scholar]
  • (327).Krishnan S, Hvastkovs EG, Bajrami B, Jansson I, Schenkman JB, Rusling JF. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine. Chem. Commun (Camb) 2007;7:1713–1715. doi: 10.1039/b703012f. [DOI] [PubMed] [Google Scholar]
  • (328).Stiborová M, Naiman K, Martínková M, Martínek V, Svobodová M, Schmeiser HH, Frei E. Genotoxic mechanisms for the carcinogenicity of the environmental pollutants and carcinogens o-anisidine and 2-nitroanisole follow from adducts generated by their metabolite N-(2-methoxyphenyl)-hydroxylamine with deoxyguanosine in DNA. Interdiscip. Toxicol. 2009;2:24–27. doi: 10.2478/v10102-009-0004-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (329).Chung JK, Yuan W, Liu G, Zheng J. Investigation of bioactivation and toxicity of styrene in CYP2E1 transgenic cells. Toxicology. 226:99–106. doi: 10.1016/j.tox.2006.06.001. [DOI] [PubMed] [Google Scholar]
  • (330).Lipscomb JC, Garrett CM, Snawder JE. Cytochrome P450-dependent metabolism of trichloroethylene. Interindividual differences in humans. Toxicol. Appl. Pharmacol. 1997;142:311–318. doi: 10.1006/taap.1996.8040. [DOI] [PubMed] [Google Scholar]
  • (331).Lash LH, Fisher JW, Lipscomb JC, Parker JC. Metabolism of trichloroethylene. Environ. Health Perspect. 2000;108(Suppl 2):177–200. doi: 10.1289/ehp.00108s2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (332).Cai H, Guengerich FP. Reaction of trichloroethylene and trichloroethylene oxide with cytochrome P450 enzymes. Inactivation and sites of modification. Chem. Res. Toxicol. 2001;14:451–458. doi: 10.1021/tx0002280. [DOI] [PubMed] [Google Scholar]
  • (333).Forkert PG, Baldwin RM, Millen B, Lash LH, Putt DA, Shultz MA, Collins KS. Pulmonary bioactivation of trichloroethylene to chloral hydrate relative contributions of CYP2E1, CYP2F, and CYP2B1. Drug Metab. Dispos. 2005;33:1429–1437. doi: 10.1124/dmd.105.005074. [DOI] [PubMed] [Google Scholar]
  • (334).Lanza DL, Code E, Crespi CL, Gonzalez FJ, Yost GS. Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells. Drug Metab. Dispos. 1999;27:798–803. [PubMed] [Google Scholar]
  • (335).Kartha JS, Yost GS. Mechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes. Drug Metab. Dispos. 2008;36:155–162. doi: 10.1124/dmd.107.017897. [DOI] [PubMed] [Google Scholar]
  • (336).Gillam EM, Wunsch RM, Ueng Y-F, Shimada T, Reilly PE, Kamataki T, Guengerich FP. Expression of cytochrome P450 3A7 in Escherichia coli. Effects of 5′ modification and catalytic characterization of recombinant enzyme expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch. Biochem. Biophys. 1997;346:81–90. doi: 10.1006/abbi.1997.0286. [DOI] [PubMed] [Google Scholar]
  • (337).Mesárosová M, Valovičová Z, Srančíková A, Krajčovičová Z, Milcová A, Sokolová R, Schmuczerová J, Topinka J, Gábelová A. The role of human cytochrome P4503A4 in biotransformation of tissue-specific derivatives of 7H-dibenzo[c,g]carbazole. Toxicol. Appl. Pharmacol. 2011;255:307–315. doi: 10.1016/j.taap.2011.06.027. [DOI] [PubMed] [Google Scholar]
  • (338).Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit. Role in intrauterine toxicity. Crit. Rev. Toxicol. 1998;28:35–72. doi: 10.1080/10408449891344173. [DOI] [PubMed] [Google Scholar]
  • (339).Raney KD, Shimada T, Kim DH, Groopman JD, Harris TM, Guengerich FP. Oxidation of aflatoxins and sterigmatocystin by human liver microsomes: significance of aflatoxin Q1 as a detoxication product of aflatoxin B1. Chem. Res. Toxicol. 1992;5:202–210. doi: 10.1021/tx00026a009. [DOI] [PubMed] [Google Scholar]
  • (340).De Groene EM, Seinen W, Horbach GJ. A NIH/3T3 cell line stably expressing human cytochrome P450-3A4 used in combination with a lacZ’ shuttle vector to study mutagenicity. Eur. J. Pharmacol. 1995;293:47–53. doi: 10.1016/0926-6917(95)90017-9. [DOI] [PubMed] [Google Scholar]
  • (341).Hashimoto H, Nakagawa T, Yokoi T, Sawada M, Itoh S, Kamataki T. Fetus-specific CYP3A7 and adult-specific CYP3A4 expressed in Chinese hamster CHL cells have similar capacity to activate carcinogenic mycotoxins. Cancer Res. 1995;55:787–791. [PubMed] [Google Scholar]
  • (342).Buening MK, Fortner JG, Kappas A, Conney AH. 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B1 to mutagens by human liver. Biochem. Biophys. Res. Commun. 1978;82:348–355. doi: 10.1016/0006-291x(78)90616-2. [DOI] [PubMed] [Google Scholar]
  • (343).Sabater Vilar M, Kuilman-Wahls ME, Fink-Gremmels J. Inhibition of aflatoxin B1 mutagenicity by cyclopiazonic acid in the presence of human liver preparations. Toxicol. Lett. 2003;143:291–299. doi: 10.1016/s0378-4274(03)00196-6. [DOI] [PubMed] [Google Scholar]
  • (344).Philip PA, Ali-Sadat S, Doehmer J, Kocarek T, Akhtar A, Lu H, Chan KK. Use of V79 cells with stably transfected cytochrome P450 cDNAs in studying the metabolism and effects of cytotoxic drugs. Cancer Chemother. Pharmacol. 1999;43:59–67. doi: 10.1007/s002800050863. [DOI] [PubMed] [Google Scholar]
  • (345).Stiborová M, Rupertová M, Frei E. Cytochrome P450-and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta. 2011;1814:175–185. doi: 10.1016/j.bbapap.2010.05.016. [DOI] [PubMed] [Google Scholar]
  • (346).Hosea NA, Miller GP, Guengerich FP. Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry. 2000;39:5929–5939. doi: 10.1021/bi992765t. [DOI] [PubMed] [Google Scholar]
  • (347).Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 2002;30:883–891. doi: 10.1124/dmd.30.8.883. [DOI] [PubMed] [Google Scholar]
  • (348).Lin HL, Hollenberg PF. The inactivation of cytochrome P450 A5 by 17α-ethynylestradiol is cytochrome b5-dependent: Metabolic activation of the ethynyl moiety leads to the formation of glutathione conjugates, a heme adduct, and covalent binding to the apoprotein. J. Pharmacol. Exp. Ther. 2007;321:276–287. doi: 10.1124/jpet.106.117861. [DOI] [PubMed] [Google Scholar]
  • (349).Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR. O-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450. Mol. Pharmacol. 1994;45:352–358. [PubMed] [Google Scholar]
  • (350).Zhao XJ, Kawashiro T, Ishizaki T. Mutual inhibition between quinine and etoposide by human liver microsomes. Evidence for cytochrome P450 3A4 involvement in their major metabolic pathways. Drug Metab. Dispos. 1998;26:188–191. [PubMed] [Google Scholar]
  • (351).Zheng N, Pang S, Oe T, Felix CA, Wehrli S, Blair IA. Characterization of an etoposide-glutathione conjugate derived from metabolic activation by human cytochrome P450. Curr. Drug Metab. 2006;7:897–911. doi: 10.2174/138920006779010638. [DOI] [PubMed] [Google Scholar]
  • (352).Walker D, Flinois J-P, Monkman SC, Beloc C, Boddy AV, Cholerton S, Daly AK, Lind MJ, Pearson ADJ, Beaune PH, Idle JR. Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem. Pharmacol. 1994;47:1157–1163. doi: 10.1016/0006-2952(94)90387-5. [DOI] [PubMed] [Google Scholar]
  • (353).Granvil CP, Madan A, Sharkawi M, Parkinson A, Wainer IW. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. Drug Metab. Dispos. 1999;27:533–541. [PubMed] [Google Scholar]
  • (354).Dehal SS, Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: Involvement of catechols in covalent binding to hepatic proteins. Drug Metab. Dispos. 1999;27:681–688. [PubMed] [Google Scholar]
  • (355).Lu H, Wang JJ, Chan KK, Philip PA. Stereoselectivity in metabolism of ifosfamide by CYP3A4 and CYP2B6. Xenobiotica. 2006;36:367–385. doi: 10.1080/00498250600598486. [DOI] [PubMed] [Google Scholar]
  • (356).Wang YP, Yan J, Fu PP, Chou MW. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol. Lett. 2005;155:411–420. doi: 10.1016/j.toxlet.2004.11.010. [DOI] [PubMed] [Google Scholar]
  • (357).Miranda CL, Reed RL, Guengerich FP, Buhler DR. Role of cytochrome P450IIIA4 in the metabolism of the pyrrolizidine alkaloid senecionine in human liver. Carcinogenesis. 1991;12:515–519. doi: 10.1093/carcin/12.3.515. [DOI] [PubMed] [Google Scholar]
  • (358).Notley LM, De Wolf CJ, Wunsch RM, Lancaster RG, Gillam EM. Bioactivation of tamoxifen by recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 2002;15:614–622. doi: 10.1021/tx0100439. [DOI] [PubMed] [Google Scholar]
  • (359).Kim SY, Suzuki N, Santosh Laxmi YR, Rieger R, Shibutani S. α-Hydroxylation of tamoxifen and toremifene by human and rat cytochrome P450 3A subfamily enzymes. Chem. Res. Toxicol. 2003;16:1138–1144. doi: 10.1021/tx0300131. [DOI] [PubMed] [Google Scholar]
  • (360).Coller JK, Krebsfaenger N, Klein K, Wolbold R, Nussler A, Neuhaus P, Zanger UM, Eichelbaum M, Murdter TE. Large interindividual variability in the in vitro formation of tamoxifen metabolites related to the development of genotoxicity. Br. J. Clin. Pharmacol. 2004;57:105–11. doi: 10.1046/j.1365-2125.2003.01970.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (361).Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 2004;310:1062–1075. doi: 10.1124/jpet.104.065607. [DOI] [PubMed] [Google Scholar]
  • (362).Notley LM, Crewe KH, Taylor PJ, Lennard MS, Gillam EMJ. Characterization of the human cytochrome P450 forms involved in metabolism of tamoxifen to its α-hydroxy and α,4-dihydroxy derivatives. Chem. Res. Toxicol. 2005;18:1611–1618. doi: 10.1021/tx050140s. [DOI] [PubMed] [Google Scholar]
  • (363).Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EMJ. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes. Formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab. Dispos. 2002;30:869–874. doi: 10.1124/dmd.30.8.869. [DOI] [PubMed] [Google Scholar]
  • (364).Boocock DJ, Brown K, Gibbs AH, Sanchez E, Turteltaub KW, White IN. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis. 2002;23:1897–1901. doi: 10.1093/carcin/23.11.1897. [DOI] [PubMed] [Google Scholar]
  • (365).Gillam EMJ, Guo Z, Ueng Y-F, Yamazaki H, Cock I, Reilly PEB, Hooper WD, Guengerich FP. Expression of cytochrome P450 3A5 in Escherichia coli. Effects of 5′ modification, purification, spectral characterization, reconstitution conditions, and catalytic activities. Arch. Biochem. Biophys. 1995;317:374–384. doi: 10.1006/abbi.1995.1177. [DOI] [PubMed] [Google Scholar]
  • (366).Li Y, Yokoi T, Katsuki M, Wang J-S, Groopman JD, Kamataki T. In vivo activation of aflatoxin B1 in C57BL/6N mice carrying a human fetus-specific CYP3A7 gene. Cancer Res. 1997;57:641–645. [PubMed] [Google Scholar]
  • (367).Imaoka S, Hayashi K, Hiroi T, Yabusaki Y, Kamataki T, Funae Y. A transgenic mouse expressing human CYP4B1 in the liver. Biochem. Biophys Res. Commun. 2001;284:757–762. doi: 10.1006/bbrc.2001.5055. [DOI] [PubMed] [Google Scholar]
  • (368).Imaoka S, Yoneda Y, Sugimoto T, Hiroi T, Yamamoto K, Nakatani T, Funae Y. CYP4B1 is a possible risk factor for bladder cancer in humans. Biochem. Biophys. Res. Commun. 2000;277:776–780. doi: 10.1006/bbrc.2000.3740. [DOI] [PubMed] [Google Scholar]
  • (369).Osawa Y, Higashiyama T, Shimizu Y, Yarborough C. Multiple functions of aromatase and the active site structure. Aromatase is the placental estrogen 2-hydroxylase. J. Steroid Biochem. Mol Biol. 1993;44:469–480. doi: 10.1016/0960-0760(93)90252-r. [DOI] [PubMed] [Google Scholar]
  • (370).Kim YM, Ziegler DM. Size limits of thiocarbamides accepted as substrates by human flavin-containing monooxygenase 1. Drug Metab. Dispos. 2000;28:1003–1006. [PubMed] [Google Scholar]
  • (371).Furnes B, Schlenk D. Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol. Sci. 2004;78:196–203. doi: 10.1093/toxsci/kfh079. [DOI] [PubMed] [Google Scholar]
  • (372).Henderson MC, Krueger SK, Stevens JF, Williams DE. Human flavin-containing monooxygenase form 2. S-Oxygenation sulfenic acid formation from thioureas and oxidation of glutathione. Chem. Res. Toxicol. 2004;17:633–640. doi: 10.1021/tx034253s. [DOI] [PubMed] [Google Scholar]
  • (373).Krueger SK, Martin SR, Yueh MF, Pereira CB, Williams DE. Identification of active flavin-containing monooxygenase isoform 2 in human lung and characterization of expressed protein. Drug Metab. Dispos. 2002;30:34–41. doi: 10.1124/dmd.30.1.34. [DOI] [PubMed] [Google Scholar]
  • (374).Smith PB, Crespi C. Thiourea toxicity in mouse C3H/10T1/2 cells expressing human flavin-dependent monooxygenase 3. Biochem. Pharmacol. 2002;63:1941–1948. doi: 10.1016/s0006-2952(02)00978-4. [DOI] [PubMed] [Google Scholar]
  • (375).Simula TP, Glancey MJ, Wolf CR. Human glutathione S-transferase-expressing Salmonella typhimurium tester strains to study the activation/detoxification of mutagenic compounds: studies with halogenated compounds, aromatic amines and aflatoxin B1. Carcinogenesis. 1993;14:1371–1376. doi: 10.1093/carcin/14.7.1371. [DOI] [PubMed] [Google Scholar]
  • (376).Josephy PD, Taylor PL, Vervaet G, Mannervik B. Screening and characterization of variant Theta-class glutathione transferases catalyzing the activation of ethylene dibromide to a mutagen. Environ. Mol. Mutagen. 2006;47:657–665. doi: 10.1002/em.20252. [DOI] [PubMed] [Google Scholar]
  • (377).Guengerich FP. Activation of dihaloalkanes by thiol-dependent mechanisms. J. Biochem. Molec. Biol. 2003;36:20–27. doi: 10.5483/bmbrep.2003.36.1.020. [DOI] [PubMed] [Google Scholar]
  • (378).Anders MW. Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab. Rev. 2004;36:583–594. doi: 10.1081/dmr-200033451. [DOI] [PubMed] [Google Scholar]
  • (379).Thier R, Pemble S, Kramer H, Taylor JB, Guengerich FP, Ketterer B. Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane, and 1,2,3,4-diepoxybutane in Salmonella typhimurium. Carcinogenesis. 1996;17:163–166. doi: 10.1093/carcin/17.1.163. [DOI] [PubMed] [Google Scholar]
  • (380).Cho S-H, Guengerich FP. Conjugation of butadiene diepoxide with glutathione yields DNA adducts in vitro and in vivo. Chem. Res. Toxicol. 2012;25 doi: 10.1021/tx200471x. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (381).Liu L, Pegg AE, Williams KM, Guengerich FP. Paradoxical enhancement of the toxicity of 1,2-dibromoethane by O6-alkylguanine-DNA alkyltransferase. J. Biol. Chem. 2002;277:37920–37928. doi: 10.1074/jbc.M205548200. [DOI] [PubMed] [Google Scholar]
  • (382).Valadez JG, Liu L, Loktionova NA, Pegg AE, Guengerich FP. Activation of bis-electrophiles to mutagenic conjugates by human O6-alkylguanine-DNA alkyltransferase. Chem. Res. Toxicol. 2004;17:972–982. doi: 10.1021/tx049897u. [DOI] [PubMed] [Google Scholar]
  • (383).Liu L, Williams KM, Guengerich FP, Pegg AE. O6-Alkylguanine-DNA alkyltransferase has opposing effects in modulating the genotoxicity of dibromomethane and bromomethyl acetate. Chem. Res. Toxicol. 2004;17:742–752. doi: 10.1021/tx049958o. [DOI] [PubMed] [Google Scholar]
  • (384).Murata M, Ohnishi S, Seike K, Fukuhara K, Miyata N, Kawanishi S. Oxidaative DNA damage induced by carcinogenic dinitropyrenes in the presence of P450 reductase. Chem. Res. Toxciol. 2004;17:1750–1756. doi: 10.1021/tx0497550. [DOI] [PubMed] [Google Scholar]
  • (385).Ohkuma Y, Hiraku Y, Kawanishi S. Sequence-specific DNA damage induced by carcinogenic danthron and anthraquinone in the presence of Cu(II), cytochrome P450 reductase and NADPH. Free Radic. Res. 2001;34:595–604. doi: 10.1080/10715760100300491. [DOI] [PubMed] [Google Scholar]
  • (386).Oda Y, Yamazaki H, Shimada T. Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in Salmonella typhimurium NM6001 and NM6002. Carcinogenesis. 1999;20:1079–1083. doi: 10.1093/carcin/20.6.1079. [DOI] [PubMed] [Google Scholar]
  • (387).Grant DM, Josephy PD, Lord HL, Morrison LD. Salmonella typhimurium strains expressing human arylamine N-acetyltransferases: Metabolism and mutagenic activation of aromatic amines. Cancer Res. 1992;52:3961–3964. [PubMed] [Google Scholar]
  • (388).Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Schmeiser HH, Phillips DH. Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis. 2002;23:1937–1945. doi: 10.1093/carcin/23.11.1937. [DOI] [PubMed] [Google Scholar]
  • (389).Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993;14:1633–1638. doi: 10.1093/carcin/14.8.1633. [DOI] [PubMed] [Google Scholar]
  • (390).Glatt H, Meinl W. Use of genetically manipulated Salmonella typhimurium strains to evaluate the role of sulfotransferases and acetyltransferases in nitrofen mutagenicity. Carcinogenesis. 2004;25:779–786. doi: 10.1093/carcin/bgh070. [DOI] [PubMed] [Google Scholar]
  • (391).Arlt VM, Glatt H, Gamboa da Costa G, Reynisson J, Takamura-Enya T, Phillips DH. Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone. Toxicol. Sci. 2007;98:445–457. doi: 10.1093/toxsci/kfm103. [DOI] [PubMed] [Google Scholar]
  • (392).Wild D, Feser W, Michel S, Lord HL, Josephy PD. Metabolic activation of heterocyclic aromatic amines catalyzed by human arylamine N-acetyltransferase isozymes (NAT1 and NAT2) expressed in Salmonella typhimurium. Carcinogenesis. 1995;16:643–648. doi: 10.1093/carcin/16.3.643. [DOI] [PubMed] [Google Scholar]
  • (393).Muckel E, Frandsen H, Glatt HR. Heterologous expression of human N-acetyltransferases 1 and 2 and sulfotransferase 1A1 in Salmonella typhimurium for mutagenicity testing of heterocyclic amines. Food Chem. Toxicol. 2002;40:1063–1068. doi: 10.1016/s0278-6915(02)00032-7. [DOI] [PubMed] [Google Scholar]
  • (394).Glatt H, Boeing H, Engelke CE, Ma L, Kuhlow A, Pabel U, Pomplun D, Teubner W, Meinl W. Human cytosolic sulphotransferases: Genetics, characteristics, toxicological aspects. Mut. Res. 2001;482:27–40. doi: 10.1016/s0027-5107(01)00207-x. [DOI] [PubMed] [Google Scholar]
  • (395).Glatt H. Sulfation and sulfotransferases. Bioactivation of mutagens via sulfation. FASEB J. 1997;11:314–321. doi: 10.1096/fasebj.11.5.9141497. [DOI] [PubMed] [Google Scholar]
  • (396).Kreis P, Brandner S, Coughtrie MW, Pabel U, Meinl W, Glatt H, Andrae U. Human phenol sulfotransferases hP-PST and hM-PST activate propane 2-nitronate to a genotoxicant. Carcinogenesis. 2000;21:295–299. doi: 10.1093/carcin/21.2.295. [DOI] [PubMed] [Google Scholar]
  • (397).Meinl W, Donath C, Schneider H, Sommer Y, Glatt H. SULT1C3, an orphan sequence of the human genome, encodes an enzyme activating various promutagens. Food Chem. Toxicol. 2008;46:1249–1256. doi: 10.1016/j.fct.2007.08.040. [DOI] [PubMed] [Google Scholar]
  • (398).Glatt H, Baasanjav-Gerber C, Schumacher F, Monien BH, Schreiner M, Frank H, Seidel A, Engst W. 1-Methoxy-3-indolylmethyl glucosinolate. A potent genotoxicant in bacterial and mammalian cells. Mechanisms of bioactivation. Chem.-Biol. Interact. 2011;192:81–86. doi: 10.1016/j.cbi.2010.09.009. [DOI] [PubMed] [Google Scholar]
  • (399).Glatt H. Sulfotransferases in the bioactivation of xenobiotics. Chem.-Biol. Interact. 2000;129:141–170. doi: 10.1016/s0009-2797(00)00202-7. [DOI] [PubMed] [Google Scholar]
  • (400).Svendsen C, Meinl W, Glatt H, Alexander J, Knutsen HK, Hjertholm H, Rasmussen T, Husøy T. Intestinal carcinogenesis of two food processing contaminants, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 5-hydroxymethylfurfural, in transgenic FVB min mice expressing human sulfotransferases. Mol. Carcinog. 2011 doi: 10.1002/mc.20869. doi 10.1002/mc.20869. [DOI] [PubMed] [Google Scholar]
  • (401).Oda Y, Zhang Y, Buchinger S, Reifferscheid G, Yang M. Roles of human sulfotransferases in genotoxicity of carcinogens using genetically engineered umu test strains. Environ. Mol. Mutagen. 2012;253:152–164. doi: 10.1002/em.20696. [DOI] [PubMed] [Google Scholar]
  • (402).Nishiyama T, Ogura K, Nakano H, Ohnuma T, Kaku T, Hiratsuka A, Muro K, Watabe T. Reverse geometrical selectivity in glucuronidation and sulfation of cis- and trans-4-hydroxytamoxifens by human liver UDP-glucuronosyltransferases and sulfotransferases. Biochem. Pharmacol. 2002;63:1817–1830. doi: 10.1016/s0006-2952(02)00994-2. [DOI] [PubMed] [Google Scholar]
  • (403).Mercer KE, Apostolov EO, da Costa GG, Yu X, Lang P, Roberts DW, Davis W, Basnakian AG, Kadlubar FF, Kadlubar SA. Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis. Int. J Mol. Epidemiol. Genet. 2010;1:92–103. [PMC free article] [PubMed] [Google Scholar]
  • (404).Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler J-G, Glatt H. Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int. J. Cancer. 2006;118:1090–1097. doi: 10.1002/ijc.21480. [DOI] [PubMed] [Google Scholar]
  • (405).Monien BH, Herrmann K, Florian S, Glatt H. Metabolic activation of furfuryl alcohol: formation of 2-methylfuranyl DNA adducts in Salmonella typhimurium strains expressing human sulfotransferase 1A1 and in FVB/N mice. Carcinogenesis. 2011;32:1533–1539. doi: 10.1093/carcin/bgr126. [DOI] [PubMed] [Google Scholar]
  • (406).Coles B, Nowell SA, MacLeod SL, Sweeney C, Lang NP, Kadlubar FF. The role of human glutathione S-transferases (hGSTs) in the detoxification of the food-derived carcinogen metabolite N-acetoxy-PhIP, and the effect of a polymorphism in hGSTA1 on colorectal cancer risk. Mut. Res. 2001;482:3–10. doi: 10.1016/s0027-5107(01)00187-7. [DOI] [PubMed] [Google Scholar]
  • (407).Al-Buheissi SZ, Patel HR, Meinl W, Hewer A, Bryan RL, Glatt H, Miller RA, Phillips DH. N-Acetyltransferase and sulfotransferase activity in human prostates: Potential for carcinogen activation. Pharmacogenet. Genomics. 2006;16:391–399. doi: 10.1097/01.fpc.0000204998.22301.09. [DOI] [PubMed] [Google Scholar]
  • (408).Chou HC, Lang NP, Kadlubar FF. Metabolic activation of N-hydroxy arylamines and N-hydroxy heterocyclic amines by human sulfotransferase(s) Cancer Res. 1995;55:525–529. [PubMed] [Google Scholar]
  • (409).Chou HC, Lang NP, Kadluber FF. Metabolic activation of the N-hydroxy derivative of the carcinogen 4-aminobiphenyl by human tissue sulfotransferases. Carcinogenesis. 1995;16:413–417. doi: 10.1093/carcin/16.2.413. [DOI] [PubMed] [Google Scholar]
  • (410).Meinl W, Meerman JH, Glatt H. Differential activation of promutagens by alloenzymes of human sulfotransferase 1A2 expressed in Salmonella typhimurium. Pharmacogenetics. 2002;12:677–689. doi: 10.1097/00008571-200212000-00002. [DOI] [PubMed] [Google Scholar]
  • (411).Glatt H, Schneider H, Murkovic M, Monien BH, Meinl W. Hydroxymethyl-substituted furans: Mutagenicity in Salmonella typhimurium strains engineered for expression of various human and rodent sulphotransferases. Mutagenesis. 2012;27:41–48. doi: 10.1093/mutage/ger054. [DOI] [PubMed] [Google Scholar]
  • (412).Shibutani S, Shaw PM, Suzuki N, Dasaradhi L, Duffel MW, Terashima I. Sulfation of α-hydroxytamoxifen catalyzed by human hydroxysteroid sulfotransferase results in tamoxifen-DNA adducts. Carcinogenesis. 1998;19:2007–2011. doi: 10.1093/carcin/19.11.2007. [DOI] [PubMed] [Google Scholar]
  • (413).Apak TI, Duffel MW. Interactions of the stereoisomers of alpha-hydroxytamoxifen with human hydroxysteroid sulfotransferase SULT2A1 and rat hydroxysteroid sulfotransferase STa. Drug Metab. Dispos. 2004;32:1501–1508. doi: 10.1124/dmd.104.000919. [DOI] [PubMed] [Google Scholar]
  • (414).Shen Y, Zhong L, Johnson S, Cao D. Human aldo-keto reductases B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem.-Biol. Interact. 2011;191:192–198. doi: 10.1016/j.cbi.2011.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (415).Martin HJ, Breyer-Pfaff U, Wsol V, Venz S, Block S, Maser E. Purification and characterization of AKR1B10 from human liver: role in carbonyl reduction of xenobiotics. Drug Metab. Dispos. 2006;34:464–470. doi: 10.1124/dmd.105.007971. [DOI] [PubMed] [Google Scholar]
  • (416).Martin HJ, Maser E. Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes. Chem.-Biol. Interactions. 2009;178:145–150. doi: 10.1016/j.cbi.2008.10.021. [DOI] [PubMed] [Google Scholar]
  • (417).Zhong L, Liu Z, Yan R, Johnson S, Zhao Y, Fang X, Cao D. Aldo-keto reductase family 1B10 protein detoxifies dietary and lipid-derived α, β-unsaturated carbonyls at physiological levels. Biochem. Biophys. Res. Commun. 2009;387:245–250. doi: 10.1016/j.bbrc.2009.06.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (418).Atalla A, Breyer-Pfaff U, Maser E. Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol. Xenobiotica. 2000;30:755–769. doi: 10.1080/00498250050119826. [DOI] [PubMed] [Google Scholar]
  • (419).Atalla A, Maser E. Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta. Chem.-Biol. Interact. 2001;130-132:737–748. doi: 10.1016/s0009-2797(00)00304-5. [DOI] [PubMed] [Google Scholar]
  • (420).Knight LP, Primiano T, Groopman JD, Kensler TW, Sutter TR. B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis. 1999;20:1215–1223. doi: 10.1093/carcin/20.7.1215. [DOI] [PubMed] [Google Scholar]
  • (421).Penning TM, Drury JE. Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 2007;464:241–250. doi: 10.1016/j.abb.2007.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (422).Bodreddigari S, Jones LK, Egner PA, Groopman JD, Sutter CH, Roebuck BD, Guengerich FP, Kensler TW, Sutter TR. Protection against aflatoxin B1-induced cytotoxicity by expression of the cloned aflatoxin B1-aldehyde reductases rat AKR7A1 and human AKR7A3. Chem. Res. Toxicol. 2008;21:1134–1142. doi: 10.1021/tx7004458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (423).Miksanova M, Sulc M, Rydlova H, Schmeiser HH, Frei E, Stiborová M. Enzymes involved in the metabolism of the carcinogen 2-nitroanisole: evidence for its oxidative detoxication by human cytochromes P450. Chem. Res. Toxicol. 2004;17:663–671. doi: 10.1021/tx0499721. [DOI] [PubMed] [Google Scholar]
  • (424).Dracinska H, Miksanova M, Svobodova M, Smrcek S, Frei E, Schmeiser HH, Stiborová M. Oxidative detoxication of carcinogenic 2-nitroanisole by human, rat and rabbit cytochrome P450. Neuro. Endocrinol. Lett. 2006;27(Suppl. 2):9–13. [PubMed] [Google Scholar]
  • (425).Jones JP, Shou M, Korzekwa KR. Stereospecific activation of the procarcinogen benzo[a]pyrene: a probe for the active sites of the cytochrome P450 superfamily. Biochemistry. 1995;34:6956–6961. doi: 10.1021/bi00021a007. [DOI] [PubMed] [Google Scholar]
  • (426).Shimada T, Gillam EM, Sutter TR, Strickland PT, Guengerich FP, Yamazaki H. Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab. Dispos. 1997;25:617–622. [PubMed] [Google Scholar]
  • (427).Bauer E, Guo Z, Ueng Y-F, Bell LC, Guengerich FP. Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995;8:136–142. doi: 10.1021/tx00043a018. [DOI] [PubMed] [Google Scholar]
  • (428).Parikh A, Josephy PD, Guengerich FP. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry. 1999;38:5283–5289. doi: 10.1021/bi990142+. [DOI] [PubMed] [Google Scholar]
  • (429).Langouët S, Welti DH, Kerriguy N, Fay LB, Huynh-Ba T, Markovic J, Guengerich FP, Guillouzo A, Turesky RJ. Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2. Chem. Res. Toxicol. 2001;14:211–221. doi: 10.1021/tx000176e. [DOI] [PubMed] [Google Scholar]
  • (430).Yun C-H, Shimada T, Guengerich FP. Roles of human liver cytochrome P-450 2C and 3A enzymes in the 3-hydroxylation of benzo(a)pyrene. Cancer Res. 1992;52:1868–1874. [PubMed] [Google Scholar]
  • (431).Munter T, Cottrell L, Golding BT, Watson WP. Detoxication pathways involving glutathione and epoxide hydrolase in the in vitro metabolism of chloroprene. Chem. Res. Toxicol. 2003;16:1287–1297. doi: 10.1021/tx034107m. [DOI] [PubMed] [Google Scholar]
  • (432).Guengerich FP, Johnson WW, Ueng Y-F, Yamazaki H, Shimada T. Involvement of cytochrome P450s, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ. Health Perspect. 1996;104(Suppl. 3):557–562. doi: 10.1289/ehp.96104s3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (433).Johnson WW, Ueng Y-F, Yamazaki H, Shimada T, Guengerich FP. Role of microsomal epoxide hydrolase in the hydrolysis of aflatoxin B1 8,9-epoxide. Chem. Res. Toxicol. 1997;10:672–676. doi: 10.1021/tx960209j. [DOI] [PubMed] [Google Scholar]
  • (434).Chandrasena RE, Edirisinghe PD, Bolton JL, Thatcher GR. Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase. Chem. Res. Toxicol. 2008;21:1324–1329. doi: 10.1021/tx8000797. [DOI] [PubMed] [Google Scholar]
  • (435).Pernice R, Hauder J, Koehler P, Vitaglione P, Fogliano V, Somoza V. Effect of sulforaphane on glutathione-adduct formation and on glutathione S-transferase-dependent detoxification of acrylamide in Caco-2 cells. Mol Nutr Food Res. 2009;53:1540–1550. doi: 10.1002/mnfr.200900447. [DOI] [PubMed] [Google Scholar]
  • (436).Pacifici GM, Guthenberg C, Warholm M, Mannervik B, Rane A. Conjugation of styrene oxide by the basic and acidic forms of glutathione transferase in the human fetal liver. Dev. Pharmacol. Ther. 1988;11:243–251. doi: 10.1159/000457695. [DOI] [PubMed] [Google Scholar]
  • (437).Pacifici GM, Warholm M, Guthenberg C, Mannervik B, Rane A. Detoxification of styrene oxide by human liver glutathione transferase. Hum. Toxicol. 1987;6:483–489. doi: 10.1177/096032718700600606. [DOI] [PubMed] [Google Scholar]
  • (438).Seidel A, Friedberg T, Löllmann B, Schwierzok A, Funk M, Frank H, Holler R, Oesch F, Glatt H. Detoxification of optically active bay- and fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P1-1 expressed in Chinese hamster V79 cells. Carcinogenesis. 1998;19:1975–1981. doi: 10.1093/carcin/19.11.1975. [DOI] [PubMed] [Google Scholar]
  • (439).Jernstrom B, Funk M, Frank H, Mannervik B, Seidel A. Glutathione S-transferase A1-1-catalysed conjugation of bay and fjord region diol epoxides or polycyclic aromatic hydrocarbons with glutathione. Carcinogenesis. 1996;17:1491–1498. doi: 10.1093/carcin/17.7.1491. [DOI] [PubMed] [Google Scholar]
  • (440).Sundberg K, Dreij K, Seidel A, Jernström B. Glutathione conjugation and DNA adduct formation of dibenzo[a,l]pyrene and benzo[a]pyrene diol epoxides in V79 cells stably expressing different human glutathione transferases. Chem. Res. Toxicol. 2002;15:170–179. doi: 10.1021/tx015546t. [DOI] [PubMed] [Google Scholar]
  • (441).Dreij K, Sundberg K, Johansson AS, Nordling E, Seidel A, Persson B, Mannervik B, Jernström B. Catalytic activities of human alpha class glutathione transferases toward carcinogenic dibenzo[a,l]pyrene diol epoxides. Chem. Res. Toxicol. 2002;15:825–831. doi: 10.1021/tx025519i. [DOI] [PubMed] [Google Scholar]
  • (442).Dirven HA, van Ommen B, van Bladeren PJ. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res. 1994;54:6215–6220. [PubMed] [Google Scholar]
  • (443).Guengerich FP, Johnson WW, Shimada T, Ueng YF, Yamazaki H, Langouët S. Activation and detoxication of aflatoxin B1. Mut. Res. 1998;402:121–128. doi: 10.1016/s0027-5107(97)00289-3. [DOI] [PubMed] [Google Scholar]
  • (444).Lin D, Meyer DJ, Ketterer B, Lang NP, Kadlubar FF. Effects of human and rat glutathione S-transferases on the covalent DNA binding of the N-acetoxy derivatives of heterocyclic amine carcinogens in vitro: a possible mechanism of organ specificity in their carcinogenesis. Cancer Res. 1994;54:4920–4926. [PubMed] [Google Scholar]
  • (445).Upadhyaya P, Rao P, Hochalter JB, Li ZZ, Villalta PW, Hecht SS. Quantitation of N-acetyl-S-(9,10-dihydro-9-hydroxy-10-phenanthryl)-L-cysteine in human urine: Comparison with glutathione-S-transferase genotypes in smokers. Chem. Res. Toxicol. 2006;19:1234–1240. doi: 10.1021/tx060096w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (446).Sundberg K, Widersten M, Seidel A, Mannervik B, Jernström B. Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. Chem. Res. Toxicol. 1997;10:1221–1227. doi: 10.1021/tx970099w. [DOI] [PubMed] [Google Scholar]
  • (447).Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers’ lung: Comparison with aromatic/hydrophobic adduct formation. Carcinogenesis. 2002;23:1969–1977. doi: 10.1093/carcin/23.12.1969. [DOI] [PubMed] [Google Scholar]
  • (448).Hu X, Xia H, Srivastava SK, Herzog C, Awasthi YC, Ji X, Zimniak P, Singh SV. Activity of four allelic forms of glutathione S-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem. Biophys. Res. Commun. 1997;238:397–402. doi: 10.1006/bbrc.1997.7311. [DOI] [PubMed] [Google Scholar]
  • (449).Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, Jernström B. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998;19:433–436. doi: 10.1093/carcin/19.3.433. [DOI] [PubMed] [Google Scholar]
  • (450).Hu X, Herzog C, Zimniak P, Singh SV. Differential protection against benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage in HepG2 cells stably transfected with allelic variants of pi class human glutathione S-transferase. Cancer Res. 1999;59:2358–2362. [PubMed] [Google Scholar]
  • (451).Dirven HA, Megens L, Oudshoorn MJ, Dingemanse MA, van Ommen B, van Bladeren PJ. Glutathione conjugation of the cytostatic drug ifosfamide and the role of human glutathione S-transferases. Chem. Res. Toxicol. 1995;8:979–986. doi: 10.1021/tx00049a012. [DOI] [PubMed] [Google Scholar]
  • (452).Morrow CS, Smitherman PK, Townsend AJ. Role of multidrug-resistance protein 2 in glutathione S-transferase P1-1-mediated resistance to 4-nitroquinoline 1-oxide toxicities in HepG2 cells. Mol. Carcinog. 2000;29:170–178. doi: 10.1002/1098-2744(200011)29:3<170::aid-mc6>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  • (453).Peklak-Scott C, Townsend AJ, Morrow CS. Dynamics of glutathione conjugation and conjugate efflux in detoxification of the carcinogen, 4-nitroquinoline 1-oxide: contributions of glutathione, glutathione S-transferase, and MRP1. Biochemistry. 2005;44:4426–4433. doi: 10.1021/bi047810y. [DOI] [PubMed] [Google Scholar]
  • (454).Hu X, Pal A, Krzeminski J, Amin S, Awasthi YC, Zimniak P, Singh SV. Specificities of human glutathione S-transferase isozymes toward anti-diol epoxides of methylchrysenes. Carcinogenesis. 1998;19:1685–1689. doi: 10.1093/carcin/19.9.1685. [DOI] [PubMed] [Google Scholar]
  • (455).Sundberg K, Seidel A, Mannervik B, Jernström B. Detoxication of carcinogenic fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferase P1-1 variants and glutathione. FEBS Lett. 1998;438:206–210. doi: 10.1016/s0014-5793(98)01291-5. [DOI] [PubMed] [Google Scholar]
  • (456).Hu X, Xia H, Srivastava SK, Pal A, Awasthi YC, Zimniak P, Singh SV. Catalytic efficiencies of allelic variants of human glutathione S-transferase P1-1 toward carcinogenic anti-diol epoxides of benzo[c]phenanthrene and benzo[g]chrysene. 1998;s:5340–5343. [PubMed] [Google Scholar]
  • (457).Fields WR, Morrow CS, Doss AJ, Sundberg K, Jernström B, Townsend AJ. Overexpression of stably transfected human glutathione S-transferase P1-1 protects against DNA damage by benzo[a]pyrene diol-epoxide in human T47D cells. Mol. Pharmacol. 1998;54:298–304. doi: 10.1124/mol.54.2.298. [DOI] [PubMed] [Google Scholar]
  • (458).Nelson CP, Kidd LC, Sauvageot J, Isaacs WB, De Marzo AM, Groopman JD, Nelson WG, Kensler TW. Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res. 2001;61:103–109. [PubMed] [Google Scholar]
  • (459).Kurian JR, Chin NA, Longlais BJ, Hayes KL, Trepanier LA. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5. Chem. Res. Toxicol. 2006;19:1366–1373. doi: 10.1021/tx060106t. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (460).Rhoads K, Sacco JC, Drescher N, Wong A, Trepanier LA. Individual variability in the detoxification of carcinogenic arylhydroxylamines in human breast. Toxicol. Sci. 2011;121:245–256. doi: 10.1093/toxsci/kfr073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (461).Lavigne JA, Goodman JE, Fonong T, Odwin S, He P, Roberts DW, Yager JD. The effects of catechol-O-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res. 2001;61:7488–7494. [PubMed] [Google Scholar]
  • (462).Goodman JE, Jensen LT, He P, Yager JD. Characterization of human soluble high and low activity catechol-O-methyltransferase catalyzed catechol estrogen methylation. Pharmacogenetics. 2002;12:517–28. doi: 10.1097/00008571-200210000-00003. [DOI] [PubMed] [Google Scholar]
  • (463).Zhang L, Jin Y, Chen M, Huang M, Harvey RG, Blair IA, Penning TM. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols. J. Biol. Chem. 2011;286:25644–25654. doi: 10.1074/jbc.M111.240739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (464).Ozawa S, Nagata K, Yamazoe Y, Kato R. Formation of 2-amino-3-methylimidazo[4,5-f]quinoline- and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-sulfamates by cDNA-expressed mammalian phenol sulfotransferases. Jpn. J. Cancer Res. 1995;86:264–269. doi: 10.1111/j.1349-7006.1995.tb03049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (465).Turesky RJ, Fay LB, Welti DH. Metabolism of heterocyclic aromatic amines and strategies of human biomonitoring. In: Adamson RH, Gustafsson J-Å, Ito N, Nagao M, Wakabayashi K, Yamazoe Y, editors. Heterocyclic Amines and Human Cancer. Vol. 23. Princeton Sci. Publ.; Princeton, NJ: 1995. pp. 59–68. Proc. 23rd Int. Princess Takamatsu Cancer Sympos., Tokyo, 10-12 November, 1992. [PubMed] [Google Scholar]
  • (466).Fang JL, Beland FA, Doerge DR, Wiener D, Guillemette C, Marques MM, Lazarus P. Characterization of benzo(a)pyrene-trans-7,8-dihydrodiol glucuronidation by human tissue microsomes and overexpressed UDP-glucuronosyltransferase enzymes. Cancer Res. 2002;62:1978–1986. [PubMed] [Google Scholar]
  • (467).Malfatti MA, Felton JS. N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases. Carcinogenesis. 2001;22:1087–1093. doi: 10.1093/carcin/22.7.1087. [DOI] [PubMed] [Google Scholar]
  • (468).Dellinger RW, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10. Carcinogenesis. 2007;28:2412–2418. doi: 10.1093/carcin/bgm164. [DOI] [PubMed] [Google Scholar]
  • (469).Basu NK, Kubota S, Meselhy MR, Ciotti M, Chowdhury B, Hartori M, Owens IS. Gastrointestinally distributed UDP-glucuronosyltransferase 1A10, which metabolizes estrogens and nonsteroidal anti-inflammatory drugs, depends upon phosphorylation. J. Biol. Chem. 2004;279:28320–28329. doi: 10.1074/jbc.M401396200. [DOI] [PubMed] [Google Scholar]
  • (470).Olson KC, Sun D, Chen G, Sharma AK, Amin S, Ropson IJ, Spratt TE, Lazarus P. Characterization of dibenzo[a,l]pyrene-trans-11,12-diol (dibenzo[def,p]chrysene) glucuronidation by UDP-glucuronosyltransferases. Chem. Res. Toxicol. 2011;24:1549–1559. doi: 10.1021/tx200178v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (471).Malfatti MA, Felton JS. Human UDP-glucuronosyltransferase A1 is the primary enzyme responsible for the N-glucuronidation of N-hydroxy-PhIP in vitro. Chem. Res. Toxicol. 2004;17:1137–1144. doi: 10.1021/tx049898m. [DOI] [PubMed] [Google Scholar]
  • (472).Malfatti MA, Wu RW, Felton JS. The effect of UDP-glucuronosyltransferase 1A1 expression on the mutagenicity and metabolism of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in CHO cells. Mut. Res. 2005;570:205–214. doi: 10.1016/j.mrfmmm.2004.11.007. [DOI] [PubMed] [Google Scholar]
  • (473).Ogura K, Ishikawa Y, Kaku T, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem. Pharmacol. 2006;71:1358–1369. doi: 10.1016/j.bcp.2006.01.004. [DOI] [PubMed] [Google Scholar]
  • (474).Sun D, Sharma AK, Dellinger RW, Blevins-Primeau AS, Balliet RM, Chen G, Boyiri T, Amin S, Lazarus P. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases. Drug Metab. Dispos. 2007;35:2006–2014. doi: 10.1124/dmd.107.017145. [DOI] [PubMed] [Google Scholar]
  • (475).Nowell SA, Massengill JS, Williams S, Radominska-Pandya A, Tephly TR, Cheng Z, Strassburg CP, Tukey RH, MacLeod SL, Lang NP, Kadlubar FF. Glucuronidation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human microsomal UDP-glucuronosyltransferases: Identification of specific UGT1A family isoforms involved. Carcinogenesis. 1999;20:1107–1114. doi: 10.1093/carcin/20.6.1107. [DOI] [PubMed] [Google Scholar]
  • (476).Wiener D, Fang JL, Dossett N, Lazarus P. Correlation between UDP-glucuronosyltransferase genotypes and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone glucuronidation phenotype in human liver microsomes. Cancer Res. 2004;64:1190–1196. doi: 10.1158/0008-5472.can-03-3219. [DOI] [PubMed] [Google Scholar]
  • (477).Wiener D, Doerge DR, Fang JL, Upadhyaya P, Lazarus P. Characterization of N-glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human liver: importance of UDP-glucuronosyltransferase 1A4. Drug Metab. Dispos. 2004;32:72–79. doi: 10.1124/dmd.32.1.72. [DOI] [PubMed] [Google Scholar]
  • (478).Chen G, Dellinger RW, Sun D, Spratt TE, Lazarus P. Glucuronidation of tobacco-specific nitrosamines by UGT2B10. Drug Metab Dispos. 2008;36:824–830. doi: 10.1124/dmd.107.019406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (479).Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem. Pharmacol. 2004;67:2093–2102. doi: 10.1016/j.bcp.2004.02.014. [DOI] [PubMed] [Google Scholar]
  • (480).Ren Q, Murphy SE, Zheng Z, Lazarus P. O-Glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by human UDP-glucuronosyltransferases 2B7 and 1A9. Drug Metab. Dispos. 2000;28:1352–1360. [PubMed] [Google Scholar]
  • (481).Dellinger RW, Fang JL, Chen G, Weinberg R, Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: decreased glucuronidative activity of the UGT1A10139Lys isoform. Drug Metab. Dispos. 2006;34:943–949. doi: 10.1124/dmd.105.009100. [DOI] [PubMed] [Google Scholar]
  • (482).Balliet RM, Chen G, Dellinger RW, Lazarus P. UDP-glucuronosyltransferase 1A10: activity against the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, and a potential role for a novel UGT1A10 promoter deletion polymorphism in cancer susceptibility. Drug Metab. Dispos. 2010;38:484–90. doi: 10.1124/dmd.109.030569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (483).Bushey RT, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants and their potential role in tobacco carcinogenesis. Pharmacogenet. Genomics. 2011;21:55–65. doi: 10.1097/FPC.0b013e328341db05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (484).Gallagher CJ, Muscat JE, Hicks AN, Zheng Y, Dyer AM, Chase GA, Richie J, Lazarus P. The UDP-glucuronosyltransferase 2B17 gene deletion polymorphism: sex-specific association with urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronidation phenotype and risk for lung cancer. Cancer Epidemiol. Biomarkers Prev. 2007;16:823–828. doi: 10.1158/1055-9965.EPI-06-0823. [DOI] [PubMed] [Google Scholar]
  • (485).Penning TM. Aldo-keto reductases and formation of polycyclic aromatic hydrocarbon o-quinones. Methods Enzymol. 2004;378:31–67. doi: 10.1016/S0076-6879(04)78003-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (486).Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture. Cancer Res. 1982;42:4875–4917. [PubMed] [Google Scholar]
  • (487).Nebert DW, Gelboin HV. Substrate-inducible microsomal arylhydroxylase in mammalian cell culture: assay and properties of induced enzyme. J. Biol. Chem. 1968;243:6242–6249. [PubMed] [Google Scholar]
  • (488).Guengerich FP, Johnson WW. Kinetics of hydrolysis and reaction of aflatoxin B1 exo-8,9-epoxide and relevance to toxicity and detoxication. Drug Metab. Rev. 1999;31:141–158. doi: 10.1081/dmr-100101911. [DOI] [PubMed] [Google Scholar]
  • (489).Iyer R, Coles B, Raney KD, Thier R, Guengerich FP, Harris TM. DNA adduction by the potent carcinogen aflatoxin B1: mechanistic studies. J. Am. Chem. Soc. 1994;116:1603–1609. [Google Scholar]
  • (490).Distlerath LM, Reilly PEB, Martin MV, Davis GG, Wilkinson GR, Guengerich FP. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1985;260:9057–9067. [PubMed] [Google Scholar]
  • (491).Lo Guidice JM, Marez D, Sabbagh N, Legrand-Andreoletti M, Spire C, Alcaïde E, Lafitte JJ, Broly F. Evidence for CYP2D6 expression in human lung. Biochem. Biophys. Res. Commun. 1997;241:79–85. doi: 10.1006/bbrc.1997.7775. [DOI] [PubMed] [Google Scholar]
  • (492).Wolff T, Distlerath LM, Worthington MT, Groopman JD, Hammons GJ, Kadlubar FF, Prough RA, Martin MV, Guengerich FP. Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling. Cancer Res. 1985;45:2116–2122. [PubMed] [Google Scholar]
  • (493).Crespi CL, Penman BW, Gelboin HV, Gonzalez FJ. A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis. 1991;12:1197–1201. doi: 10.1093/carcin/12.7.1197. [DOI] [PubMed] [Google Scholar]
  • (494).Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988;331:442–446. doi: 10.1038/331442a0. [DOI] [PubMed] [Google Scholar]
  • (495).Christensen PM, Gøtzsche PC, Brøsen K. The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: a meta-analysis. Eur. J. Clin. Pharmacol. 1997;51:389–393. doi: 10.1007/s002280050219. [DOI] [PubMed] [Google Scholar]
  • (496).Rostami-Hodjegan A, Lennard MS, Woods HF, Tucker GT. Meta-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson’s disease. Pharmacogenetics. 1998;8:227–238. doi: 10.1097/00008571-199806000-00005. [DOI] [PubMed] [Google Scholar]
  • (497).Guengerich FP. Cytochrome P450 oxidation in the generation of reactive electrophiles: Epoxidations and related reactions. Arch. Biochem. Biophys. 2003;409:59–71. doi: 10.1016/s0003-9861(02)00415-0. [DOI] [PubMed] [Google Scholar]
  • (498).Gozukara EM, Belvedere G, Robinson RC, Deutsch J, Coon MJ, Guengerich FP, Gelboin HV. The effect of epoxide hydratase on benzo[a]pyrene diol epoxide hydrolysis and binding to DNA and mixed-function oxidase proteins. Mol. Pharmacol. 1981;19:153–161. [PubMed] [Google Scholar]
  • (499).Guengerich FP, Tang Z, Salamanca-Pinzon SG, Cheng Q. Characterizing proteins of unknown function: Orphan cytochrome P450s as a paradigm. Mol. Interventions. 2010:153–163. doi: 10.1124/mi.10.3.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (500).Karlgren M, Gomez A, Stark K, Svard J, Rodriguez-Antona C, Oliw E, Bernal ML, Ramón y Cajal S, Johansson I, Ingelman-Sundberg M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun. 2006;341:451–458. doi: 10.1016/j.bbrc.2005.12.200. [DOI] [PubMed] [Google Scholar]
  • (501).Tang Z, Salamanca-Pinzon SG, Wu Z-L, Xiao Y, Guengerich FP. Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function. Arch. Biochem. Biophys. 2010;494:86–93. doi: 10.1016/j.abb.2009.11.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (502).Rylander T, Neve EPA, Ingelman-Sundberg M, Oscarson M. Identification and tissue distribution of the novel human cytochrome P450 2S1 (CYP2S1) Biochem. Biophys. Res. Commun. 2001;281:529–535. doi: 10.1006/bbrc.2001.4390. [DOI] [PubMed] [Google Scholar]
  • (503).Karlgren M, Miura S, Ingelman-Sundberg M. Novel extrahepatic cytochrome P450s. Toxicol. Appl. Pharmacol. 2005;207(Suppl. 1):57–61. doi: 10.1016/j.taap.2004.12.022. [DOI] [PubMed] [Google Scholar]
  • (504).Nishida CR, Lee M, Ortiz de Montellano PR. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol. Pharmacol. 2010;78:497–502. doi: 10.1124/mol.110.065045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (505).Xiao Y, Shinko R, Guengerich FP. Cytochrome P450 2S1 is reduced by NADPH-cytrochrome P450 reductase. Drug Metab. Dispos. 2011;39:944–946. doi: 10.1124/dmd.111.039321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (506).Bui PH, Hsu EL, Hankinson O. Fatty acid hydroperoxides support cytochrome P450 2S1-mediated bioactivation of benzo[a]pyrene-7,8-dihydrodiol. Mol. Pharmacol. 2009;76:1044–1052. doi: 10.1124/mol.109.057760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (507).Bui PH, Hankinson O. Functional characterization of human cytochrome P450 2S1 using a synthetic gene-expressed protein. Escherichia coli. Mol. Pharmacol. 2009;76:1031–1043. doi: 10.1124/mol.109.057752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (508).Guengerich FP, Cheng Q. Orphans in the human cytochrome P450 family: Approaches to discovering function and relevance to pharmacology. Pharmacol. Rev. 2011;63:684–699. doi: 10.1124/pr.110.003525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (509).Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reacitons, substrates, inducers, and inhibitors. Drug Metab. Rev. 1997;29:413–580. doi: 10.3109/03602539709037591. [DOI] [PubMed] [Google Scholar]
  • (510).Rendic S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 2002;34:83–448. doi: 10.1081/dmr-120001392. [DOI] [PubMed] [Google Scholar]
  • (511).Guengerich FP, Rendic S. Update information on drug metabolism systems-2009, Part I. Drug Metab. Rev. 2010;11:1–3. doi: 10.2174/138920010791110908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (512).Rendic S, Guengerich FP. Summary of information on human cytochrome P450 enzyme and transporters: “Non-chemical” effectors influencing expression and activity. Curr. Drug Metab. 2010;11:4–84. doi: 10.2174/138920010791110917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • (513).Guengerich FP. Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest. J. Biol. Chem. 1977;252:3970–3979. [PubMed] [Google Scholar]
  • (514).Sohl CD, Isin EM, Eoff RL, Marsch GA, Stec DF, Guengerich FP. Cooperativity in oxidation reactions catalyzed by cytochrome P450 1A2. Highly cooperative pyrene hydroxylation and multiphasic kinetics of ligand binding. J. Biol. Chem. 2008;283:7293–7308. doi: 10.1074/jbc.M709783200. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

1_si_001

RESOURCES