Abstract
We have found that all E. coli ribosomal proteins strongly bind to an agarose affinity column derivatized with the dye Cibacron Blue F3GA. We have also shown that the capacity to bind the dye is lost when the proteins are organized within the structure of the ribosome or are members of pre-formed protein-RNA complexes. We conclude that the binding of ribosomal proteins to this dye involves specific protein-RNA recognition sites. These observations led us to discover that Cibacron Blue can be used to inhibit in vitro ribosome assembly at any stage of the assembly process. This has allowed us to determine a kinetic order of ribosome assembly.
Full text
PDF
















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biellmann J. F., Samama J. P., Bränden C. I., Eklund H. X-ray studies of the binding of Cibacron blue F3GA to liver alcohol dehydrogenase. Eur J Biochem. 1979 Dec;102(1):107–110. doi: 10.1111/j.1432-1033.1979.tb06268.x. [DOI] [PubMed] [Google Scholar]
- Changchien L. M., Craven G. R. Studies on the role of amino acid residues 31 through 46 of ribosomal protein S4 in the mechanism of 30 S ribosome assembly. J Mol Biol. 1978 Oct 15;125(1):43–56. doi: 10.1016/0022-2836(78)90253-x. [DOI] [PubMed] [Google Scholar]
- Craven G. R., Gupta V. Three-dimensional organization of the 30S ribosomal proteins from Escherichia coli. I. Preliminary classification of the proteins. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1329–1336. doi: 10.1073/pnas.67.3.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean P. D., Watson D. H. Protein purification using immobilised triazine dyes. J Chromatogr. 1979 Oct 1;165(3):301–319. doi: 10.1016/s0021-9673(00)88187-x. [DOI] [PubMed] [Google Scholar]
- Haeckel R., Hess B., Lauterborn W., Wüster K. H. Purification and allosteric properties of yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1968 May;349(5):699–714. doi: 10.1515/bchm2.1968.349.1.699. [DOI] [PubMed] [Google Scholar]
- Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
- Held W. A., Nomura M. Rate determining step in the reconstitution of Escherichia coli 30S ribosomal subunits. Biochemistry. 1973 Aug 14;12(17):3273–3281. doi: 10.1021/bi00741a020. [DOI] [PubMed] [Google Scholar]
- Lin A., Collatz E., Wool I. G. Micro-scale two-dimensional polyacrylamide gell electrophoresis of ribosomal proteins. Mol Gen Genet. 1976 Feb 27;144(1):1–9. doi: 10.1007/BF00277296. [DOI] [PubMed] [Google Scholar]
- Noller H. F., Woese C. R. Secondary structure of 16S ribosomal RNA. Science. 1981 Apr 24;212(4493):403–411. doi: 10.1126/science.6163215. [DOI] [PubMed] [Google Scholar]
- Ramakrishnan V., Capel M., Kjeldgaard M., Engelman D. M., Moore P. B. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1984 Apr 5;174(2):265–284. doi: 10.1016/0022-2836(84)90338-3. [DOI] [PubMed] [Google Scholar]
- Strellwagen E., Cass R., Thompson S. T., Woody M. Predicted distribution of NAD domain among glycolytic enzymes. Nature. 1975 Oct 23;257(5528):716–718. doi: 10.1038/257716a0. [DOI] [PubMed] [Google Scholar]
- Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. J Mol Biol. 1969 Mar 28;40(3):391–413. doi: 10.1016/0022-2836(69)90161-2. [DOI] [PubMed] [Google Scholar]
- Voynow P., Kurland C. G. Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry. 1971 Feb 2;10(3):517–524. doi: 10.1021/bi00779a026. [DOI] [PubMed] [Google Scholar]






