Abstract
Quantitative determinations were carried out of the relative reaction rates of several nitrogen mustards at various guanine-N7 positions in DNA fragments of known sequence. The findings suggest structural hypotheses of the origins of the reaction selectivities. End-labeled DNA fragments were reacted with nitrogen mustards, and the guanine-N7 alkylation sites were analyzed by gel electrophoresis. Relative reaction intensities were determined by computer analysis of digitized densitometer scans. The differences in reaction intensities at different G's were in part attributable to the effects of nearest neighbor base pairs on the molecular electrostatic potential near the reaction site. Uracil and quinacrine mustards have specific sequence preferences for reaction that differ from other mustards. The nature of the specific sequence preferences were determined and hypotheses are proposed to explain their origin.
Full text
PDF![10531](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/de772dd80dd1/nar00268-0448.png)
![10532](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/2f11dd467545/nar00268-0449.png)
![10533](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/3b2bce353a9f/nar00268-0450.png)
![10534](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/94c4fd9f112f/nar00268-0451.png)
![10535](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/2825018a0219/nar00268-0452.png)
![10536](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/c4a3d1e0b367/nar00268-0453.png)
![10537](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/a999a39d5ccd/nar00268-0454.png)
![10538](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/6f02b1e67f6b/nar00268-0455.png)
![10539](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/984fc0de8f26/nar00268-0456.png)
![10540](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/9bafc3ea2188/nar00268-0457.png)
![10541](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/4e6e374162e4/nar00268-0458.png)
![10542](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/66799ea9f112/nar00268-0459.png)
![10543](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/397c35ba5709/nar00268-0460.png)
![10544](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/6fa1a8a58d83/nar00268-0461.png)
![10545](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/a5fa7a8fcf77/nar00268-0462.png)
![10546](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/51e975278599/nar00268-0463.png)
![10547](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/835e1e4a5bb5/nar00268-0464.png)
![10548](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/90f4df1e2bbe/nar00268-0465.png)
![10549](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe8/339961/37a81e6cc5c5/nar00268-0466.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARDOS T. J., DATTA-GUPTA N., HEBBORN P., TRIGGLE D. J. A STUDY OF COMPARATIVE CHEMICAL AND BIOLOGICAL ACTIVITIES OF ALKYLATING AGENTS. J Med Chem. 1965 Mar;8:167–174. doi: 10.1021/jm00326a006. [DOI] [PubMed] [Google Scholar]
- Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
- Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985 May 24;228(4702):953–958. doi: 10.1126/science.4001930. [DOI] [PubMed] [Google Scholar]
- Brookes P., Lawley P. D. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem J. 1961 Sep;80(3):496–503. doi: 10.1042/bj0800496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burkitt D. Long-term remissions following one and two-dose chemotherapy for African lymphoma. Cancer. 1967 May;20(5):756–759. doi: 10.1002/1097-0142(1967)20:5<756::aid-cncr2820200530>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
- Caspersson T., Zech L., Johansson C. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970 Jun;60(3):315–319. doi: 10.1016/0014-4827(70)90523-9. [DOI] [PubMed] [Google Scholar]
- Chun E. H., Gonzales L., Lewis F. S., Jones J., Rutman R. J. Differences in the in vivo alkylation and cross-linking of nitrogen mustard-sensitive and -resistant lines of Lettré-Ehrlich asites tumors. Cancer Res. 1969 Jun;29(6):1184–1194. [PubMed] [Google Scholar]
- Dickerson R. E. Base sequence and helix structure variation in B and A DNA. J Mol Biol. 1983 May 25;166(3):419–441. doi: 10.1016/s0022-2836(83)80093-x. [DOI] [PubMed] [Google Scholar]
- Ewig R. A., Kohn K. W. DNA damage and repair in mouse leukemia L1210 cells treated with nitrogen mustard, 1,3-bis(2-chloroethyl)-1-nitrosourea, and other nitrosoureas. Cancer Res. 1977 Jul;37(7 Pt 1):2114–2122. [PubMed] [Google Scholar]
- George K. P. Quinacrine mustard--a selective fluorescent stain for the Y chromosome in human tissues for routine cytogenetic screening. Stain Technol. 1971 Jan;46(1):34–36. doi: 10.3109/10520297109067816. [DOI] [PubMed] [Google Scholar]
- Karlin S. Significant potential secondary structures in the Epstein-Barr virus genome. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6915–6919. doi: 10.1073/pnas.83.18.6915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohn K. W., Spears C. L., Doty P. Inter-strand crosslinking of DNA by nitrogen mustard. J Mol Biol. 1966 Aug;19(2):266–288. doi: 10.1016/s0022-2836(66)80004-9. [DOI] [PubMed] [Google Scholar]
- Mattes W. B., Hartley J. A., Kohn K. W. DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res. 1986 Apr 11;14(7):2971–2987. doi: 10.1093/nar/14.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattes W. B., Hartley J. A., Kohn K. W. Mechanism of DNA strand breakage by piperidine at sites of N7-alkylguanines. Biochim Biophys Acta. 1986 Oct 16;868(1):71–76. doi: 10.1016/0167-4781(86)90088-6. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- Nakahori Y., Mitani K., Yamada M., Nakagome Y. A human Y-chromosome specific repeated DNA family (DYZ1) consists of a tandem array of pentanucleotides. Nucleic Acids Res. 1986 Oct 10;14(19):7569–7580. doi: 10.1093/nar/14.19.7569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pullman A., Pullman B. Molecular electrostatic potential of the nucleic acids. Q Rev Biophys. 1981 Aug;14(3):289–380. doi: 10.1017/s0033583500002341. [DOI] [PubMed] [Google Scholar]
- Williamson C. E., Witten B. Reaction mechanism of some aromatic nitrogen mustards. Cancer Res. 1967 Jan;27(1):33–38. [PubMed] [Google Scholar]
- Zerial M., Salinas J., Filipski J., Bernardi G. Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem. 1986 Nov 3;160(3):479–485. doi: 10.1111/j.1432-1033.1986.tb10064.x. [DOI] [PubMed] [Google Scholar]
- Ziegler J. L. Burkitt's lymphoma. N Engl J Med. 1981 Sep 24;305(13):735–745. doi: 10.1056/NEJM198109243051305. [DOI] [PubMed] [Google Scholar]