Abstract
The testicular receptor 4 (TR4) is a member of the nuclear receptor superfamily that controls various biological activities. A protective role of TR4 against oxidative stress has recently been discovered. We here examined the protective role of TR4 against ionizing radiation (IR) and found that small hairpin RNA mediated TR4 knockdown cells were highly sensitive to IR-induced cell death. IR exposure increased the expression of TR4 in scramble control small hairpin RNA expressing cells but not in TR4 knockdown cells. Examination of IR-responsive molecules found that the expression of Gadd45a, the growth arrest and DNA damage response gene, was dramatically decreased in Tr4 deficient (TR4KO) mice tissues and could not respond to IR stimulation in TR4KO mouse embryonic fibroblast cells. This TR4 regulation of GADD45A was at the transcriptional level. Promoter analysis identified four potential TR4 response elements located in intron 3 and exon 4 of the GADD45A gene. Reporter and chromatin immunoprecipitation (ChIP) assays provided evidence indicating that TR4 regulated the GADD45A expression through TR4 response elements located in intron 3 of the GADD45A gene. Together, we find that TR4 is essential in protecting cells from IR stress. Upon IR challenges, TR4 expression is increased, thereafter inducing GADD45A through transcriptional regulation. As GADD45A is directly involved in the DNA repair pathway, this suggests that TR4 senses genotoxic stress and up-regulates GADD45A expression to protect cells from IR-induced genotoxicity.
Key words: TR4, GADD45A, Ionizing radiation, Mouse embryonic fibroblast, Genotoxic stress, TR4 response element
Full Text
The Full Text of this article is available as a PDF (855.9 KB).
Abbreviations used
- ChIP
chromatin immunoprecipitation
- DR
direct repeat
- GADD45A
growth arrest and DNA-damage-inducible, alpha
- GADDLuc
GADD45A gene controlled luciferase reporter
- IgG
immunoglobulin G
- IR
ionizing radiation
- MEF
mouse embryonic fibroblast
- MTT
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
- SC
cells expressing scramble control shRNA
- shRNA
small hairpin RNA
- shTR4
cell expressing shRNA targeting TR4
- TR4
testicular nuclear receptor 4
- TR4KO
TR4 knockout
- TR4RE
TR4 response element
- UV
ultraviolet light irradiation
- WT
wild type
Footnotes
These authors contributed equally to this paper.
References
- 1.Chang C., Da Silva S.L., Ideta R., Lee Y., Yeh S., Burbach J.P. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA. 1994;91:6040–6044. doi: 10.1073/pnas.91.13.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Xie S., Lee Y.F., Kim E., Chen L.M., Ni J., Fang L.Y., Liu S., Lin S.J., Abe J., Berk B., Ho F.M., Chang C. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc. Natl. Acad. Sci. USA. 2009;106:13353–13358. doi: 10.1073/pnas.0905724106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Tsai N.P., Huq M., Gupta P., Yamamoto K., Kagechika H., Wei L.N. Activation of testicular orphan receptor 4 by fatty acids. Biochim. Biophys. Acta. 2009;1789:734–740. doi: 10.1016/j.bbagrm.2009.09.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lee Y.F., Lee H.J., Chang C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J. Steroid Biochem. Mol. Biol. 2002;81:291–308. doi: 10.1016/S0960-0760(02)00118-8. [DOI] [PubMed] [Google Scholar]
- 5.Young W.J., Lee Y.F., Smith S.M., Chang C. A bidirectional regulation between the TR2/TR4 orphan receptors (TR2/TR4) and the ciliary neurotrophic factor (CNTF) signaling pathway. J. Biol. Chem. 1998;273:20877–20885. doi: 10.1074/jbc.273.33.20877. [DOI] [PubMed] [Google Scholar]
- 6.Young W.J., Smith S.M., Chang C. Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFRalpha) gene by the TR4 orphan receptor. A member of steroid receptor superfamily. J. Biol. Chem. 1997;272:3109–3116. doi: 10.1074/jbc.272.18.12116. [DOI] [PubMed] [Google Scholar]
- 7.Lee Y.F., Young W.J., Burbach J.P., Chang C. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J. Biol. Chem. 1998;273:13437–13443. doi: 10.1074/jbc.273.22.13437. [DOI] [PubMed] [Google Scholar]
- 8.Lee Y.F., Young W.J., Lin W.J., Shyr C.R., Chang C. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J. Biol. Chem. 1999;274:16198–16205. doi: 10.1074/jbc.274.23.16198. [DOI] [PubMed] [Google Scholar]
- 9.Lee Y.F., Shyr C.R., Thin T.H., Lin W.J., Chang C. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA. 1999;96:14724–14729. doi: 10.1073/pnas.96.26.14724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Shyr C.R., Hu Y.C., Kim E., Chang C. Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells. J. Biol. Chem. 2002;277:14622–14628. doi: 10.1074/jbc.M110051200. [DOI] [PubMed] [Google Scholar]
- 11.Lee H.J., Lee Y., Burbach J.P., Chang C. Suppression of gene expression on the simian virus 40 major late promoter by human TR4 orphan receptor. A member of the steroid receptor superfamily. J. Biol. Chem. 1995;270:30129–30133. doi: 10.1074/jbc.270.50.30129. [DOI] [PubMed] [Google Scholar]
- 12.Collins L.L., Lee Y.F., Heinlein C.A., Liu N.C., Chen Y.T., Shyr C.R., Meshul C.K., Uno H., Platt K.A., Chang C. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc. Natl. Acad. Sci. USA. 2004;101:15058–15063. doi: 10.1073/pnas.0405700101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Chen L.M., Wang R.S., Lee Y.F., Liu N.C., Chang Y.J., Wu C.C., Xie S., Hung Y.C., Chang C. Subfertility with defective folliculogenesis in female mice lacking testicular orphan nuclear receptor 4. Mol. Endocrinol. 2008;22:858–867. doi: 10.1210/me.2007-0181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Mu X., Lee Y.F., Liu N.C., Chen Y.T., Kim E., Shyr C.R., Chang C. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol. Cell Biol. 2004;24:5887–5899. doi: 10.1128/MCB.24.13.5887-5899.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Kim E., Xie S., Yeh S.D., Lee Y.F., Collins L.L., Hu Y.C., Shyr C.R., Mu X.M., Liu N.C., Chen Y.T., Wang P.H., Chang C. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J. Biol. Chem. 2003;278:46919–46926. doi: 10.1074/jbc.M304088200. [DOI] [PubMed] [Google Scholar]
- 16.Kim E., Yang Z., Liu N.C., Chang C. Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochem. Biophys. Res. Commun. 2005;328:85–90. doi: 10.1016/j.bbrc.2004.12.146. [DOI] [PubMed] [Google Scholar]
- 17.Liu N.C., Lin W.J., Kim E., Collins L.L., Lin H.Y., Yu I.C., Sparks J.D., Chen L.M., Lee Y.F., Chang C. Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis. Diabetes. 2007;56:2901–2909. doi: 10.2337/db07-0359. [DOI] [PubMed] [Google Scholar]
- 18.Chen Y.T., Collins L.L., Uno H., Chang C. Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol. Cell Biol. 2005;25:2722–2732. doi: 10.1128/MCB.25.7.2722-2732.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lee Y.F., Liu S., Liu N.C., Wang R.S., Chen L.M., Lin W.J., Ting H.J., Ho H.C., Li G., Puzas E.J., Wu Q., Chang C. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am. J. Physiol. Endocrinol. Metab. 2011;301:E91–98. doi: 10.1152/ajpendo.00701.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Li G., Lee Y.F., Liu S., Cai Y., Xie S., Liu N.C., Bao B.Y., Chen Z., Chang C. Oxidative stress stimulates testicular orphan receptor 4 through forkhead transcription factor forkhead box O3a. Endocrinology. 2008;149:3490–3499. doi: 10.1210/en.2008-0121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Liu S., Yan S.J., Lee Y.F., Liu N.C., Ting H.J., Li G., Wu Q., Chen L.M., Chang C. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. J. Biol. Chem. 2011;286:38103–38108. doi: 10.1074/jbc.M111.259523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Fornace A.J., Jr., Jackman J., Hollander M.C., Hoffman-Liebermann B., Liebermann D.A. Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann. N. Y. Acad. Sci. 1992;663:139–153. doi: 10.1111/j.1749-6632.1992.tb38657.x. [DOI] [PubMed] [Google Scholar]
- 23.Papathanasiou M.A., Kerr N.C., Robbins J.H., McBride O.W., Alamo I., Jr., Barrett S.F., Hickson I.D., Fornace A.J., Jr. Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell Biol. 1991;11:1009–1016. doi: 10.1128/mcb.11.2.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Tran H., Brunet A., Grenier J.M., Datta S.R., Fornace A.J., Jr., DiStefano P.S., Chiang L.W., Greenberg M.E. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002;296:530–534. doi: 10.1126/science.1068712. [DOI] [PubMed] [Google Scholar]
- 25.Jiang F., Li P., Fornace A.J., Jr., Nicosia S.V., Bai W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J. Biol. Chem. 2003;278:48030–48040. doi: 10.1074/jbc.M308430200. [DOI] [PubMed] [Google Scholar]
- 26.Jiang M., Fernandez S., Jerome W.G., He Y., Yu X., Cai H., Boone B., Yi Y., Magnuson M.A., Roy-Burman P., Matusik R.J., Shappell S.B., Hayward S.W. Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ. 2010;17:469–481. doi: 10.1038/cdd.2009.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Shang Y., Hu X., DiRenzo J., Lazar M.A., Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell. 2000;103:843–852. doi: 10.1016/S0092-8674(00)00188-4. [DOI] [PubMed] [Google Scholar]
- 28.Kumala S., Niemiec P., Widel M., Hancock R., Rzeszowska-Wolny J. Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents. Cell. Mol. Biol. Lett. 2003;8:655–665. [PubMed] [Google Scholar]
- 29.Kastan M.B., Zhan Q., el-Deiry W.S., Carrier F., Jacks T., Walsh W.V., Plunkett B.S., Vogelstein B., Fornace A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell. 1992;71:587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
- 30.Tachiiri S., Katagiri T., Tsunoda T., Oya N., Hiraoka M., Nakamura Y. Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 2006;64:272–279. doi: 10.1016/j.ijrobp.2005.08.030. [DOI] [PubMed] [Google Scholar]
- 31.Hollander M.C., Fornace A.J., Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene. 2002;21:6228–6233. doi: 10.1038/sj.onc.1205774. [DOI] [PubMed] [Google Scholar]
- 32.Jung H.J., Kim E.H., Mun J.Y., Park S., Smith M.L., Han S.S., Seo Y.R. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene. 2007;26:7517–7525. doi: 10.1038/sj.onc.1210557. [DOI] [PubMed] [Google Scholar]
- 33.Rai K., Huggins I.J., James S.R., Karpf A.R., Jones D.A., Cairns B.R. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008;135:1201–1212. doi: 10.1016/j.cell.2008.11.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Barreto G., Schafer A., Marhold J., Stach D., Swaminathan S.K., Handa V., Doderlein G., Maltry N., Wu W., Lyko F., Niehrs C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671–675. doi: 10.1038/nature05515. [DOI] [PubMed] [Google Scholar]
- 35.Jin S.G., Guo C., Pfeifer G.P. GADD45A does not promote DNA demethylation. PLoS Genet. 2008;4:e1000013. doi: 10.1371/journal.pgen.1000013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Hollander M.C., Sheikh M.S., Bulavin D.V., Lundgren K., Augeri-Henmueller L., Shehee R., Molinaro T.A., Kim K.E., Tolosa E., Ashwell J.D., Rosenberg M.P., Zhan Q., Fernandez-Salguero P.M., Morgan W.F., Deng C.X., Fornace A.J., Jr. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 1999;23:176–184. doi: 10.1038/13802. [DOI] [PubMed] [Google Scholar]
- 37.Gupta M., Gupta S.K., Balliet A.G., Hollander M.C., Fornace A.J., Hoffman B., Liebermann D.A. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene. 2005;24:7170–7179. doi: 10.1038/sj.onc.1208847. [DOI] [PubMed] [Google Scholar]
