Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Jan 12;15(1):267–275. doi: 10.1093/nar/15.1.267

Assignment of the 13C nuclear magnetic resonance spectrum of a short DNA-duplex with 1H-detected two-dimensional heteronuclear correlation spectroscopy.

W Leupin, G Wagner, W A Denny, K Wüthrich
PMCID: PMC340409  PMID: 3822804

Abstract

Proton-detected 1H-13C heteronuclear correlated spectroscopy [( 1H,13C]-COSY) was used to establish relations between the carbon-13 and proton nuclear magnetic resonance chemical shifts in the hexadeoxynucleoside pentaphosphate d-(GCATGC)2. Using the previously established sequence-specific proton NMR assignments, sequence-specific assignments were thus obtained for nearly all proton-bearing carbons. This approach offers a new criterion for distinguishing between the proton NMR lines of purines and pyrimidines, based on the different proton-carbon-13 coupling constants. Furthermore, the adenine ring carbon 2 has a unique carbon-13 chemical shift, which enables a straightforward identification of the adenine C2H resonances by [1H,13C]-COSY.

Full text

PDF
267

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman E., Brown S. C., James T. L., Shafer R. H. NMR studies of chromomycin A3 interaction with DNA. Biochemistry. 1985 Nov 19;24(24):6887–6893. doi: 10.1021/bi00345a022. [DOI] [PubMed] [Google Scholar]
  2. Borer P. N., Zanatta N., Holak T. A., Levy G. C., van Boom J. H., Wang A. H. Conformation and dynamics of short DNA duplexes: (dC-dG)3 and (dC-dG)4. J Biomol Struct Dyn. 1984 Jun;1(6):1373–1386. doi: 10.1080/07391102.1984.10507526. [DOI] [PubMed] [Google Scholar]
  3. Feigon J., Leupin W., Denny W. A., Kearns D. R. Two-dimensional proton nuclear magnetic resonance investigation of the synthetic deoxyribonucleic acid decamer d(ATATCGATAT)2. Biochemistry. 1983 Dec 6;22(25):5943–5951. doi: 10.1021/bi00294a038. [DOI] [PubMed] [Google Scholar]
  4. Frey M. H., Leupin W., Sørensen O. W., Denny W. A., Ernst R. R. Sequence-specific assignment of the backbone 1H-and 31P-NMR lines in a short DNA duplex with homo- and heteronuclear correlated spectroscopy. Biopolymers. 1985 Dec;24(12):2371–2380. doi: 10.1002/bip.360241214. [DOI] [PubMed] [Google Scholar]
  5. Hare D. R., Wemmer D. E., Chou S. H., Drobny G., Reid B. R. Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods. J Mol Biol. 1983 Dec 15;171(3):319–336. doi: 10.1016/0022-2836(83)90096-7. [DOI] [PubMed] [Google Scholar]
  6. Lankhorst P. P., Erkelens C., Haasnoot C. A., Altona C. Carbon-13 NMR in conformational analysis of nucleic acid fragments. Heteronuclear chemical shift correlation spectroscopy of RNA constituents. Nucleic Acids Res. 1983 Oct 25;11(20):7215–7230. doi: 10.1093/nar/11.20.7215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lankhorst P. P., Haasnoot C. A., Erkelens C., Westerink H. P., van der Marel G. A., van Boom J. H., Altona C. Carbon-13 NMR in conformational analysis of nucleic acid fragments. 4. The torsion angle distribution about the C3'-O3' bond in DNA constituents. Nucleic Acids Res. 1985 Feb 11;13(3):927–942. doi: 10.1093/nar/13.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shindo H. 13C NMR study of conformation and mobility of 145-base-pair poly(dA-dT) . poly(dA-dT) in solution. Eur J Biochem. 1981 Nov;120(2):309–312. doi: 10.1111/j.1432-1033.1981.tb05705.x. [DOI] [PubMed] [Google Scholar]
  9. Weiss M. A., Patel D. J., Sauer R. T., Karplus M. Two-dimensional 1H NMR study of the lambda operator site OL1: a sequential assignment strategy and its application. Proc Natl Acad Sci U S A. 1984 Jan;81(1):130–134. doi: 10.1073/pnas.81.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES