Abstract
A highly fluorescent nucleoside was detected in enzymatic digests of the extremely thermophilic archaebacterium Sulfolobus solfataricus by combined liquid chromatography-mass spectrometry (LC/MS). Following isolation, the structure was determined primarily by mass spectrometry, to be 3-(beta-D-ribofuranosyl)-4,9-dihydro-4,6,7-trimethyl-9-oxoimidazo[ 1, 2-a]purine (mimG), a new derivative of the Y (wye) nucleoside. The structural assignment was verified by comparison of the base released by acid hydrolysis with the corresponding synthetic base, using mass spectrometry, chromatography, and UV absorption and fluorescence properties. Nucleoside mimG was also detected by LC/MS in hydrolysates of the thermophiles Thermoproteus neutrophilus and Pyrodictium occultum. These results constitute the first finding of a member of the hypermodified Y family of nucleosides in archaebacteria.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beardsley K., Cantor C. R. Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. Proc Natl Acad Sci U S A. 1970 Jan;65(1):39–46. doi: 10.1073/pnas.65.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobstein S. H., Grunberger D., Weinstein I. B., Nakanishi K. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine transfer ribonucleic acid. Biochemistry. 1973 Jan 16;12(2):188–193. doi: 10.1021/bi00726a002. [DOI] [PubMed] [Google Scholar]
- Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
- Crain P. F., McCloskey J. A. Analysis of modified bases in DNA by stable isotope dilution gas chromatography-mass spectrometry: 5-methylcytosine. Anal Biochem. 1983 Jul 1;132(1):124–131. doi: 10.1016/0003-2697(83)90434-7. [DOI] [PubMed] [Google Scholar]
- Dirheimer G. Chemical nature, properties, location, and physiological and pathological variations of modified nucleosides in tRNAs. Recent Results Cancer Res. 1983;84:15–46. doi: 10.1007/978-3-642-81947-6_2. [DOI] [PubMed] [Google Scholar]
- Edmonds C. G., Vestal M. L., McCloskey J. A. Thermospray liquid chromatography-mass spectrometry of nucleosides and of enzymatic hydrolysates of nucleic acids. Nucleic Acids Res. 1985 Nov 25;13(22):8197–8206. doi: 10.1093/nar/13.22.8197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakanishi K., Furutachi N., Funamizu M., Grunberger D., Weinstein I. B. Structure of the fluorescent Y base from yeast phenylalanine transfer ribonucleic acid. J Am Chem Soc. 1970 Dec 30;92(26):7617–7619. doi: 10.1021/ja00729a035. [DOI] [PubMed] [Google Scholar]
- Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Minden D. L., Stillwell R. N., Koenig W. A., Lyman K. J., McCloskey J. A. Mass spectrometry of 7-methylpurine nucleosides: studies of a characteristic oxygen incorporation reaction that occurs during trimethylsilylation. Anal Biochem. 1972 Nov;50(1):110–121. doi: 10.1016/0003-2697(72)90491-5. [DOI] [PubMed] [Google Scholar]
- White E., Krueger V. P., McCloskey J. A. Mass spectra of trimethylsilyl derivatives of pyrimidine and purine bases. J Org Chem. 1972 Feb 11;37(3):430–438. doi: 10.1021/jo00968a023. [DOI] [PubMed] [Google Scholar]
