Abstract
A series of (E)-5-(1-alkenyl)-dUTPs as well as 5-vinyl-and (Z)-5-(1-propenyl)-dUTP have been synthesized to study steric requirements in DNA polymerase reactions. Experiments were carried out in E. coli DNA polymerase I Klenow fragment enzyme system. Substrates were characterized by KM and Vmax-values, initial incorporation rates as well as by total extent of incorporation of the analogues into poly(dA-dT) as a template-primer. Incorporation of the analogues could be best correlated with Vmax-values as well as the very similar initial incorporation rate values. Reactivity (Vmax/KM) showed no correlation with the extent of incorporation. 5-Vinyl-dUTP proved to be as good a substrate of the enzyme as dTTP, whereas (E)-5-(1-heptenyl)-and (E)-5-(1-octenyl)-dUTPs were very poor substrates, their incorporation was strongly limited and they also proved to be very efficient inhibitors of DNA replication, as shown by Ki-values. Substrate specificity of the Klenow enzyme can be explained by the steric hindrance of C-5 substituent, by the "orientational steric substituent effect" concept.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APOSHIAN H. V., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962 Feb;237:519–525. [PubMed] [Google Scholar]
- Ferrin L. J., Mildvan A. S. NMR studies of conformations and interactions of substrates and ribonucleotide templates bound to the large fragment of DNA polymerase I. Biochemistry. 1986 Sep 9;25(18):5131–5145. doi: 10.1021/bi00366a023. [DOI] [PubMed] [Google Scholar]
- Ferrin L. J., Mildvan A. S. Nuclear Overhauser effect studies of the conformations and binding site environments of deoxynucleoside triphosphate substrates bound to DNA polymerase I and its large fragment. Biochemistry. 1985 Nov 19;24(24):6904–6913. doi: 10.1021/bi00345a024. [DOI] [PubMed] [Google Scholar]
- Goodchild J., Porter R. A., Raper R. H., Sim I. S., Upton R. M., Viney J., Wadsworth H. J. Structural requirements of olefinic 5-substituted deoxyuridines for antiherpes activity. J Med Chem. 1983 Sep;26(9):1252–1257. doi: 10.1021/jm00363a009. [DOI] [PubMed] [Google Scholar]
- Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig J. A new route to nucleoside 5'-triphosphates. Acta Biochim Biophys Acad Sci Hung. 1981;16(3-4):131–133. [PubMed] [Google Scholar]
- Párkányi L., Kálmán A., Kovács T., Szabolcs A., Otvös L. Crystal and molecular structure of (E)-5-(2-bromovinyl-2'-deoxyuridine). Nucleic Acids Res. 1983 Nov 25;11(22):7999–8005. doi: 10.1093/nar/11.22.7999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma R. A., Bobek M. Synthesis of 5-vinyluridine and 5-vinyl-2'-deoxyuridine as new pyrimidine nucleoside analogs. J Org Chem. 1975 Aug 8;40(16):2377–2379. doi: 10.1021/jo00904a025. [DOI] [PubMed] [Google Scholar]
- Sági J. T., Szabolcs A., Szemzö A., Otvös L. Modified polynucleotides. I. Investigation of the enzymatic polymerization of 5-alkyl-dUTP-s. Nucleic Acids Res. 1977 Aug;4(8):2767–2777. doi: 10.1093/nar/4.8.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sági J., Nowak R., Zmudzka B., Szemzö A., Otvös L. A study of substrate specificity of mammalian and bacterial DNA polymerases with 5-alkyl-2'-deoxyuridine 5'-triphosphates. Biochim Biophys Acta. 1980 Feb 29;606(2):196–201. doi: 10.1016/0005-2787(80)90029-5. [DOI] [PubMed] [Google Scholar]
