Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2011 Dec 17;2(11):906–917. doi: 10.1007/s13238-011-1115-1

Mechanism involved in the modulation of photoreceptor-specific cyclic nucleotidegated channel by the tyrosine kinase adapter protein Grb14

Vivek K Gupta 1,4, Ammaji Rajala 1,4, Karla K Rodgers 3, Raju V S Rajala 1,2,4,
PMCID: PMC3405905  NIHMSID: NIHMS391815  PMID: 22180090

Abstract

We recently found that growth factor receptor-bound (Grb) protein 14 is a novel physiological modulator of photoreceptor specific cyclic nucleotide-gated channel alpha subunit (CNGA1). Grb14 promotes the CNG channel closure through its Ras-associating (RA) domain. In the current study we show that this RA domain-mediated inhibition of rod CNG channel is electrostatic in nature. Grb14 competes with cGMP for the CNGA1 binding pocket and electrostatically interacts with Arg559 through a negatively charged β-turn at its RA domain. Moreover, the three Glu residues (180–182) in Grb14 are absolutely critical for electrostatic interaction with the cGMP binding pocket and resultant inhibition. Our study also demonstrates that substitution of Lys140 for Ala or in combination with polyglutamte mutants of Grb14 results in a significantly reduced binding with CNGA1. These results suggest that in addition to Glu180–182 and Lys140, other residues in Grb14 may be involved in the electrostatic interaction with CNGA1. The RA domain is highly conserved among the members of Grb7 family of proteins, which includes Grb7, Grb10 and Grb14. Further, only Grb14 is able to modulate the channel activity, but not Grb7 and Grb10. All together, it suggests the existence of a divergence in RA domains among the members of the Grb7 family.

Keywords: growth factor receptor-bound protein 14 (Grb14), Ras-associating domain, cyclic nucleotide gated channel, rod outer segments, tyrosine kinase signaling

References

  1. Biel M., Zong X., Ludwig A., Sautter A., Hofmann F. Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol. 1999;135:151–171. doi: 10.1007/BFb0033672. [DOI] [PubMed] [Google Scholar]
  2. Daly R.J. The Grb7 family of signalling proteins. Cell Signal. 1998;10:613–618. doi: 10.1016/S0898-6568(98)00022-9. [DOI] [PubMed] [Google Scholar]
  3. Daly R.J., Sanderson G.M., Janes P.W., Sutherland R.L. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J Biol Chem. 1996;271:12502–12510. doi: 10.1074/jbc.271.21.12502. [DOI] [PubMed] [Google Scholar]
  4. Depetris R.S., Wu J., Hubbard S.R. Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Nat Struct Mol Biol. 2009;16:833–839. doi: 10.1038/nsmb.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eswar N., Eramian D., Webb B., Shen M.Y., Sali A. Protein structure modeling with MODELLER. Methods Mol Biol. 2008;426:145–159. doi: 10.1007/978-1-60327-058-8_8. [DOI] [PubMed] [Google Scholar]
  6. Finn J.T., Grunwald M.E., Yau K.W. Cyclic nucleotidegated ion channels: an extended family with diverse functions. Annu Rev Physiol. 1996;58:395–426. doi: 10.1146/annurev.ph.58.030196.002143. [DOI] [PubMed] [Google Scholar]
  7. Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–3450. [PubMed] [Google Scholar]
  8. Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  9. Gupta V.K., Rajala A., Daly R.J., Rajala R.V. Growth factor receptor-bound protein 14: a new modulator of photoreceptor-specific cyclic-nucleotide-gated channel. EMBO Rep. 2010;11:861–867. doi: 10.1038/embor.2010.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holm L., Kääriäinen S., Rosenström P., Schenkel A. Searching protein structure databases with DaliLite v.3. Bioinformatics. 2008;24:2780–2781. doi: 10.1093/bioinformatics/btn507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holt L.J., Siddle K. Grb10 and Grb14: enigmatic regulators of insulin action—and more? Biochem J. 2005;388:393–406. doi: 10.1042/BJ20050216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsu Y.T., Molday R.S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature. 1993;361:76–79. doi: 10.1038/361076a0. [DOI] [PubMed] [Google Scholar]
  13. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  14. Kaupp U.B., Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82:769–824. doi: 10.1152/physrev.00008.2002. [DOI] [PubMed] [Google Scholar]
  15. Kumar V.D., Weber I.T. Molecular model of the cyclic GMP-binding domain of the cyclic GMP-gated ion channel. Biochemistry. 1992;31:4643–4649. doi: 10.1021/bi00134a015. [DOI] [PubMed] [Google Scholar]
  16. Liu D.T., Tibbs G.R., Paoletti P., Siegelbaum S.A. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron. 1998;21:235–248. doi: 10.1016/S0896-6273(00)80530-9. [DOI] [PubMed] [Google Scholar]
  17. Morris A.L., MacArthur M.W., Hutchinson E.G., Thornton J.M. Stereochemical quality of protein structure coordinates. Proteins. 1992;12:345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
  18. Rajala A., Daly R.J., Tanito M., Allen D.T., Holt L.J., Lobanova E. S., Arshavsky V.Y., Rajala R.V. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry. 2009;48:5563–5572. doi: 10.1021/bi9000062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rajala R.V., McClellan M.E., Chan M.D., Tsiokas L., Anderson R.E. Interaction of the retinal insulin receptor beta-subunit with the p85 subunit of phosphoinositide 3-kinase. Biochemistry. 2004;43:5637–5650. doi: 10.1021/bi035913v. [DOI] [PubMed] [Google Scholar]
  20. Sreerama N., Woody R.W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000;287:252–260. doi: 10.1006/abio.2000.4880. [DOI] [PubMed] [Google Scholar]
  21. Ureche O.N., Ureche L., Henrion U., Strutz-Seebohm N., Bundis F., Steinmeyer K., Lang F., Seebohm G. Differential modulation of cardiac potassium channels by Grb adaptor proteins. Biochem Biophys Res Commun. 2009;384:28–31. doi: 10.1016/j.bbrc.2009.04.035. [DOI] [PubMed] [Google Scholar]
  22. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990;8:52–56. doi: 10.1016/0263-7855(90)80070-V. [DOI] [PubMed] [Google Scholar]
  23. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978;14:725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
  24. Yang J.T., Wu C.S., Martinez H.M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  25. Yau K.W., Baylor D.A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci. 1989;12:289–327. doi: 10.1146/annurev.ne.12.030189.001445. [DOI] [PubMed] [Google Scholar]
  26. Yau K.W., Hardie R.C. Phototransduction motifs and variations. Cell. 2009;139:246–264. doi: 10.1016/j.cell.2009.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhang Y., Molday L.L., Molday R.S., Sarfare S.S., Woodruff M.L., Fain G.L., Kraft T.W., Pittler S.J. Knockout of GARPs and the beta-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity. J Cell Sci. 2009;122:1192–1200. doi: 10.1242/jcs.042531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zheng J., Trudeau M.C., Zagotta W.N. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron. 2002;36:891–896. doi: 10.1016/S0896-6273(02)01099-1. [DOI] [PubMed] [Google Scholar]
  29. Zhong H., Lai J., Yau K.W. Selective heteromeric assembly of cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A. 2003;100:5509–5513. doi: 10.1073/pnas.0931279100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES