Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 Apr 24;15(8):3199–3220. doi: 10.1093/nar/15.8.3199

Cross index for improving cloning selectivity by partially filling in 5'-extensions of DNA produced by type II restriction endonucleases.

C Korch
PMCID: PMC340725  PMID: 3033600

Abstract

A cross index is presented for using the improved selectivity offered by the Hung and Wensink (Nucl. Acids Res. 12, 1863-1874, 1984) method of partially filling in 5'-extensions produced by type II restriction endonucleases. After this treatment, DNA fragments which normally cannot be ligated to one another, can be joined providing that complementary cohesive ends have been generated. The uses of this technique, which include the prevention of DNA fragments (both vector and insert) auto-annealing, are discussed.

Full text

PDF
3199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hung M. C., Wensink P. C. Different restriction enzyme-generated sticky DNA ends can be joined in vitro. Nucleic Acids Res. 1984 Feb 24;12(4):1863–1874. doi: 10.1093/nar/12.4.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kessler C., Höltke H. J. Specificity of restriction endonucleases and methylases--a review. Gene. 1986;47(1):1–153. doi: 10.1016/0378-1119(86)90245-3. [DOI] [PubMed] [Google Scholar]
  4. Kessler C., Neumaier P. S., Wolf W. Recognition sequences of restriction endonucleases and methylases--a review. Gene. 1985;33(1):1–102. doi: 10.1016/0378-1119(85)90119-2. [DOI] [PubMed] [Google Scholar]
  5. Roberts R. J. Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res. 1985;13 (Suppl):r165–r200. doi: 10.1093/nar/13.suppl.r165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Zabarovsky E. R., Allikmets R. L. An improved technique for the efficient construction of gene libraries by partial filling-in of cohesive ends. Gene. 1986;42(1):119–123. doi: 10.1016/0378-1119(86)90158-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES