Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 May 26;15(10):4211–4225. doi: 10.1093/nar/15.10.4211

Inhibition of DNA replication and repair by cadmium in mammalian cells. Protective interaction of zinc.

S Nocentini
PMCID: PMC340843  PMID: 3588290

Abstract

The effects of the treatment of cultured human and simian cells with Cadmium (Cd), a toxic and carcinogenic metal, were first assayed on macromolecular synthesis. It was observed that DNA synthesis was inhibited by Cd concentrations considerably lower than those inhibiting protein and RNA synthesis. Because of the necessary occurrence of a DNA resynthesis step during the DNA excision repair process, the consequences of the exposure of cells to Cd were ulteriorly tested on different parameters measuring DNA repair after ultraviolet (UV) damage. UV-induced unscheduled DNA synthesis (UDS) was found 2-3 times lower in Cd (4 X 10(-6) M) treated cells than in control cells for UV doses higher than 10 J/m2. DNA breaks accumulated in UV-irradiated cells during post-exposure incubation in presence of Cd, whereas they were induced only transiently in control cells irradiated with the same dose. Cd inhibited in a concentration-dependent way the recovery of RNA transcription impaired by UV-irradiation. However, at concentrations used, Cd had no significant effects on DNA size and on rRNA synthesis in unirradiated cells. Finally, Cd was shown to inhibit the repair of potentially lethal damage during a 24 h liquid holding and to increase the toxicity of UV-irradiation. The interactions between Cd and Zinc (Zn), an essential metal for many enzymatic proteins, were also analysed. Results showed that Zn, at 5 to 10 times higher concentrations, counteracts the inhibitory effects of Cd on DNA synthesis and restores, at least partially, the repair capability of cells and their survival. The possible molecular level and mechanism of action of these metals are discussed.

Full text

PDF
4211

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld D. S., Kawaguchi H., Livingston D. M., Vallee B. L. RNA-dependent DNA polymerase (reverse transcriptase) from avian myeloblastosis virus: a zinc metalloenzyme. Proc Natl Acad Sci U S A. 1974 May;71(5):2091–2095. doi: 10.1073/pnas.71.5.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Degraeve N. Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat Res. 1981 Jan;86(1):115–135. doi: 10.1016/0165-1110(81)90035-x. [DOI] [PubMed] [Google Scholar]
  3. DiPaolo J. A., Casto B. C. Quantitative studies of in vitro morphological transformation of Syrian hamster cells by inorganic metal salts. Cancer Res. 1979 Mar;39(3):1008–1013. [PubMed] [Google Scholar]
  4. Falchuk K. H., Fawcett D. W., Vallee B. L. Role of zinc in cell division of Euglena gracilis. J Cell Sci. 1975 Jan;17(1):57–78. doi: 10.1242/jcs.17.1.57. [DOI] [PubMed] [Google Scholar]
  5. Ferm V. H., Carpenter S. J. Teratogenic effect of cadmium and its inhibition by zinc. Nature. 1967 Dec 16;216(5120):1123–1123. doi: 10.1038/2161123a0. [DOI] [PubMed] [Google Scholar]
  6. Frenial J. M., Coppey J., Little J. B. Toxicity and mutual interactions of cadmium and zinc ions in normal and carcinogen-transformed mouse cells. Cell Biol Toxicol. 1986 Mar;2(1):1–8. doi: 10.1007/BF00117702. [DOI] [PubMed] [Google Scholar]
  7. GUNN S. A., GOULD T. C., ANDERSON W. A. CADMIUM-INDUCED INTERSTITIAL CELL TUMORS IN RATS AND MICE AND THEIR PREVENTION BY ZINC. J Natl Cancer Inst. 1963 Oct;31:745–759. [PubMed] [Google Scholar]
  8. Hiss E. A., Preston R. J. The effect of cytosine arabinoside on the frequency of single-strand breaks in DNA of mammalian cells following irradiation or chemical treatment. Biochim Biophys Acta. 1977 Sep 6;478(1):1–8. doi: 10.1016/0005-2787(77)90238-6. [DOI] [PubMed] [Google Scholar]
  9. Léonard A., Gerber G. B., Léonard F. Mutagenicity, carcinogenicity and teratogenicity of zinc. Mutat Res. 1986 Nov;168(3):343–353. doi: 10.1016/0165-1110(86)90026-6. [DOI] [PubMed] [Google Scholar]
  10. Michalke H., Bremer H. RNA synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):1–23. doi: 10.1016/0022-2836(69)90122-3. [DOI] [PubMed] [Google Scholar]
  11. Mitra R. S., Bernstein I. A. Single-strand breakage in DNA of Escherichia coli exposed to Cd2+. J Bacteriol. 1978 Jan;133(1):75–80. doi: 10.1128/jb.133.1.75-80.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miyaki M., Murata I., Osabe M., Ono T. Effect of metal cations on misincorporation by E. coli DNA polymerases. Biochem Biophys Res Commun. 1977 Aug 8;77(3):854–860. doi: 10.1016/s0006-291x(77)80056-9. [DOI] [PubMed] [Google Scholar]
  13. Nocentini S. Effects of aphidicolin on the recovery of ribosomal RNA synthesis and on the repair of potentially lethal damage in UV irradiated simian and human cells. Biochem Biophys Res Commun. 1982 Dec 15;109(3):603–611. doi: 10.1016/0006-291x(82)91983-0. [DOI] [PubMed] [Google Scholar]
  14. Nocentini S. Inhibition and recovery of ribosomal RNA synthesis in ultraviolet-irradiation mammalian cells. Biochim Biophys Acta. 1976 Nov 12;454(1):114–128. doi: 10.1016/0005-2787(76)90359-2. [DOI] [PubMed] [Google Scholar]
  15. Ochi T., Ohsawa M. Induction of 6-thioguanine-resistant mutants and single-strand scission of DNA by cadmium chloride in cultured Chinese hamster cells. Mutat Res. 1983 Sep;111(1):69–78. doi: 10.1016/0027-5107(83)90009-x. [DOI] [PubMed] [Google Scholar]
  16. Popenoe E. A., Schmaeler M. A. Interaction of human DNA polymerase beta with ions of copper, lead, and cadmium. Arch Biochem Biophys. 1979 Aug;196(1):109–120. doi: 10.1016/0003-9861(79)90557-5. [DOI] [PubMed] [Google Scholar]
  17. RASMUSSEN R. E., PAINTER R. B. EVIDENCE FOR REPAIR OF ULTRA-VIOLET DAMAGED DEOXYRIBONUCLEIC ACID IN CULTURED MAMMALIAN CELLS. Nature. 1964 Sep 26;203:1360–1362. doi: 10.1038/2031360a0. [DOI] [PubMed] [Google Scholar]
  18. Sandstead H. H., Rinaldi R. A. Impairment of deoxyribonucleic acid synthesis by dietary zinc deficiency in the rat. J Cell Physiol. 1969 Feb;73(1):81–83. doi: 10.1002/jcp.1040730111. [DOI] [PubMed] [Google Scholar]
  19. Scrutton M. C., Wu C. W., Goldthwait D. A. The presence and possible role of zinc in RNA polymerase obtained from Escherichia coli. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2497–2501. doi: 10.1073/pnas.68.10.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sirover M. A., Loeb L. A. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science. 1976 Dec 24;194(4272):1434–1436. doi: 10.1126/science.1006310. [DOI] [PubMed] [Google Scholar]
  21. Slater J. P., Mildvan A. S., Loeb L. A. Zinc in DNA polymerases. Biochem Biophys Res Commun. 1971 Jul 2;44(1):37–43. doi: 10.1016/s0006-291x(71)80155-9. [DOI] [PubMed] [Google Scholar]
  22. Springgate C. F., Mildvan A. S., Abramson R., Engle J. L., Loeb L. A. Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme. Nuclear quadrupolar relaxation studies of the role of bound zinc. J Biol Chem. 1973 Sep 10;248(17):5987–5993. [PubMed] [Google Scholar]
  23. Vallee B. L., Falchuk K. H. Zinc and gene expression. Philos Trans R Soc Lond B Biol Sci. 1981 Aug 14;294(1071):185–197. doi: 10.1098/rstb.1981.0098. [DOI] [PubMed] [Google Scholar]
  24. Waters R. Aphidicolin: an inhibitor of DNA repair in human fibroblasts. Carcinogenesis. 1981;2(8):795–797. doi: 10.1093/carcin/2.8.795. [DOI] [PubMed] [Google Scholar]
  25. Williams R. O., Loeb L. A. Zinc requirement for DNA replication in stimulated human lymphocytes. J Cell Biol. 1973 Sep;58(3):594–601. doi: 10.1083/jcb.58.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zasukhina G. D., Sinelschikova T. A., Lvova G. N., Kirkova Z. S. Molecular-genetic effects of cadmium chloride. Mutat Res. 1977 Nov;45(2):169–174. doi: 10.1016/0027-5107(77)90016-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES