Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1987 May 26;15(10):4241–4255. doi: 10.1093/nar/15.10.4241

alpha-DNA-III. Characterization by high field 1H-NMR, anti-parallel self-recognition and conformation of the unnatural hexadeoxyribonucleotides alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)]. Alpha-oligodeoxynucleotides as potential cellular probes for gene control.

F Morvan, B Rayner, J L Imbach, D K Chang, J W Lown
PMCID: PMC340845  PMID: 3588292

Abstract

High field 2-D-1H-NMR techniques permitted the assignment of all non-exchangeable protons of the unnatural deoxyribonucleotides alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)]. 1-D and 2-D NOESY experiments show strong H6H8-H4' dipolar interactions for all nucleotides in both sequences. These data, together with COSY and J-resolved spectra, indicate that these two alpha-oligomers adopt 3'-exo conformations of the sugar moieties in solution with anti conformations of the glycosyl linkages. Both 1H-NMR data, and hypochromocity comparison of alpha-CATGCG and beta-CATGCG, demonstrate a higher degree of base stacking in the case of the alpha-sequence. The UV hyperchromicity at 260 nm, and symmetry considerations in the imino proton NMR experiments reveal antiparallel self-recognition and duplex annealing at positions 1-4 for alpha-[d(CATGCG)] and positions 3-6 for alpha-[d(CGCATG)]. The temperature variation of the imino proton NMR signals suggests that the hydrogen bonding in self-recognition is comparable in strength with that in a beta-DNA duplex, and NOE data are in accord with Watson-Crick rather than Hoogsteen base pairing.

Full text

PDF
4241

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N. T., Montenay-Garestier T., Hélène C. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297–3301. doi: 10.1073/pnas.81.11.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asseline U., Nguyen T. T., Hélène C. Oligonucleotides covalently linked to intercalating agents. Influence of positively charged substituents on binding to complementary sequences. J Biol Chem. 1985 Jul 25;260(15):8936–8941. [PubMed] [Google Scholar]
  3. Asseline U., Toulme F., Thuong N. T., Delarue M., Montenay-Garestier T., Hélène C. Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site. EMBO J. 1984 Apr;3(4):795–800. doi: 10.1002/j.1460-2075.1984.tb01887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feigon J., Leupin W., Denny W. A., Kearns D. R. Two-dimensional proton nuclear magnetic resonance investigation of the synthetic deoxyribonucleic acid decamer d(ATATCGATAT)2. Biochemistry. 1983 Dec 6;22(25):5943–5951. doi: 10.1021/bi00294a038. [DOI] [PubMed] [Google Scholar]
  5. Fried M. G., Bloomfield V. A. DNA gelation in concentrated solutions. Biopolymers. 1984 Nov;23(11 Pt 1):2141–2155. doi: 10.1002/bip.360231104. [DOI] [PubMed] [Google Scholar]
  6. Guittet E., Piveteau D., Lallemand J. Y., Huyn-Dinh T., Igolen J. Nuclear magnetic resonance study of d-TGGCCA in solution. Nucleic Acids Res. 1984 Jul 25;12(14):5927–5941. doi: 10.1093/nar/12.14.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hertzberg R. P., Dervan P. B. Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry. 1984 Aug 14;23(17):3934–3945. doi: 10.1021/bi00312a022. [DOI] [PubMed] [Google Scholar]
  8. Härd T., Kearns D. R. Association of short DNA fragments: steady state fluorescence polarization study. Biopolymers. 1986 Aug;25(8):1519–1529. doi: 10.1002/bip.360250810. [DOI] [PubMed] [Google Scholar]
  9. Kondo N. S., Holmes H. M., Stempel L. M., Ts'o O. P. Influence of the phosphodiester linkage (3'-5', 2'-5', and 5'-5') on the conformation of dinucleoside monophosphate. Biochemistry. 1970 Sep 1;9(18):3479–3498. doi: 10.1021/bi00820a002. [DOI] [PubMed] [Google Scholar]
  10. Lown J. W., Krowicki K., Bhat U. G., Skorobogaty A., Ward B., Dabrowiak J. C. Molecular recognition between oligopeptides and nucleic acids: novel imidazole-containing oligopeptides related to netropsin that exhibit altered DNA sequence specificity. Biochemistry. 1986 Nov 18;25(23):7408–7416. doi: 10.1021/bi00371a024. [DOI] [PubMed] [Google Scholar]
  11. Lown J. W., Sondhi S. M., Ong C. W., Skorobogaty A., Kishikawa H., Dabrowiak J. C. Deoxyribonucleic acid cleavage specificity of a series of acridine- and acodazole-iron porphyrins as functional bleomycin models. Biochemistry. 1986 Sep 9;25(18):5111–5117. doi: 10.1021/bi00366a020. [DOI] [PubMed] [Google Scholar]
  12. Morvan F., Rayner B., Imbach J. L., Chang D. K., Lown J. W. alpha-DNA. I. Synthesis, characterization by high field 1H-NMR, and base-pairing properties of the unnatural hexadeoxyribonucleotide alpha-[d(CpCpTpTpCpC)] with its complement beta-[d(GpGpApApGpG)]. Nucleic Acids Res. 1986 Jun 25;14(12):5019–5035. doi: 10.1093/nar/14.12.5019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagayama K., Wüthrich K. Systematic application of two-dimensional 1H nuclear-magnetic-resonance techniques for studies of proteins. 1. Combined use of spin-echo-correlated spectroscopy and J-resolved spectroscopy for the identification of complete spin systems of non-labile protons in amino-acid residues. Eur J Biochem. 1981 Feb;114(2):365–374. doi: 10.1111/j.1432-1033.1981.tb05156.x. [DOI] [PubMed] [Google Scholar]
  14. Pless R. C., Ts'o P. O. Duplex formation of a nonionic oligo(deoxythymidylate) analogue (heptadeoxythymidylyl-(3'-5')-deoxythymidine heptaethyl ester (d-(Tp(Et))7T)) with poly(deoxyadenylate). Evaluation of the electrostatic interaction. Biochemistry. 1977 Mar 22;16(6):1239–1250. doi: 10.1021/bi00625a033. [DOI] [PubMed] [Google Scholar]
  15. Sigman D. S., Graham D. R., D'Aurora V., Stern A. M. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Dec 25;254(24):12269–12272. [PubMed] [Google Scholar]
  16. Séquin U. Nucleosides and nucleotides. Part 7. Four dithymidine monophosphates with different anomeric configurations, their synthesis and behaviour towards phosphodiesterases. Helv Chim Acta. 1974;57(1):68–81. doi: 10.1002/hlca.19740570108. [DOI] [PubMed] [Google Scholar]
  17. Wemmer D. E., Wand A. J., Seeman N. C., Kallenbach N. R. NMR analysis of DNA junctions: imino proton NMR studies of individual arms and intact junction. Biochemistry. 1985 Oct 8;24(21):5745–5749. doi: 10.1021/bi00342a009. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES