Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Jan 11;13(1):103–114. doi: 10.1093/nar/13.1.103

Autorepressor properties of the pi-initiation protein encoded by plasmid R6K.

M Filutowicz, G Davis, A Greener, D R Helinski
PMCID: PMC340977  PMID: 3923429

Abstract

A DNA fusion containing the promoter of the pir gene of plasmid R6K that encodes for the pi-initiation protein and the beta-galactosidase gene of Escherichia coli (lacZ) is described. The synthesis of beta-galactosidase promoted by this pir-lac fusion was almost completely inhibited when an R6K sequence containing the pir gene was provided in trans in E. coli. Transcription in vitro from the pir promoter but not the trp promoter of E. coli, was inhibited by purified pi protein indicating that the pi protein alone is responsible for repression of its own gene and that the effect is promoter specific. The DNA-protein interaction sites in the pir regulatory region have been determined for the pi protein and E. coli RNA polymerase using the DNase I protection method. The binding sites for these two proteins overlap for three helical turns. Competition DNA binding experiments show that the pi protein will displace bound RNA polymerase. From these studies we conclude that repression of the pir gene is accomplished by binding of the pi protein and this association blocks access of RNA polymerase to the pir promoter region.

Full text

PDF
103

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H. Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene. Cell. 1983 Jan;32(1):141–149. doi: 10.1016/0092-8674(83)90504-4. [DOI] [PubMed] [Google Scholar]
  2. Crosa J. H., Luttropp L. K., Falkow S. Use of autonomously replicating mini-R6K plasmids in the analysis of the replication regions of the R plasmid R6K. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):111–120. doi: 10.1101/sqb.1979.043.01.017. [DOI] [PubMed] [Google Scholar]
  3. Galas D. J., Schmitz A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 1978 Sep;5(9):3157–3170. doi: 10.1093/nar/5.9.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geiduschek E. P., Armelin M. C., Petrusek R., Bread C., Duffy J. J., Johnson G. Effects of the transciption inhibitory protein, TF1, on phage SP01 promoter complex formation and stability. J Mol Biol. 1977 Dec 25;117(4):825–842. doi: 10.1016/s0022-2836(77)80001-6. [DOI] [PubMed] [Google Scholar]
  5. Germino J., Bastia D. The replication initiator protein of plasmid R6K tagged with beta-galactosidase shows sequence-specific DNA-binding. Cell. 1983 Jan;32(1):131–140. doi: 10.1016/0092-8674(83)90503-2. [DOI] [PubMed] [Google Scholar]
  6. Gunsalus R. P., Yanofsky C. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7117–7121. doi: 10.1073/pnas.77.12.7117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inuzuka M., Helinski D. R. Replication of antibiotic resistance plasmid R6K DNA in vitro. Biochemistry. 1978 Jun 27;17(13):2567–2573. doi: 10.1021/bi00606a017. [DOI] [PubMed] [Google Scholar]
  8. Inuzuka M., Helinski D. R. Requirement of a plasmid-encoded protein for replication in vitro of plasmid R6K. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5381–5385. doi: 10.1073/pnas.75.11.5381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kolter R., Helinski D. R. Construction of plasmid R6K derivatives in vitro: characterization of the R6K replication region. Plasmid. 1978 Sep;1(4):571–580. doi: 10.1016/0147-619x(78)90014-8. [DOI] [PubMed] [Google Scholar]
  10. Kolter R., Inuzuka M., Figurski D., Thomas C., Stalker D., Helinski D. R. Plasmid DNA replication: RK2- and R6K-encoded trans-acting factors and their sites of action. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):91–97. doi: 10.1101/sqb.1979.043.01.014. [DOI] [PubMed] [Google Scholar]
  11. Kolter R., Inuzuka M., Helinski D. R. Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. Cell. 1978 Dec;15(4):1199–1208. doi: 10.1016/0092-8674(78)90046-6. [DOI] [PubMed] [Google Scholar]
  12. Lee F., Yanofsky C. Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4365–4369. doi: 10.1073/pnas.74.10.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee N. L., Gielow W. O., Wallace R. G. Mechanism of araC autoregulation and the domains of two overlapping promoters, Pc and PBAD, in the L-arabinose regulatory region of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Feb;78(2):752–756. doi: 10.1073/pnas.78.2.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ogata R. T., Gilbert W. An amino-terminal fragment of lac repressor binds specifically to lac operator. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5851–5854. doi: 10.1073/pnas.75.12.5851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmitz A., Galas D. J. The interaction of RNA polymerase and lac repressor with the lac control region. Nucleic Acids Res. 1979 Jan;6(1):111–137. doi: 10.1093/nar/6.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shafferman A., Kolter R., Stalker D., Helinski D. R. Plasmid R6K DNA replication. III. Regulatory properties of the pi initiation protein. J Mol Biol. 1982 Oct 15;161(1):57–76. doi: 10.1016/0022-2836(82)90278-9. [DOI] [PubMed] [Google Scholar]
  17. Stalker D. M., Kolter R., Helinski D. R. Nucleotide sequence of the region of an origin of replication of the antibiotic resistance plasmid R6K. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1150–1154. doi: 10.1073/pnas.76.3.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stalker D. M., Kolter R., Helinski D. R. Plasmid R6K DNA replication. I. Complete nucleotide sequence of an autonomously replicating segment. J Mol Biol. 1982 Oct 15;161(1):33–43. doi: 10.1016/0022-2836(82)90276-5. [DOI] [PubMed] [Google Scholar]
  19. Thomas C. M., Meyer R., Helinski D. R. Regions of broad-host-range plasmid RK2 which are essential for replication and maintenance. J Bacteriol. 1980 Jan;141(1):213–222. doi: 10.1128/jb.141.1.213-222.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES