Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Jan 11;13(1):167–184. doi: 10.1093/nar/13.1.167

A comparative study of the interaction of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin and its zinc complex with DNA using fluorescence spectroscopy and topoisomerisation.

J M Kelly, M J Murphy, D J McConnell, C OhUigin
PMCID: PMC340982  PMID: 2987789

Abstract

Binding of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin (H2TMPyP4+) and its zinc complex (ZnTMPyP4+) to DNA is demonstrated by their coelectrophoresis and by absorption and fluorescence spectroscopic methods. Topoisomerisation of pBR322 DNA shows that H2TMPyP4+ unwinds DNA as efficiently as ethidium bromide showing that it intercalates at many sites. ZnTMPyP4+ may cause limited unwinding. Marked changes in the fluorescence spectra of the porphyrins are found in the presence of DNA. The fluorescence intensity of either H2TMPyP4+ or ZnTMPyP4+ is enhanced in the presence of poly (d(A-T)), whereas in the presence of poly (d(G-C] the fluorescence intensity of ZnTMPyP4+ is only slightly affected and that of H2TMPyP4+ markedly reduced. Both the porphyrins photosensitize the cleavage of DNA in aerated solution upon visible light irradiation.

Full text

PDF
167

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banville D. L., Marzilli L. G., Wilson W. D. 31P NMR and viscometric studies of the interaction of meso-tetra(4-N-methylpyridyl) porphine and its Ni(II) and Zn(II) derivatives with DNA. Biochem Biophys Res Commun. 1983 May 31;113(1):148–154. doi: 10.1016/0006-291x(83)90444-8. [DOI] [PubMed] [Google Scholar]
  2. Carvlin M. J., Datta-Gupta N., Fiel R. J. Circular dichroism spectroscopy of a cationic porphyrin bound to DNA. Biochem Biophys Res Commun. 1982 Sep 16;108(1):66–73. doi: 10.1016/0006-291x(82)91832-0. [DOI] [PubMed] [Google Scholar]
  3. Carvlin M. J., Fiel R. J. Intercalative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA. Nucleic Acids Res. 1983 Sep 10;11(17):6121–6139. doi: 10.1093/nar/11.17.6121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carvlin M. J., Mark E., Fiel R., Howard J. C. Intercalative and nonintercalative binding of large cationic porphyrin ligands to polynucleotides. Nucleic Acids Res. 1983 Sep 10;11(17):6141–6154. doi: 10.1093/nar/11.17.6141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fiel R. J., Beerman T. A., Mark E. H., Datta-Gupta N. DNA strand scission activity of metalloporphyrins. Biochem Biophys Res Commun. 1982 Aug;107(3):1067–1074. doi: 10.1016/0006-291x(82)90630-1. [DOI] [PubMed] [Google Scholar]
  6. Fiel R. J., Datta-Gupta N., Mark E. H., Howard J. C. Induction of DNA damage by porphyrin photosensitizers. Cancer Res. 1981 Sep;41(9 Pt 1):3543–3545. [PubMed] [Google Scholar]
  7. Fiel R. J., Howard J. C., Mark E. H., Datta Gupta N. Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucleic Acids Res. 1979 Jul 11;6(9):3093–3118. doi: 10.1093/nar/6.9.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fiel R. J., Munson B. R. Binding of meso-tetra (4-N-methylpyridyl) porphine to DNA. Nucleic Acids Res. 1980 Jun 25;8(12):2835–2842. doi: 10.1093/nar/8.12.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keller W. Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4876–4880. doi: 10.1073/pnas.72.12.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McGhee J. D., von Hippel P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974 Jun 25;86(2):469–489. doi: 10.1016/0022-2836(74)90031-x. [DOI] [PubMed] [Google Scholar]
  11. Musser D. A., Datta-Gupta N., Fiel R. J. Inhibition of DNA dependent RNA synthesis by porphyrin photosensitizers. Biochem Biophys Res Commun. 1980 Dec 16;97(3):918–925. doi: 10.1016/0006-291x(80)91464-3. [DOI] [PubMed] [Google Scholar]
  12. Olmsted J., 3rd, Kearns D. R. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry. 1977 Aug 9;16(16):3647–3654. doi: 10.1021/bi00635a022. [DOI] [PubMed] [Google Scholar]
  13. Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry. 1983 May 10;22(10):2406–2414. doi: 10.1021/bi00279a016. [DOI] [PubMed] [Google Scholar]
  14. Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry. 1983 Nov 8;22(23):5409–5417. doi: 10.1021/bi00292a024. [DOI] [PubMed] [Google Scholar]
  15. Pasternack R. F., Huber P. R., Boyd P., Engasser G., Francesconi L., Gibbs E., Fasella P., Venturo G. C., Hinds L. de C. On the aggregation of meso-substituted water-soluble porphyrins. J Am Chem Soc. 1972 Jun 28;94(13):4511–4517. doi: 10.1021/ja00768a016. [DOI] [PubMed] [Google Scholar]
  16. Schreiber J. P., Duane M. P. Fluorescence of complexes of acridine dye with synthetic polydeoxyribonucleotides: a physical model of frameshift mutation. J Mol Biol. 1974 Mar 15;83(4):487–501. doi: 10.1016/0022-2836(74)90509-9. [DOI] [PubMed] [Google Scholar]
  17. Wang J. C. The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J Mol Biol. 1974 Nov 15;89(4):783–801. doi: 10.1016/0022-2836(74)90053-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES