Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Jan 11;13(1):303–315. doi: 10.1093/nar/13.1.303

Recognition of a cytosine base lesion by a human damage-specific DNA binding protein.

J A Carew, R S Feldberg
PMCID: PMC340992  PMID: 4039815

Abstract

Sodium bisulfite reacts with cytosine and 5-methylcytosine, forming the 5,6-dihydrosulfonate adducts which deaminate to the uracil and thymine adducts, respectively. At alkaline pH, the sulfonate groups are then released, generating uracil and thymine. In DNA, the resulting G:U and G:T base mismatches generated are potential sites of mutagenesis. Using a human damage-specific DNA binding protein as a probe, we have found protein-recognizable lesions in bisulfite-treated DNA and poly d(I-C), but not in treated poly d(A-T) or poly d(A-U). Although this suggests that the lesion recognized is cytosine-derived, there was no correlation between the number of uracils induced and the number of binding sites, suggesting that the protein-bound damage is not a uracil-containing mismatch. Modification of the treatment protocol to reduce elimination of the bisulfite from the base adducts increased the level of binding, suggesting that the protein recognizes a base-sulfonate adduct.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D. Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. J Mol Biol. 1968 Jun 28;34(3):621–641. doi: 10.1016/0022-2836(68)90185-x. [DOI] [PubMed] [Google Scholar]
  2. Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
  3. Burd J. F., Wells R. D. Effect of incubation conditions on the nucleotide sequence of DNA products of unprimed DNA polymerase reactions. J Mol Biol. 1970 Nov 14;53(3):435–459. doi: 10.1016/0022-2836(70)90076-8. [DOI] [PubMed] [Google Scholar]
  4. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  5. Duncan B. K., Weiss B. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J Bacteriol. 1982 Aug;151(2):750–755. doi: 10.1128/jb.151.2.750-755.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feldberg R. S., Brown C., Carew J. A., Lucas J. L. Probing photodynamic damage in nucleic acids with a damage-specific DNA binding protein: a comparison of the B and Z DNA conformations. Photochem Photobiol. 1983 May;37(5):521–524. doi: 10.1111/j.1751-1097.1983.tb04511.x. [DOI] [PubMed] [Google Scholar]
  7. Feldberg R. S., Carew J. A. Water radiolysis products and nucleotide damage in gamma-irradiated DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1981 Jul;40(1):11–17. [PubMed] [Google Scholar]
  8. Feldberg R. S., Grossman L. A DNA binding protein from human placenta specific for ultraviolet damaged DNA. Biochemistry. 1976 Jun 1;15(11):2402–2408. doi: 10.1021/bi00656a024. [DOI] [PubMed] [Google Scholar]
  9. Feldberg R. S., Lucas J. L., Dannenberg A. A damage-specific DNA binding protein. Large scale purification from human placenta and characterization. J Biol Chem. 1982 Jun 10;257(11):6394–6401. [PubMed] [Google Scholar]
  10. Feldberg R. S. On the substrate specificity of a damage-specific DNA binding protein from human cells. Nucleic Acids Res. 1980 Mar 11;8(5):1133–1143. doi: 10.1093/nar/8.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayakawa H., Sekiguchi M. Repair of deaminated cytosine residues of DNA: biological significance of the absence of uracil from DNA. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1312–1318. doi: 10.1016/0006-291x(78)91364-5. [DOI] [PubMed] [Google Scholar]
  12. Hayakawa H., Sekiguchi M. Repair of deaminated cytosine residues of DNA: biological significance of the absence of uracil from DNA. Biochem Biophys Res Commun. 1978 Aug 29;83(4):1312–1318. doi: 10.1016/0006-291x(78)91364-5. [DOI] [PubMed] [Google Scholar]
  13. Hayatsu H. Bisulfite modification of nucleic acids and their constituents. Prog Nucleic Acid Res Mol Biol. 1976;16:75–124. doi: 10.1016/s0079-6603(08)60756-4. [DOI] [PubMed] [Google Scholar]
  14. Hayatsu H., Miura A. The mutagenic action of sodium bisulfite. Biochem Biophys Res Commun. 1970 Apr 8;39(1):156–160. doi: 10.1016/0006-291x(70)90771-0. [DOI] [PubMed] [Google Scholar]
  15. Hayatsu H., Wataya Y., Kai K., Iida S. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry. 1970 Jul 7;9(14):2858–2865. doi: 10.1021/bi00816a016. [DOI] [PubMed] [Google Scholar]
  16. Kai K., Tsuruo T., Hayatsu H. The effect of bisulfite modification on the template activity of DNA for DNA polymerase I. Nucleic Acids Res. 1974 Jul;1(7):889–899. doi: 10.1093/nar/1.7.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mallon R. G., Rossman T. G. Bisulfite (sulfur dioxide) is a comutagen in E. coli and in Chinese hamster cells. Mutat Res. 1981 Feb;88(2):125–133. doi: 10.1016/0165-1218(81)90011-2. [DOI] [PubMed] [Google Scholar]
  18. SCHACHMAN H. K., ADLER J., RADDING C. M., LEHMAN I. R., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J Biol Chem. 1960 Nov;235:3242–3249. [PubMed] [Google Scholar]
  19. Shapiro R., Braverman B., Louis J. B., Servis R. E. Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J Biol Chem. 1973 Jun 10;248(11):4060–4064. [PubMed] [Google Scholar]
  20. Simmons R. R., Friedberg E. C. Enzymatic degradation of uracil-containing deoxyribonucleic acid. V. Survival of Escherichia coli and coliphages treated with sodium bisulfite. J Bacteriol. 1979 Mar;137(3):1243–1252. doi: 10.1128/jb.137.3.1243-1252.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sklyadneva V. B., Chekanovskaya L. A., Nikolaeva I. A., Tikchonenko T. I. The secondary structure of bacteriophage DNA in situ. VIII. The reaction of sodium bisulphite with intraphage cytosine as a probe for studying the DNA-protein interaction. Biochim Biophys Acta. 1979 Nov 22;565(1):51–66. doi: 10.1016/0005-2787(79)90082-0. [DOI] [PubMed] [Google Scholar]
  22. Wang R. Y., Gehrke C. W., Ehrlich M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 1980 Oct 24;8(20):4777–4790. doi: 10.1093/nar/8.20.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES