Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 May 24;13(10):3651–3666. doi: 10.1093/nar/13.10.3651

Improved rapid phosphotriester synthesis of oligodeoxyribonucleotides using oxygen-nucleophilic catalysts.

V A Efimov, O G Chakhmakhcheva, Ovchinnikov YuA
PMCID: PMC341264  PMID: 4011438

Abstract

The use of different condensing and phosphorylating agents in conjunction with oxygen-nucleophilic catalysts, such as 4-substituted derivatives of pyridine N-oxide and quinoline N-oxide, leads to a dramatic increase of the rate of the phosphotriester bond formation and minimizes the amount of by-products caused by the modification of heterocyclic bases. The application of these catalysts to the solid-phase oligonucleotide synthesis allows to reduce the time needed for the performance of one elongation cycle on a polymer support to 10 min.

Full text

PDF
3651

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barone A. D., Tang J. Y., Caruthers M. H. In situ activation of bis-dialkylaminophosphines--a new method for synthesizing deoxyoligonucleotides on polymer supports. Nucleic Acids Res. 1984 May 25;12(10):4051–4061. doi: 10.1093/nar/12.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Efimov V. A., Buryakova A. A., Reverdatto S. V., Chakhmakhcheva O. G., Ovchinnikov YuA Rapid synthesis of long-chain deoxyribooligonucleotides by the N-methylimidazolide phosphotriester method. Nucleic Acids Res. 1983 Dec 10;11(23):8369–8387. doi: 10.1093/nar/11.23.8369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Efimov V. A., Reverdatto S. V., Chakhmakhcheva O. G. New effective method for the synthesis of oligonucleotides via phosphotriester intermediates. Nucleic Acids Res. 1982 Nov 11;10(21):6675–6694. doi: 10.1093/nar/10.21.6675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Matthes H. W., Zenke W. M., Grundström T., Staub A., Wintzerith M., Chambon P. Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale. EMBO J. 1984 Apr;3(4):801–805. doi: 10.1002/j.1460-2075.1984.tb01888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  6. Ohtsuka E., Ikehara M., Söll D. Recent developments in the chemical synthesis of polynucleotides. Nucleic Acids Res. 1982 Nov 11;10(21):6553–6570. doi: 10.1093/nar/10.21.6553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Seth A. K., Jay E. A study of the efficiency and the problem of sulfonation of several condensing reagents and their mechanisms for the chemical synthesis of deoxyoligoribonucleotides. Nucleic Acids Res. 1980 Nov 25;8(22):5445–5459. doi: 10.1093/nar/8.22.5445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Zarytova V. F., Knorre D. G. General scheme of the phosphotriester condensation in the oligodeoxyribonucleotide synthesis with arylsulfonyl chlorides and arylsulfonyl azolides. Nucleic Acids Res. 1984 Feb 24;12(4):2091–2110. doi: 10.1093/nar/12.4.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES