Abstract
The binding of yeast tRNAPhe to UUCA, UUCC, UUCCC, UUCUUCU, U4, U5, U6 and U7 was analysed by fluorescence temperature jump and equilibrium sedimentation measurements. In all cases the two observed relaxation processes can be assigned to alpha) an intramolecular conformation change of the anticodon loop and beta) preferential binding of the oligonucleotides to one of the anticodon conformations. The anticodon loop transition is associated with inner sphere complexation of Mg2+ and proceeds with rate constants of about 10(3) s-1. The rate constants of oligonucleotide binding are between 4 and 10 X 10(6) M-1s-1 and reflect an increase of the association rate with the number of binding sites compensated to some degree by electrostatic repulsion in the preequilibrium complex. Neither temperature jump nor equilibrium sedimentation experiments provided evidence for UUCA or UUCC induced tRNA dimerisation, although UUC binding leads to strong tRNA dimerisation under equivalent conditions. The results obtained for the longer oligonucleotides are similar. In the case of UUCUUCU with its two potential binding sites for tRNAPhe there was no evidence for the formation of 'ternary' complexes. Apparently tRNAPhe binds preferentially to the second UUC of this 'messenger' and forms additional contacts with residues on either side of the codon. Some evidence for the formation of ternary complexes is obtained for U6 and U7, although the extent of this reaction remains very small. Our results demonstrate that the mode of tRNA binding to a codon is strongly influenced by residues next to the codon. The formation of cooperative contacts between tRNA molecules at adjacent codons apparently requires support by a catalyst adjusting an appropriate conformation of messenger and tRNA molecules.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beardsley K., Tao T., Cantor C. R. Studies on the conformation of the anticodon loop of phenylalanine transfer ribonucleic acid. Effect of environment on the fluorescence of the Y base. Biochemistry. 1970 Sep 1;9(18):3524–3532. doi: 10.1021/bi00820a005. [DOI] [PubMed] [Google Scholar]
- Clore G. M., Gronenborn A. M., McLaughlin L. W. Structure of the ribotrinucleoside diphosphate codon UpUpC bound to tRNAPhe from yeast. A time-dependent transferred nuclear Overhauser enhancement study. J Mol Biol. 1984 Mar 25;174(1):163–173. doi: 10.1016/0022-2836(84)90370-x. [DOI] [PubMed] [Google Scholar]
- Crick F. H., Brenner S., Klug A., Pieczenik G. A speculation on the origin of protein synthesis. Orig Life. 1976 Dec;7(4):389–397. doi: 10.1007/BF00927934. [DOI] [PubMed] [Google Scholar]
- Eisinger J., Feuer B., Yamane T. Luminescence and binding studies on tRNA-Phe. Proc Natl Acad Sci U S A. 1970 Mar;65(3):638–644. doi: 10.1073/pnas.65.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisinger J., Spahr P. F. Binding of complementary pentanucleotides to the anticodon loop of transfer RNA. J Mol Biol. 1973 Jan;73(1):131–137. doi: 10.1016/0022-2836(73)90165-4. [DOI] [PubMed] [Google Scholar]
- Freier S. M., Tinoco I., Jr The binding of complementary oligoribonucleotides to yeast initiator Transfer RNA. Biochemistry. 1975 Jul 29;14(15):3310–3314. doi: 10.1021/bi00686a004. [DOI] [PubMed] [Google Scholar]
- Fuller W., Hodgson A. Conformation of the anticodon loop intRNA. Nature. 1967 Aug 19;215(5103):817–821. doi: 10.1038/215817a0. [DOI] [PubMed] [Google Scholar]
- Gassen H. G. Ligand-induced conformational changes in ribonucleic acids. Prog Nucleic Acid Res Mol Biol. 1980;24:57–86. doi: 10.1016/s0079-6603(08)60671-6. [DOI] [PubMed] [Google Scholar]
- Geerdes H. A., Van Boom J. H., Hilbers C. W. Codon-anticodon interaction in tRNAPhe. II. A nuclear magnetic resonance study of the binding of the codon UUC. J Mol Biol. 1980 Sep 15;142(2):219–230. doi: 10.1016/0022-2836(80)90046-7. [DOI] [PubMed] [Google Scholar]
- Geerdes H. A., Van Boom J. H., Hilbers C. W. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon. J Mol Biol. 1980 Sep 15;142(2):195–217. doi: 10.1016/0022-2836(80)90045-5. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Sussman J. L., Warrant R. W., Church G. M., Kim S. H. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe. Nucleic Acids Res. 1977 Aug;4(8):2811–2820. doi: 10.1093/nar/4.8.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
- Labuda D., Grosjean H., Striker G., Pörschke D. Codon:anticodon and anticodon:anticodon interaction: evaluation of equilibrium and kinetic parameters of complexes involving a g:u wobble. Biochim Biophys Acta. 1982 Sep 27;698(3):230–236. doi: 10.1016/0167-4781(82)90152-x. [DOI] [PubMed] [Google Scholar]
- Labuda D., Pörschke D. Codon-induced transfer RNA association. A property of transfer RNA involved in its adaptor function? J Mol Biol. 1983 Jun 15;167(1):205–209. doi: 10.1016/s0022-2836(83)80042-4. [DOI] [PubMed] [Google Scholar]
- Labuda D., Pörschke D. Magnesium ion inner sphere complex in the anticodon loop of phenylalanine transfer ribonucleic acid. Biochemistry. 1982 Jan 5;21(1):49–53. doi: 10.1021/bi00530a009. [DOI] [PubMed] [Google Scholar]
- Labuda D., Pörschke D. Multistep mechanism of codon recognition by transfer ribonucleic acid. Biochemistry. 1980 Aug 5;19(16):3799–3805. doi: 10.1021/bi00557a023. [DOI] [PubMed] [Google Scholar]
- Labuda D., Striker G., Porschke D. Mechanism of codon recognition by transfer RNA and codon-induced tRNA association. J Mol Biol. 1984 Apr 25;174(4):587–604. doi: 10.1016/0022-2836(84)90085-8. [DOI] [PubMed] [Google Scholar]
- Langlois R., Kim S. H., Cantor C. R. A comparison of the fluorescence of the Y base of yeast tRNA-Phe in solution and in crystals. Biochemistry. 1975 Jun 3;14(11):2554–2558. doi: 10.1021/bi00682a040. [DOI] [PubMed] [Google Scholar]
- McLaughlin L. W., Cramer F., Sprinzl M. Rapid analysis of modified tRNAphe from yeast by high-performance liquid chromatography: chromatography of oligonucleotides after RNase T1 digestion on aminopropylsilica and assignment of the fragments based on nucleoside analysis by chromatography on C18-silica. Anal Biochem. 1981 Mar 15;112(1):60–69. doi: 10.1016/0003-2697(81)90260-8. [DOI] [PubMed] [Google Scholar]
- Möller A., Schwarz U., Lipecky R., Gassen H. G. Effective binding of oligonucleotides to the anticodon of a tRNA without stimulation of tRNA binding to 30 S ribosomes. FEBS Lett. 1978 May 15;89(2):263–266. doi: 10.1016/0014-5793(78)80232-4. [DOI] [PubMed] [Google Scholar]
- Möller A., Wild U., Riesner D., Gassen H. G. Evidence from ultraviolet absorbance measurements for a codon-induced conformational change in lysine tRNA from Escherichia coli. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3266–3270. doi: 10.1073/pnas.76.7.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulsen H., Robertson J. M., Wintermeyer W. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNAphe. J Mol Biol. 1983 Jun 25;167(2):411–426. doi: 10.1016/s0022-2836(83)80342-8. [DOI] [PubMed] [Google Scholar]
- Pongs O., Bald R., Reinwald E. On the structure of yeast tRNA Phe . Complementary-oligonucleotide binding studies. Eur J Biochem. 1973 Jan 3;32(1):117–125. doi: 10.1111/j.1432-1033.1973.tb02586.x. [DOI] [PubMed] [Google Scholar]
- Pörschke D., Eigen M. Co-operative non-enzymic base recognition. 3. Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J Mol Biol. 1971 Dec 14;62(2):361–381. doi: 10.1016/0022-2836(71)90433-5. [DOI] [PubMed] [Google Scholar]
- Pörschke D., Labuda D. Codon-induced transfer ribonucleic acid association: quantitative analysis by sedimentation equilibrium. Biochemistry. 1982 Jan 5;21(1):53–56. doi: 10.1021/bi00530a010. [DOI] [PubMed] [Google Scholar]
- Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigler R., Wintermeyer W. Dynamics of tRNA. Annu Rev Biophys Bioeng. 1983;12:475–505. doi: 10.1146/annurev.bb.12.060183.002355. [DOI] [PubMed] [Google Scholar]
- Romaniuk E., McLaughlin L. W., Neilson T., Romaniuk P. J. The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur J Biochem. 1982 Jul;125(3):639–643. doi: 10.1111/j.1432-1033.1982.tb06730.x. [DOI] [PubMed] [Google Scholar]
- Schmitt M., Kyriatsoulis A., Gassen H. G. The context theory as applied to the decoding of the initiator tRNA by Escherichia coli ribosomes. Eur J Biochem. 1982 Jul;125(2):389–394. doi: 10.1111/j.1432-1033.1982.tb06695.x. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C. Complementary oligonucleotide binding to transfer RNA. J Mol Biol. 1972 Mar 14;65(1):25–41. doi: 10.1016/0022-2836(72)90489-5. [DOI] [PubMed] [Google Scholar]
- Urbanke C., Maass G. A novel conformational change of the anticodon region of tRNAPhe (yeast). Nucleic Acids Res. 1978 May;5(5):1551–1560. doi: 10.1093/nar/5.5.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R., Garrett R. A. Chemical evidence for a codon-induced allosteric change in tRNALys involving the 7-methylguanosine residue 46. Eur J Biochem. 1979 Jul;97(2):615–621. doi: 10.1111/j.1432-1033.1979.tb13151.x. [DOI] [PubMed] [Google Scholar]
- Westhof E., Dumas P., Moras D. Loop stereochemistry and dynamics in transfer RNA. J Biomol Struct Dyn. 1983 Oct;1(2):337–355. doi: 10.1080/07391102.1983.10507446. [DOI] [PubMed] [Google Scholar]
- Woo N. H., Roe B. A., Rich A. Three-dimensional structure of Escherichia coli initiator tRNAfMet. Nature. 1980 Jul 24;286(5771):346–351. doi: 10.1038/286346a0. [DOI] [PubMed] [Google Scholar]
- Wrede P., Woo N. H., Rich A. Initiator tRNAs have a unique anticodon loop conformation. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3289–3293. doi: 10.1073/pnas.76.7.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoon K., Turner D. H., Tinoco I., Jr The kinetics of codon-anticodon interaction in yeast phenylalanine transfer RNA. J Mol Biol. 1975 Dec 25;99(4):507–518. doi: 10.1016/s0022-2836(75)80169-0. [DOI] [PubMed] [Google Scholar]
