Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 28;68(Pt 8):i66. doi: 10.1107/S1600536812033259

Dilead(II) trimanganese(II) bis(hydrogenphosphate) bis(phosphate)

Abderrazzak Assani a, Mohamed Saadi a, Mohammed Zriouil a,*, Lahcen El Ammari a
PMCID: PMC3414095  PMID: 22904702

Abstract

The title compound, Pb2Mn3(HPO4)2(PO4)2, was synthesized by a hydro­thermal method. All atoms are in general positions except for one Mn atom which is located on an inversion center. The framework of the structure is built up from PO4 tetra­hedra and two types of MnO6 octa­hedra, one almost ideal and the other very distorted with one very long Mn—O bond [2.610 (4) Å compared an average of 2.161 Å for the other bonds]. The centrosymetric octa­hedron is linked to two distorted MnO6 octa­hedra by an edge common, forming infinite zigzag Mn3O14 chains running along the b axis. Adjacent chains are linked by PO4 and PO3(OH) tetra­hedra through vertices or by edge sharing, forming sheets perpendicular to [100]. The Pb2+ cations are sandwiched between the layers and ensure the cohesion of the crystal structure. O—H⋯O hydrogen bonding between the layers is also observed.

Related literature  

For properties of phosphates and their potential applications, see: Gao & Gao (2005); Viter & Nagornyi (2009); Clearfield (1988); Trad et al. (2010). For compounds with related structures, see: Assani et al. (2010, 2011a ,b ,c , 2012); Effenberger (1999). For bond-valence analysis, see: Brown & Altermatt (1985).

Experimental  

Crystal data  

  • Pb2Mn3(HPO4)2(PO4)2

  • M r = 961.10

  • Monoclinic, Inline graphic

  • a = 7.9449 (2) Å

  • b = 8.8911 (2) Å

  • c = 9.5718 (3) Å

  • β = 100.917 (2)°

  • V = 663.90 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 28.63 mm−1

  • T = 296 K

  • 0.18 × 0.12 × 0.08 mm

Data collection  

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.029, T max = 0.117

  • 8738 measured reflections

  • 1225 independent reflections

  • 1202 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.051

  • S = 1.10

  • 1225 reflections

  • 116 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −2.03 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033259/hp2043sup1.cif

e-68-00i66-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033259/hp2043Isup2.hkl

e-68-00i66-Isup2.hkl (59.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O4 0.86 1.60 2.437 (5) 164
O8—H8⋯O1 0.86 2.76 3.393 (5) 132

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Owing to their remarkable variety of structures and to their outstanding potentialities in widespread applications such as catalysis (Viter & Nagornyi, 2009; Gao & Gao, 2005) and ion-exchangers (Clearfield, 1988) and in batteries performance (Trad et al., (2010)), transition metal based phosphates have received great attention and still remains in the forefront of the developed scientific axes in our laboratory. Within this family of compounds, the resulting anionic frameworks, generally constructed from the alternation of PO4 tetrahedra connected to metal cations in different coordinate geometry MOn (with n=4, 5 and 6), generate pores and channels offering suitable environment to accommodate different other cations. Accordingly, we have succeeded to isolate new silver metal based orthophosphates for instance, AgMg3(PO4)(HPO4)2 wich represent a new member of the well known alluaudite-like structure family (Assani et al. 2011a); silver (nickel or cobalt) phosphate, namely, Ag2M3(HPO4)(PO4)2 with M=Ni, Co (Assani et al. 2011b; Assani et al. 2011c). Furthermore, a special attention have been paid to the ternary system MO—M'O—P2O5 with M=Ba, Ca, Cd, Pb and Sr and M'= transition metals, Mg and Zn. Our recent investigation has allowed to the isolate the compounds Ni2Sr(PO4)2.2H2O (Assani et al. 2010) and Co2Pb(HPO4)(PO4)OH H2O (Assani et al. 2012).

Inline with the focus of our research, the present paper aims to develop the hydrothermal synthesis and the structural characterization of a new layered lead manganese orthophosphate, namely, PbMn1.5(PO4)(HPO4), which is characterized by Mn/P ratio =3/4, rarely encountered in the literature with the exception of some copper based orthophosphates, Pb3Cu3(PO4)4 and Sr3Cu3(PO4)4 (Effenberger 1999).

A partial three-dimensional plot of the crystal structure of PbMn1.5(PO4)(HPO4) is represented in Fig. 1. A l l atoms of this structure are in general positions, except one manganese Mn1 located in symmetry center (1) 2a (0 0 0; 0 1/2 1/2) of P21/c space group. The network is built up from two different types of polyhedra more or less distorted, viz. PO4, HPO4 tetrahedra and Mn1O6 (1 symmetry), Mn2O6 octahedra. Moreover, the edge-sharing Mn1O6 and Mn2O5(OH) octahedra form an infinite zigzag chains 1∞ [Mn3O14] running parallel to [010], as shown in Fig. 2. Adjacent chains are connected by PO4 and HPO4 tetrahedra via vertices in the way to build layers parallel to (100). These layers are in turn linked by Pb2+ cations as shown in Fig.2. The strong hydrogen bonding between the layers is also involved in the stability of this structure (Fig. 2 and Table 2).

Bond valence sum calculations (Brown & Altermatt, 1985) for Pb12+, Mn12+, Mb22+, P15+ and P25+ ions are as expected, viz. 1.82, 2.13, 1.97, 4.95 and 5.01 valence units, respectively. The values of the bond valence sums calculated for all oxygen atoms are between 1.93 and 2.05 except O4 and O8 which shown low values: 1.62 and 1.50 respectively. These atoms are considerably undersaturated and thus act as an acceptor with a very short H-bond (Table 2, Fig.1).

Experimental

The crystals of the title compound is isolated from the hydrothermal treatment of the reaction mixture of lead oxide, metallic manganese and 85wt% phosphoric acid in a proportion corresponding to the molar ratio Pb:Mn:P = 1,5: 3:3.

The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogeneous pressure at 483 K for twenty hours. After being filtered off, washed with deionized water and air dried, the reaction product consists of a light brown solid and colorless sheet shaped crystals corresponding to the title compound.

Refinement

The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O). The highest peak and the deepest hole in the final Fourier map are at 0.62 Å and 0.67 Å, respectively, from Pb1. The not significants bonds and angles were removed from the CIF file.

Figures

Fig. 1.

Fig. 1.

A partial three-dimensional plot of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) x, -y + 3/2, z + 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, y - 1/2, -z + 3/2; (iv) -x, y - 1/2, -z + 1/2; (v) x - 1, y, z; (vi) -x, -y + 1, -z + 1; (vii) x, -y + 1/2, z + 1/2; (viii) x, -y + 1/2, z - 1/2; (ix) -x, y + 1/2, -z + 1/2; (x) x, -y + 3/2, z - 1/2; (xi) -x + 1, y + 1/2, -z + 3/2; (xii) x + 1, y, z.

Fig. 2.

Fig. 2.

A three-dimensional polyhedral view of the crystal structure of the PbMn1.5(PO4)(HPO4), showing the stacking of layers along the a axis and the hydrogen bonding scheme (dashed lines).

Crystal data

Pb2Mn3(HPO4)2(PO4)2 F(000) = 858
Mr = 961.10 Dx = 4.808 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1225 reflections
a = 7.9449 (2) Å θ = 2.6–25.4°
b = 8.8911 (2) Å µ = 28.63 mm1
c = 9.5718 (3) Å T = 296 K
β = 100.917 (2)° Prism, pink
V = 663.90 (3) Å3 0.18 × 0.12 × 0.08 mm
Z = 2

Data collection

Bruker X8 APEXII diffractometer 1225 independent reflections
Radiation source: fine-focus sealed tube 1202 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
φ and ω scans θmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −9→9
Tmin = 0.029, Tmax = 0.117 k = −10→10
8738 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020 H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0232P)2 + 2.912P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
1225 reflections Δρmax = 1.37 e Å3
116 parameters Δρmin = −2.03 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0091 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.41097 (3) 0.52400 (2) 0.75343 (2) 0.01734 (13)
Mn1 0.0000 0.5000 0.5000 0.0091 (2)
Mn2 0.10770 (9) 0.13892 (8) 0.59303 (7) 0.00981 (19)
P1 0.14019 (16) 0.70441 (14) 0.23105 (12) 0.0076 (3)
P2 0.65619 (16) 0.70724 (14) 0.56583 (12) 0.0087 (3)
O1 0.0496 (5) 0.6808 (4) 0.3570 (4) 0.0123 (7)
O2 0.0740 (5) 0.5969 (4) 0.1080 (3) 0.0122 (7)
O3 0.1156 (5) 0.8690 (4) 0.1828 (4) 0.0127 (7)
O4 0.3370 (5) 0.6828 (4) 0.2816 (4) 0.0133 (7)
O5 0.7064 (5) 0.6754 (5) 0.7236 (4) 0.0208 (9)
O6 0.7536 (5) 0.6118 (4) 0.4742 (4) 0.0152 (8)
O7 0.6777 (5) 0.8718 (4) 0.5276 (4) 0.0212 (9)
O8 0.4617 (5) 0.6642 (4) 0.5341 (4) 0.0146 (7)
H8 0.4002 0.6667 0.4499 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.01783 (17) 0.01676 (17) 0.01923 (17) 0.00271 (7) 0.00812 (10) 0.00201 (7)
Mn1 0.0108 (6) 0.0084 (5) 0.0080 (5) 0.0006 (4) 0.0018 (4) 0.0002 (4)
Mn2 0.0096 (4) 0.0107 (4) 0.0082 (4) 0.0003 (3) −0.0008 (3) −0.0006 (3)
P1 0.0080 (6) 0.0090 (6) 0.0055 (6) −0.0004 (5) 0.0003 (5) 0.0003 (4)
P2 0.0080 (6) 0.0111 (6) 0.0067 (6) −0.0007 (5) 0.0009 (5) −0.0005 (4)
O1 0.0154 (19) 0.0110 (17) 0.0120 (17) −0.0005 (14) 0.0068 (14) 0.0016 (13)
O2 0.0154 (19) 0.0111 (17) 0.0076 (16) 0.0002 (14) −0.0045 (14) −0.0020 (13)
O3 0.0154 (19) 0.0099 (17) 0.0120 (17) 0.0005 (14) 0.0008 (14) 0.0026 (14)
O4 0.0083 (18) 0.0234 (19) 0.0078 (16) 0.0002 (14) 0.0004 (13) −0.0002 (14)
O5 0.015 (2) 0.038 (2) 0.0076 (18) 0.0013 (17) −0.0021 (14) 0.0035 (16)
O6 0.0113 (18) 0.0200 (19) 0.0153 (17) 0.0061 (15) 0.0048 (14) 0.0015 (15)
O7 0.030 (2) 0.0118 (18) 0.026 (2) −0.0036 (16) 0.0151 (18) −0.0013 (16)
O8 0.0087 (17) 0.0261 (19) 0.0079 (16) −0.0034 (15) −0.0012 (14) 0.0016 (15)

Geometric parameters (Å, º)

Pb1—O3i 2.504 (4) P1—O3 1.536 (3)
Pb1—O8 2.539 (4) P1—O4 1.559 (4)
Pb1—O6ii 2.614 (4) P2—O5 1.514 (4)
Pb1—O4i 2.697 (4) P2—O7 1.526 (4)
Pb1—O7iii 2.698 (4) P2—O6 1.532 (4)
Pb1—O5 2.767 (4) P2—O8 1.565 (4)
Pb1—O4ii 2.785 (4) O1—Mn2vi 2.141 (4)
Mn1—O3iv 2.157 (3) O2—Mn2viii 2.122 (4)
Mn1—O3i 2.157 (3) O2—Mn2ix 2.208 (3)
Mn1—O6ii 2.168 (3) O3—Mn1ix 2.157 (3)
Mn1—O6v 2.168 (3) O3—Pb1x 2.504 (4)
Mn1—O1 2.195 (3) O4—Pb1x 2.697 (4)
Mn1—O1vi 2.195 (3) O4—Pb1ii 2.785 (4)
Mn2—O5iii 2.094 (4) O5—Mn2xi 2.094 (4)
Mn2—O2vii 2.122 (4) O6—Mn1xii 2.168 (3)
Mn2—O1vi 2.141 (4) O6—Mn2ii 2.610 (4)
Mn2—O2iv 2.208 (3) O6—Pb1ii 2.614 (4)
Mn2—O7ii 2.235 (4) O7—Mn2ii 2.235 (4)
Mn2—O6ii 2.610 (4) O7—Pb1xi 2.698 (4)
P1—O2 1.530 (3) O8—H8 0.8600
P1—O1 1.531 (3)
O3i—Pb1—O8 82.97 (11) O3i—Mn1—O1vi 89.35 (13)
O3i—Pb1—O6ii 69.84 (11) O6ii—Mn1—O1vi 81.84 (13)
O8—Pb1—O6ii 70.75 (11) O6v—Mn1—O1vi 98.16 (13)
O3i—Pb1—O4i 56.56 (11) O1—Mn1—O1vi 180.000 (1)
O8—Pb1—O4i 71.32 (11) O5iii—Mn2—O2vii 100.04 (15)
O6ii—Pb1—O4i 116.47 (11) O5iii—Mn2—O1vi 92.62 (15)
O3i—Pb1—O7iii 91.78 (12) O2vii—Mn2—O1vi 129.62 (14)
O8—Pb1—O7iii 173.95 (12) O5iii—Mn2—O2iv 176.09 (15)
O6ii—Pb1—O7iii 104.65 (12) O2vii—Mn2—O2iv 79.73 (13)
O4i—Pb1—O7iii 108.25 (11) O1vi—Mn2—O2iv 90.49 (14)
O3i—Pb1—O5 123.87 (12) O5iii—Mn2—O7ii 87.34 (15)
O8—Pb1—O5 53.50 (11) O2vii—Mn2—O7ii 96.38 (14)
O6ii—Pb1—O5 116.03 (11) O1vi—Mn2—O7ii 133.01 (14)
O4i—Pb1—O5 75.23 (12) O2iv—Mn2—O7ii 88.81 (14)
O7iii—Pb1—O5 132.49 (12) O5iii—Mn2—O6ii 79.12 (14)
O3i—Pb1—O4ii 151.26 (10) O2vii—Mn2—O6ii 157.01 (13)
O8—Pb1—O4ii 89.67 (11) O1vi—Mn2—O6ii 73.21 (12)
O6ii—Pb1—O4ii 81.50 (10) O2iv—Mn2—O6ii 99.54 (12)
O4i—Pb1—O4ii 145.63 (8) O7ii—Mn2—O6ii 60.65 (12)
O7iii—Pb1—O4ii 93.55 (11) O2—P1—O1 112.1 (2)
O5—Pb1—O4ii 70.46 (12) O2—P1—O3 111.0 (2)
O3iv—Mn1—O3i 180.000 (1) O1—P1—O3 108.4 (2)
O3iv—Mn1—O6ii 94.68 (14) O2—P1—O4 109.9 (2)
O3i—Mn1—O6ii 85.32 (14) O1—P1—O4 109.4 (2)
O3iv—Mn1—O6v 85.32 (14) O3—P1—O4 105.9 (2)
O3i—Mn1—O6v 94.68 (14) O5—P2—O7 113.5 (2)
O6ii—Mn1—O6v 180.00 (19) O5—P2—O6 113.7 (2)
O3iv—Mn1—O1 89.35 (13) O7—P2—O6 107.6 (2)
O3i—Mn1—O1 90.65 (13) O5—P2—O8 102.2 (2)
O6ii—Mn1—O1 98.16 (13) O7—P2—O8 109.8 (2)
O6v—Mn1—O1 81.84 (13) O6—P2—O8 109.9 (2)
O3iv—Mn1—O1vi 90.65 (13)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) −x, y−1/2, −z+1/2; (v) x−1, y, z; (vi) −x, −y+1, −z+1; (vii) x, −y+1/2, z+1/2; (viii) x, −y+1/2, z−1/2; (ix) −x, y+1/2, −z+1/2; (x) x, −y+3/2, z−1/2; (xi) −x+1, y+1/2, −z+3/2; (xii) x+1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O8—H8···O4 0.86 1.60 2.437 (5) 164
O8—H8···O1 0.86 2.76 3.393 (5) 132

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2043).

References

  1. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. [DOI] [PMC free article] [PubMed]
  2. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011c). Acta Cryst. E67, i41. [DOI] [PMC free article] [PubMed]
  3. Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010). Acta Cryst. E66, i86–i87. [DOI] [PMC free article] [PubMed]
  4. Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011a). Acta Cryst. E67, i5. [DOI] [PMC free article] [PubMed]
  5. Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2012). Acta Cryst. E68, i30. [DOI] [PMC free article] [PubMed]
  6. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  8. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Clearfield, A. (1988). Chem. Rev. 88, 125–148.
  10. Effenberger, H. (1999). J. Solid State Chem. 142, 6–13.
  11. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  12. Gao, D. & Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365–373.
  13. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
  17. Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812033259/hp2043sup1.cif

e-68-00i66-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033259/hp2043Isup2.hkl

e-68-00i66-Isup2.hkl (59.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES