Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 28;68(Pt 8):i67. doi: 10.1107/S1600536812033132

Boron carbide, B13-xC2-y (x = 0.12, y = 0.01)

Oksana Sologub a, Yuichi Michiue a, Takao Mori a,*
PMCID: PMC3414096  PMID: 22904703

Abstract

Boron carbide phases exist over a widely varying compos­itional range B12+xC3-x (0.06 < x < 1.7). One idealized structure corresponds to the B13C2 composition (space group R-3m) and contains one icosa­hedral B12 unit and one linear C—B—C chain. The B12 units are composed of crystallographically distinct B atoms BP (polar, B1) and BEq (equatorial, B2). Boron icosa­hedra are inter­connected by C atoms via their BEq atoms, forming layers parallel to (001), while the B12 units of the adjacent layers are linked through inter­icosa­hedral BP—BP bonds. The unique B atom (BC) connects the two C atoms of adjacent layers, forming a C—B—C chain along [001]. Depending on the carbon concentration, the carbon and BP sites exhibit mixed B/C occupancies to varying degrees; besides, the BC site shows partial occupancy. The decrease in carbon content was reported to be realized via an increasing number of chainless unit cells. On the basis of X-ray single-crystal refinement, we have concluded that the unit cell of the given boron-rich crystal contains following structural units: [B12] and [B11C] icosa­hedra (about 96 and 4%, respectively) and C—B—C chains (87%). Besides, there is a fraction of unit cells (13%) with the B atom located against the triangular face of a neighboring icosa­hedron formed by BEq (B2) thus rendering the formula B0.87(B0.98C0.02)12(B0.13C0.87)2 for the current boron carbide crystal.

Related literature  

For X-ray/neutron diffraction studies on boron carbide, see: Yakel (1975); Will et al. (1979); Larson (1986); Kwei & Morosin (1996). For the boron carbide homogeneity field, see: Bouchacourt & Thevenot (1985); Gosset & Colin (1991). For electronic structure and bonding properties, see: Domnich et al. (2011); Balakrishnarajan et al. (2007). For electronic properties and charge transport, see: Werheit (2009).

Experimental  

Crystal data  

  • C1.99B12.88

  • M r = 163.14

  • Trigonal, Inline graphic

  • a = 5.6530 (8) Å

  • c = 12.156 (4) Å

  • V = 336.42 (17) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.21 mm

Data collection  

  • Rigaku AFC 7R diffractometer

  • 1489 measured reflections

  • 284 independent reflections

  • 184 reflections with I > 2σ(I)

  • R int = 0.151

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.109

  • S = 1.03

  • 284 reflections

  • 22 parameters

  • 1 restraint

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1998); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033132/ru2039sup1.cif

e-68-00i67-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033132/ru2039Isup2.hkl

e-68-00i67-Isup2.hkl (15.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by grants from the Thermal and Electric Energy Technology Foundation and AOARD.

supplementary crystallographic information

Comment

The positioning the C1 and B11 atoms on two adjacent 6c (0, 0, z) sites is in good agreement with observations reported from powder neutron diffraction studies of boron-rich boron carbides by Kwei and Morosin (1996). No atom in the 36i site claimed by Yakel (1975) has been found.

Experimental

Boron carbide single-crystal has been obtained as a co-product of the yttrium boron carbide phase synthesized via solid state reaction of yttrium tetraboride, amorphous boron and carbon. The reaction process was performed from compacted powders in the BN crucible inserted into a graphite susceptor using the RF furnace under a flow of Ar at a temperature of about 1973 K and holding time 8 h; afterwards the setup was cooled down in 1 h to room temperature. The sample contained crystals of the title compound, in the presence of YB28.5C4 and binary yttrium borides, as revealed by powder X-ray diffraction analysis.

Refinement

The crystal structure refinement was performed starting from the atomic coordinates reported for α-rh B. The chain atoms were located from the difference Fourier synthesis. The refinement on boron icosahedral polar site-occupancy factors led to reliability factors R1=0.0517 and wR2=0.1519 revealing the remaining electron density of 1.42 e Å-3 in 6c Wyckoff position (0, 0, z; z=0.07) at close distance from chain atom C1. Further refinement on occupancy parameters of the B3 (BC) chain atom and refining the C1/B11 in split 6c atom site reduced the highest Fourier difference peak to 0.55 e Å-3 at (0, 0, 0.1663) located 0.6 Å away from C1 and decreased the reliability factors to R1=0.0455 and wR2=0.1087. The ADPs of B1 and B2 have comparable values, while the thermal ellipsoids of C1/B11 chain atoms slightly extend parallel to the chain direction. The B3 in the center of a chain shows rather large ADP values. Data collection and cell refinement:

Figures

Fig. 1.

Fig. 1.

The idealized structure of boron carbide and the distances for B and C atoms of the C—B—C and B—B chains as obtained from structure refinement. Thermal ellipsoids depict the 80% probability level.

Fig. 2.

Fig. 2.

Observed Fourier maps projected onto xy plane at z=0; -1.5 e Å-3 < Δρ < 28.4 e Å-3.

Crystal data

C1.99B12.88 Dx = 2.416 Mg m3
Mr = 163.14 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3m Cell parameters from 20 reflections
Hall symbol: -R 3 2" θ = 8–50°
a = 5.6530 (8) Å µ = 0.10 mm1
c = 12.156 (4) Å T = 293 K
V = 336.42 (17) Å3 Prism, black
Z = 3 0.45 × 0.3 × 0.21 mm
F(000) = 229

Data collection

Rigaku AFC 7R diffractometer θmax = 39.8°, θmin = 4.5°
ω–2θ scans h = −10→8
1489 measured reflections k = 0→10
284 independent reflections l = −21→21
184 reflections with I > 2σ(I) 3 standard reflections every 150 reflections
Rint = 0.151 intensity decay: none

Refinement

Refinement on F2 22 parameters
Least-squares matrix: full 1 restraint
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.3407P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max = 0.002
S = 1.03 Δρmax = 0.55 e Å3
284 reflections Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
B1 0.44092 (16) 0.55908 (16) 0.05298 (12) 0.0053 (3) 0.958 (4)
C11 0.44092 (16) 0.55908 (16) 0.05298 (12) 0.0053 (3) 0.042 (4)
B2 0.50336 (16) 0.49664 (16) 0.19232 (11) 0.0054 (3)
B3 0 0 0 0.0118 (8) 0.87
C1 0 0 0.1177 (5) 0.0071 (8) 0.87 (2)
B11 0 0 0.079 (4) 0.0071 (8) 0.13 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
B1 0.0056 (4) 0.0056 (4) 0.0047 (5) 0.0028 (5) −0.0001 (2) 0.0001 (2)
C11 0.0056 (4) 0.0056 (4) 0.0047 (5) 0.0028 (5) −0.0001 (2) 0.0001 (2)
B2 0.0046 (4) 0.0046 (4) 0.0059 (5) 0.0015 (4) −0.0003 (2) 0.0003 (2)
B3 0.0099 (11) 0.0099 (11) 0.016 (2) 0.0049 (6) 0 0
C1 0.0041 (6) 0.0041 (6) 0.013 (2) 0.0021 (3) 0 0
B11 0.0041 (6) 0.0041 (6) 0.013 (2) 0.0021 (3) 0 0

Geometric parameters (Å, º)

B1—C11i 1.731 (3) B2—B1ii 1.8091 (15)
B1—B1i 1.731 (3) B2—C11iii 1.8091 (15)
B1—B2 1.801 (2) B2—B1iii 1.8091 (15)
B1—B2ii 1.8091 (15) B3—B11 0.96 (5)
B1—B2iii 1.8091 (15) B3—B11vii 0.96 (5)
B1—B1iv 1.825 (3) B3—C1vii 1.430 (6)
B1—C11iv 1.825 (3) B3—C1 1.430 (6)
B1—C11v 1.825 (3) C1—B2vi 1.6239 (19)
B1—B1v 1.825 (3) C1—B2iii 1.6239 (19)
B2—C1vi 1.6239 (19) C1—B2viii 1.6239 (19)
B2—B11vi 1.77 (2) B11—B2vi 1.77 (2)
B2—B2iii 1.7778 (17) B11—B2iii 1.77 (2)
B2—B2ii 1.7778 (17) B11—B2viii 1.77 (2)
B2—C11ii 1.8091 (15) B11—B11vii 1.92 (9)
C11i—B1—B1i 0.00 (8) B11vi—B2—C11ii 108.5 (11)
C11i—B1—B2 118.22 (14) B2iii—B2—C11ii 108.78 (7)
B1i—B1—B2 118.22 (14) B2ii—B2—C11ii 60.26 (7)
C11i—B1—B2ii 121.45 (8) B1—B2—C11ii 110.05 (9)
B1i—B1—B2ii 121.45 (8) C1vi—B2—B1ii 121.07 (19)
B2—B1—B2ii 59.01 (5) B11vi—B2—B1ii 108.5 (11)
C11i—B1—B2iii 121.45 (8) B2iii—B2—B1ii 108.78 (7)
B1i—B1—B2iii 121.45 (8) B2ii—B2—B1ii 60.26 (7)
B2—B1—B2iii 59.01 (5) B1—B2—B1ii 110.05 (9)
B2ii—B1—B2iii 105.68 (11) C11ii—B2—B1ii 0.00 (11)
C11i—B1—B1iv 125.36 (8) C1vi—B2—C11iii 121.07 (19)
B1i—B1—B1iv 125.36 (8) B11vi—B2—C11iii 108.5 (11)
B2—B1—B1iv 107.10 (6) B2iii—B2—C11iii 60.26 (7)
B2ii—B1—B1iv 107.02 (6) B2ii—B2—C11iii 108.78 (7)
B2iii—B1—B1iv 59.72 (5) B1—B2—C11iii 110.05 (9)
C11i—B1—C11iv 125.36 (8) C11ii—B2—C11iii 60.56 (11)
B1i—B1—C11iv 125.36 (8) B1ii—B2—C11iii 60.56 (11)
B2—B1—C11iv 107.10 (6) C1vi—B2—B1iii 121.07 (19)
B2ii—B1—C11iv 107.02 (6) B11vi—B2—B1iii 108.5 (11)
B2iii—B1—C11iv 59.72 (5) B2iii—B2—B1iii 60.26 (7)
B1iv—B1—C11iv 0.00 (9) B2ii—B2—B1iii 108.78 (7)
C11i—B1—C11v 125.36 (8) B1—B2—B1iii 110.05 (9)
B1i—B1—C11v 125.36 (8) C11ii—B2—B1iii 60.56 (11)
B2—B1—C11v 107.10 (6) B1ii—B2—B1iii 60.56 (11)
B2ii—B1—C11v 59.72 (5) C11iii—B2—B1iii 0.00 (4)
B2iii—B1—C11v 107.02 (6) B11—B3—B11vii 180.0000 (10)
B1iv—B1—C11v 60 B11—B3—C1vii 180.0000 (10)
C11iv—B1—C11v 60 B11vii—B3—C1vii 0.0000 (10)
C11i—B1—B1v 125.36 (8) B11—B3—C1 0.0000 (10)
B1i—B1—B1v 125.36 (8) B11vii—B3—C1 180.0000 (10)
B2—B1—B1v 107.10 (6) C1vii—B3—C1 180
B2ii—B1—B1v 59.72 (5) B3—C1—B2vi 100.1 (2)
B2iii—B1—B1v 107.02 (6) B3—C1—B2iii 100.1 (2)
B1iv—B1—B1v 60 B2vi—C1—B2iii 117.01 (13)
C11iv—B1—B1v 60 B3—C1—B2viii 100.1 (2)
C11v—B1—B1v 0.00 (10) B2vi—C1—B2viii 117.01 (13)
C1vi—B2—B11vi 15.1 (12) B2iii—C1—B2viii 117.01 (13)
C1vi—B2—B2iii 121.49 (7) B3—B11—B2vi 115.2 (13)
B11vi—B2—B2iii 125.0 (2) B3—B11—B2iii 115.2 (13)
C1vi—B2—B2ii 121.49 (7) B2vi—B11—B2iii 103.2 (16)
B11vi—B2—B2ii 125.0 (2) B3—B11—B2viii 115.2 (13)
B2iii—B2—B2ii 108.39 (8) B2vi—B11—B2viii 103.2 (16)
C1vi—B2—B1 119.9 (2) B2iii—B11—B2viii 103.2 (16)
B11vi—B2—B1 135.0 (14) B3—B11—B11vii 0.0000 (10)
B2iii—B2—B1 60.73 (7) B2vi—B11—B11vii 115.2 (13)
B2ii—B2—B1 60.73 (7) B2iii—B11—B11vii 115.2 (13)
C1vi—B2—C11ii 121.07 (19) B2viii—B11—B11vii 115.2 (13)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) xy+2/3, x+1/3, −z+1/3; (iii) y−1/3, −x+y+1/3, −z+1/3; (iv) −x+y, −x+1, z; (v) −y+1, xy+1, z; (vi) −x+2/3, −y+1/3, −z+1/3; (vii) −x, −y, −z; (viii) xy−1/3, x−2/3, −z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2039).

References

  1. Balakrishnarajan, M. M., Pancharatna, P. D. & Hoffmann, R. (2007). New J. Chem. 31, 473–485.
  2. Bouchacourt, M. & Thevenot, F. (1985). J. Mater. Sci. 20, 1237–1247.
  3. Domnich, V., Reynaud, S., Haber, R. A. & Chhowalla, M. (2011). J. Am. Ceram. Soc. 94, 3605–3628.
  4. Dowty, E. (1999). ATOMS Shape Software, Kingsport, Tennessee, USA.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Gosset, D. & Colin, M. (1991). J. Nucl. Mater. 183, 161–173.
  7. Kwei, G. H. & Morosin, B. (1996). J. Phys. Chem. 100, 8031–8039.
  8. Larson, A. C. (1986). AIP Conf. Proc. 140, 109–113.
  9. Molecular Structure Corporation (1998). TEXSAN MSC, The Woodlands, Texas, USA.
  10. Rigaku (1998). Rigaku/AFC Diffractometer Control Software Rigaku Corporation, Akishima, Tokyo, Japan.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Werheit, H. (2009). J. Phys. Conf. Ser. 176, 012019.
  13. Will, G., Kirfel, A., Gupta, A. & Amberger, E. (1979). J. Less Common Met. 67, 19–29.
  14. Yakel, H. L. (1975). Acta Cryst. B31, 1797–1806.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033132/ru2039sup1.cif

e-68-00i67-sup1.cif (13.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033132/ru2039Isup2.hkl

e-68-00i67-Isup2.hkl (15.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES