Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 4;68(Pt 8):m1024. doi: 10.1107/S1600536812029546

Poly[tetra­aqua­bis­(μ4-thio­phene-2,5-dicarboxyl­ato)(μ2-thio­phene-2,5-dicarboxyl­ato)dieuropium(III)]

Xi-Gang Du a,*, Jun Zhang a, Jia-Jia Li b
PMCID: PMC3414099  PMID: 22904706

Abstract

The three-dimensional coordination polymer, [Eu2(C6H2O4S)3(H2O)4]n, has been synthesized under hydro­thermal conditions. The asymmetric unit comprises one Eu3+ cation, two aqua ligands and one and a half thiophene-2,5-dicarboxylate anions (the half-anion being completed by a twofold rotation axis). The Eu3+ cation is eight-coordinated in a distorted dodeca­hedral geometry. The crystal structure features O—H⋯O hydrogen bonds.

Related literature  

For the structures and potential applications of metal hybrid compounds, see: Bo et al. (2008). For a number of lanthanide coordination polymers based on pyridine­dicarb­oxy­lic acid, see: Xu et al. (2011). For metal-organic framework structures formed by 4f metals and thiophene-2,5-dicarboxylate anions, see: Huang et al. (2009). graphic file with name e-68-m1024-scheme1.jpg

Experimental  

Crystal data  

  • [Eu2(C6H2O4S)3(H2O)4]

  • M r = 886.44

  • Monoclinic, Inline graphic

  • a = 25.366 (8) Å

  • b = 5.8326 (14) Å

  • c = 19.008 (6) Å

  • β = 124.136 (4)°

  • V = 2327.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.69 mm−1

  • T = 295 K

  • 0.22 × 0.12 × 0.11 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.445, T max = 0.535

  • 8572 measured reflections

  • 2634 independent reflections

  • 2290 reflections with I > 2σ(I)

  • R int = 0.061

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.090

  • S = 1.00

  • 2634 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.97 e Å−3

  • Δρmin = −1.74 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029546/rk2364sup1.cif

e-68-m1024-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029546/rk2364Isup2.hkl

e-68-m1024-Isup2.hkl (129.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4i 0.85 2.11 2.915 (6) 158
O7—H7A⋯O3ii 0.85 2.53 3.073 (5) 123
O7—H7B⋯O5ii 0.85 2.03 2.833 (5) 158
O8—H8B⋯O6iii 0.85 2.10 2.846 (5) 147
O8—H8A⋯O5iv 0.85 2.46 2.919 (5) 115

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported financially by the Doctoral Fund Project of Shandong Province (BS2009SF019) and the National Natural Science Foundation of China (grants Nos. 21076063 and 20963007).

supplementary crystallographic information

Comment

The design and synthesis of metal-hybrid compounds have attracted considerable interest due to their intriguing topological structures and potential applications as functional materials in luminescence, magnetism, host-guest chemistry, catalysis and gas adsorption and separation (Bo et al., 2008). In recent years, a number of lanthanide coordination polymers based on pyridinedicarboxylic acid have been synthesized under hydrothermal conditions (Xu et al., 2011). By contrast with these lanthanide complexes containing only rigid pyridinedicarboxylic ligands, the high-dimensional coordination complexes of 4f metal-organic frameworks formed by H2tdc (thiophene-2,5-dicarboxylic acid) are still scarce (Huang et al., 2009). Herein, we report a new structure derived from thiophene-2,5-dicarboxylic acid (Scheme 1), namely [Eu2(tdc)3(H2O)4]n.

A view of the coordination environment of the Eu3+ with atom labeling is illustrated in Fig. 1. The Hydrogen-bond are listed in Table 1. The Eu—O bond lengths range from 2.336 (2)Å to 2.493 (1)Å, and the bond angles of O—Eu—O are in the range of 51.87 (11)° to 156.27 (13)°. In structure, tdc ligand adopt two different coordination modes, constructing an ordered three-dimensional lanthanide framework (Fig. 2).

Experimental

All chemicals and solvents except Eu(NO3)3 were purchased and used as received without further purification. Eu(NO3)3 was prepared by dissolving Eu2O3 with concentrated HNO3 and then evaporating at 373 K until crystal film formed. A mixture of Eu(NO3)3 (0.3 mmol), KSCN (0.15 mmol), H2tdc (0.3 mmol) and deionized water (8.0 ml) in a 23 ml teflon-lined autoclave and kept under autogenous pressure at 443 K for 5 days and then cooling to room temperature at a rate of 5 K h-1. Colourless crystals were isolated by filtration.

Refinement

All hydrogen atoms were positioned geometrically and treated as riding, with C–H = 0.93Å (CH) and Uiso(H) = 1.2Ueq(C), with C–H = 0.97Å (CH2) and Uiso(H) = 1.2Ueq(C), and with C–H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C)

Figures

Fig. 1.

Fig. 1.

The coordination environment of the Eu3+ with the atom numbering scheme. Displacement ellipsoids are presented at 30% probability level. Symmetry codes: (i) x, 1-y, 1/2+z; (ii) x, -y, 1/2+z; (iii) 3/2-x, 1/2+y, 3/2-z; (iv) 2-x, y, 1/2-z;

Fig. 2.

Fig. 2.

Three-dimensional architecture in the crystal structure of title compound. All the hydrogen atoms are omitted for clarity.

Crystal data

[Eu2(C6H2O4S)3(H2O)4] F(000) = 1696
Mr = 886.44 Dx = 2.530 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 8572 reflections
a = 25.366 (8) Å θ = 2.6–27.5°
b = 5.8326 (14) Å µ = 5.69 mm1
c = 19.008 (6) Å T = 295 K
β = 124.136 (4)° Block, colourless
V = 2327.7 (12) Å3 0.22 × 0.12 × 0.11 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 2634 independent reflections
Radiation source: fine-focus sealed tube 2290 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.061
φ and ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −32→32
Tmin = 0.445, Tmax = 0.535 k = −7→7
8572 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0272P)2] where P = (Fo2 + 2Fc2)/3
2634 reflections (Δ/σ)max = 0.026
180 parameters Δρmax = 1.97 e Å3
0 restraints Δρmin = −1.74 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Eu1 0.866707 (10) 0.33845 (4) 0.887181 (14) 0.01268 (11)
S1 0.80798 (6) 0.0059 (2) 0.56308 (7) 0.0174 (3)
S2 1.0000 0.3059 (3) 0.7500 0.0186 (4)
O1 0.89384 (19) 0.3300 (5) 0.4736 (2) 0.0174 (8)
O2 0.84987 (18) −0.0175 (6) 0.4448 (2) 0.0222 (8)
O3 0.73304 (15) −0.0491 (6) 0.6396 (2) 0.0183 (7)
O4 0.79280 (18) 0.1905 (6) 0.7483 (2) 0.0197 (8)
O5 0.92823 (17) 0.0273 (6) 0.8657 (2) 0.0188 (7)
O6 0.94444 (17) 0.3894 (6) 0.8480 (2) 0.0186 (7)
O7 0.83645 (19) 0.6714 (5) 0.7928 (2) 0.0175 (8)
H7A 0.7974 0.7025 0.7705 0.026*
H7B 0.8592 0.7858 0.8214 0.026*
O8 0.96903 (18) 0.2934 (7) 1.0254 (2) 0.0254 (9)
H8B 0.9831 0.4248 1.0475 0.038*
H8A 0.9956 0.2279 1.0181 0.038*
C1 0.8071 (2) 0.1795 (8) 0.6351 (3) 0.0144 (10)
C2 0.8346 (2) 0.3894 (9) 0.6426 (3) 0.0185 (10)
H2 0.8382 0.5055 0.6786 0.022*
C3 0.8565 (2) 0.4072 (9) 0.5900 (3) 0.0171 (10)
H3 0.8758 0.5383 0.5866 0.021*
C4 0.8467 (2) 0.2123 (9) 0.5438 (3) 0.0154 (10)
C5 0.8649 (2) 0.1712 (7) 0.4835 (3) 0.0135 (10)
C6 0.7759 (2) 0.1015 (8) 0.6773 (3) 0.0139 (9)
C7 0.9866 (3) −0.1143 (10) 0.7733 (4) 0.0283 (13)
C8 0.9766 (2) 0.1034 (9) 0.7912 (3) 0.0172 (10)
C9 0.9486 (2) 0.1754 (8) 0.8384 (3) 0.0153 (11)
H7 0.976 (3) −0.227 (10) 0.794 (3) 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.01266 (17) 0.01346 (19) 0.01289 (17) 0.00158 (7) 0.00776 (14) 0.00075 (7)
S1 0.0208 (6) 0.0165 (6) 0.0195 (6) −0.0051 (5) 0.0142 (5) −0.0040 (5)
S2 0.0227 (9) 0.0160 (8) 0.0265 (9) 0.000 0.0195 (8) 0.000
O1 0.020 (2) 0.020 (2) 0.0183 (19) −0.0001 (13) 0.0144 (18) 0.0045 (13)
O2 0.0246 (19) 0.0203 (19) 0.0277 (18) −0.0023 (15) 0.0183 (17) −0.0077 (15)
O3 0.0154 (16) 0.0226 (18) 0.0193 (16) −0.0090 (14) 0.0112 (15) −0.0068 (15)
O4 0.023 (2) 0.026 (2) 0.0136 (17) −0.0048 (14) 0.0122 (17) −0.0045 (14)
O5 0.0225 (18) 0.0167 (18) 0.0263 (18) 0.0018 (14) 0.0193 (16) 0.0025 (15)
O6 0.0195 (18) 0.0171 (18) 0.0240 (18) 0.0007 (14) 0.0150 (16) −0.0003 (15)
O7 0.019 (2) 0.016 (2) 0.0163 (18) 0.0006 (12) 0.0093 (17) 0.0015 (12)
O8 0.0196 (19) 0.0235 (18) 0.0209 (19) 0.0019 (15) 0.0039 (17) −0.0051 (16)
C1 0.012 (2) 0.018 (3) 0.014 (2) −0.0042 (17) 0.007 (2) −0.0008 (17)
C2 0.020 (3) 0.019 (2) 0.018 (2) −0.002 (2) 0.011 (2) −0.003 (2)
C3 0.022 (3) 0.013 (2) 0.020 (2) −0.0036 (19) 0.013 (2) 0.000 (2)
C4 0.012 (2) 0.020 (2) 0.016 (2) −0.0009 (19) 0.009 (2) −0.001 (2)
C5 0.010 (2) 0.015 (3) 0.014 (2) 0.0018 (16) 0.006 (2) 0.0016 (17)
C6 0.012 (2) 0.016 (2) 0.013 (2) 0.0052 (19) 0.0073 (19) 0.0038 (19)
C7 0.050 (4) 0.016 (2) 0.044 (3) −0.008 (3) 0.042 (3) −0.002 (3)
C8 0.018 (2) 0.020 (2) 0.022 (2) 0.001 (2) 0.016 (2) 0.000 (2)
C9 0.010 (2) 0.020 (3) 0.015 (2) −0.0005 (17) 0.006 (2) −0.0012 (18)

Geometric parameters (Å, º)

Eu1—O2i 2.326 (3) O4—C6 1.275 (6)
Eu1—O1ii 2.375 (3) O5—C9 1.259 (6)
Eu1—O3iii 2.376 (3) O6—C9 1.274 (5)
Eu1—O4 2.382 (4) O7—H7A 0.8500
Eu1—O7 2.456 (3) O7—H7B 0.8500
Eu1—O8 2.461 (4) O8—H8B 0.8500
Eu1—O6 2.486 (4) O8—H8A 0.8501
Eu1—O5 2.572 (3) C1—C2 1.376 (7)
S1—C1 1.713 (5) C1—C6 1.480 (7)
S1—C4 1.718 (5) C2—C3 1.392 (7)
S2—C8iv 1.697 (5) C2—H2 0.9300
S2—C8 1.697 (5) C3—C4 1.372 (7)
O1—C5 1.260 (6) C3—H3 0.9300
O1—Eu1v 2.375 (3) C4—C5 1.476 (7)
O2—C5 1.258 (5) C7—C8 1.373 (8)
O2—Eu1vi 2.326 (3) C7—C7iv 1.389 (11)
O3—C6 1.262 (6) C7—H7 0.87 (6)
O3—Eu1vii 2.376 (3) C8—C9 1.484 (7)
O2i—Eu1—O1ii 112.82 (13) C9—O6—Eu1 94.0 (3)
O2i—Eu1—O3iii 82.43 (12) Eu1—O7—H7A 109.4
O1ii—Eu1—O3iii 77.54 (13) Eu1—O7—H7B 109.4
O2i—Eu1—O4 89.55 (13) H7A—O7—H7B 109.5
O1ii—Eu1—O4 143.48 (13) Eu1—O8—H8B 109.3
O3iii—Eu1—O4 77.34 (13) Eu1—O8—H8A 109.3
O2i—Eu1—O7 156.27 (13) H8B—O8—H8A 109.5
O1ii—Eu1—O7 73.27 (14) C2—C1—C6 127.7 (5)
O3iii—Eu1—O7 76.49 (12) C2—C1—S1 112.1 (4)
O4—Eu1—O7 75.39 (12) C6—C1—S1 120.2 (3)
O2i—Eu1—O8 76.92 (13) C1—C2—C3 112.0 (5)
O1ii—Eu1—O8 68.02 (13) C1—C2—H2 124.0
O3iii—Eu1—O8 128.08 (13) C3—C2—H2 124.0
O4—Eu1—O8 147.93 (13) C4—C3—C2 113.4 (5)
O7—Eu1—O8 125.05 (13) C4—C3—H3 123.3
O2i—Eu1—O6 128.58 (12) C2—C3—H3 123.3
O1ii—Eu1—O6 98.00 (13) C3—C4—C5 127.6 (5)
O3iii—Eu1—O6 146.20 (12) C3—C4—S1 111.3 (4)
O4—Eu1—O6 88.55 (12) C5—C4—S1 121.1 (4)
O7—Eu1—O6 70.23 (13) O2—C5—O1 124.5 (5)
O8—Eu1—O6 78.11 (13) O2—C5—C4 118.1 (4)
O2i—Eu1—O5 78.18 (12) O1—C5—C4 117.3 (4)
O1ii—Eu1—O5 135.91 (12) O3—C6—O4 123.7 (5)
O3iii—Eu1—O5 145.99 (12) O3—C6—C1 117.3 (4)
O4—Eu1—O5 74.85 (12) O4—C6—C1 119.0 (4)
O7—Eu1—O5 114.24 (12) C8—C7—C7iv 112.4 (3)
O8—Eu1—O5 73.97 (12) C8—C7—H7 116 (4)
O6—Eu1—O5 51.87 (11) C7iv—C7—H7 131 (4)
C1—S1—C4 91.2 (2) C7—C8—C9 128.9 (5)
C8iv—S2—C8 91.8 (4) C7—C8—S2 111.7 (4)
C5—O1—Eu1v 137.3 (3) C9—C8—S2 119.4 (4)
C5—O2—Eu1vi 154.6 (3) O5—C9—O6 121.7 (5)
C6—O3—Eu1vii 142.1 (3) O5—C9—C8 120.1 (4)
C6—O4—Eu1 155.3 (3) O6—C9—C8 118.1 (4)
C9—O5—Eu1 90.4 (3)
O2i—Eu1—O4—C6 −109.1 (8) C1—S1—C4—C5 179.0 (4)
O1ii—Eu1—O4—C6 121.1 (8) Eu1vi—O2—C5—O1 40.7 (11)
O3iii—Eu1—O4—C6 168.6 (8) Eu1vi—O2—C5—C4 −140.3 (6)
O7—Eu1—O4—C6 89.5 (8) Eu1v—O1—C5—O2 91.7 (6)
O8—Eu1—O4—C6 −45.1 (9) Eu1v—O1—C5—C4 −87.3 (6)
O6—Eu1—O4—C6 19.5 (8) C3—C4—C5—O2 −177.7 (5)
O5—Eu1—O4—C6 −31.2 (8) S1—C4—C5—O2 1.7 (7)
O2i—Eu1—O5—C9 −174.6 (3) C3—C4—C5—O1 1.4 (8)
O1ii—Eu1—O5—C9 −63.9 (3) S1—C4—C5—O1 −179.2 (4)
O3iii—Eu1—O5—C9 128.8 (3) Eu1vii—O3—C6—O4 36.1 (8)
O4—Eu1—O5—C9 92.6 (3) Eu1vii—O3—C6—C1 −142.9 (4)
O7—Eu1—O5—C9 26.7 (3) Eu1—O4—C6—O3 140.6 (6)
O8—Eu1—O5—C9 −95.0 (3) Eu1—O4—C6—C1 −40.4 (10)
O6—Eu1—O5—C9 −7.7 (3) C2—C1—C6—O3 152.4 (5)
O2i—Eu1—O6—C9 24.1 (3) S1—C1—C6—O3 −24.0 (6)
O1ii—Eu1—O6—C9 151.9 (3) C2—C1—C6—O4 −26.7 (8)
O3iii—Eu1—O6—C9 −128.6 (3) S1—C1—C6—O4 156.9 (4)
O4—Eu1—O6—C9 −64.1 (3) C7iv—C7—C8—C9 179.4 (7)
O7—Eu1—O6—C9 −139.1 (3) C7iv—C7—C8—S2 0.3 (9)
O8—Eu1—O6—C9 86.5 (3) C8iv—S2—C8—C7 −0.1 (3)
O5—Eu1—O6—C9 7.7 (3) C8iv—S2—C8—C9 −179.3 (5)
C4—S1—C1—C2 1.0 (4) Eu1—O5—C9—O6 14.0 (5)
C4—S1—C1—C6 177.9 (4) Eu1—O5—C9—C8 −164.0 (4)
C6—C1—C2—C3 −176.9 (5) Eu1—O6—C9—O5 −14.6 (5)
S1—C1—C2—C3 −0.2 (6) Eu1—O6—C9—C8 163.5 (4)
C1—C2—C3—C4 −1.0 (7) C7—C8—C9—O5 −2.5 (8)
C2—C3—C4—C5 −178.9 (5) S2—C8—C9—O5 176.5 (4)
C2—C3—C4—S1 1.7 (6) C7—C8—C9—O6 179.4 (6)
C1—S1—C4—C3 −1.5 (4) S2—C8—C9—O6 −1.6 (6)

Symmetry codes: (i) x, −y, z+1/2; (ii) x, −y+1, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+2, y, −z+3/2; (v) x, −y+1, z−1/2; (vi) x, −y, z−1/2; (vii) −x+3/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O4iii 0.85 2.11 2.915 (6) 158
O7—H7A···O3viii 0.85 2.53 3.073 (5) 123
O7—H7B···O5viii 0.85 2.03 2.833 (5) 158
O8—H8B···O6ix 0.85 2.10 2.846 (5) 147
O8—H8A···O5x 0.85 2.46 2.919 (5) 115

Symmetry codes: (iii) −x+3/2, y+1/2, −z+3/2; (viii) x, y+1, z; (ix) −x+2, −y+1, −z+2; (x) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2364).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bo, Q. B., Sun, Z. X. & Forsling, W. (2008). CrystEngComm, 10, 232–238.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Huang, W., Wu, D. Y., Zhou, P., Yan, W. B., Guo, D., Duan, C. Y. & Meng, Q. J. (2009). Cryst. Growth Des. 9, 1361-1369.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Xu, J., Su, W. P. & Hong, M. C. (2011). Cryst. Growth Des. 11, 337–346.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029546/rk2364sup1.cif

e-68-m1024-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029546/rk2364Isup2.hkl

e-68-m1024-Isup2.hkl (129.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES