Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 4;68(Pt 8):m1027–m1028. doi: 10.1107/S1600536812029662

{μ-2-[(3-Amino-2,2-dimethyl­prop­yl)imino­meth­yl]-6-meth­oxy­phenolato-1:2κ5 O 1,O 6:N,N′,O 1}{2-[(3-amino-2,2-dimethyl­prop­yl)imino­meth­yl]-6-meth­oxy­phenolato-1κ3 N,N′,O 1}-μ-azido-1:2κ2 N:N-azido-2κN-methanol-2κO-dinickel(II)

Akbar Ghaemi a,, Saeed Rayati b, Kazem Fayyazi a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3414102  PMID: 22904709

Abstract

Two distinct coordination geometries are found in the binuclear title complex, [Ni2(C13H19N2O2)2(N3)2(CH3OH)], as one Schiff base ligand is penta­dentate, coordinating via the anti­cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth­oxy O atom. The NiII atoms are linked by a μ2-oxide atom and one end of a μ2-azide ligand, forming an Ni2ON core. The coordination geometry for the NiII atom coordinated by the tridentate ligand is completed by the meth­oxy O atom derived from the penta­dentate ligand, with the resulting N3O3 donor set defining a fac octa­hedron. The second NiII atom has its cis-octa­hedral N4O2 coordination geometry completed by the imine N and amine N atoms of the penta­dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra­molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra­molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

Related literature  

For background to azido derivatives of tridentate Schiff base NiII complexes, see: Ribas et al. (1999); Koner et al. (2009); Biswas et al. (2011). For a related structure, see: Ghaemi et al. (2012).graphic file with name e-68-m1027-scheme1.jpg

Experimental  

Crystal data  

  • [Ni2(C13H19N2O2)2(N3)2(CH4O)]

  • M r = 704.13

  • Monoclinic, Inline graphic

  • a = 8.0907 (2) Å

  • b = 18.5230 (4) Å

  • c = 21.1162 (4) Å

  • β = 96.674 (2)°

  • V = 3143.11 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 100 K

  • 0.24 × 0.18 × 0.18 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.753, T max = 0.806

  • 21789 measured reflections

  • 7266 independent reflections

  • 6115 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.076

  • S = 1.01

  • 7266 reflections

  • 417 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029662/lh5496sup1.cif

e-68-m1027-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029662/lh5496Isup2.hkl

e-68-m1027-Isup2.hkl (355.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O2 2.0155 (14)
Ni1—O3 2.2589 (13)
Ni1—O4 2.0201 (13)
Ni1—N1 2.0166 (16)
Ni1—N2 2.0621 (17)
Ni1—N5 2.0862 (16)
Ni2—O4 2.0451 (13)
Ni2—O5 2.1364 (14)
Ni2—N3 2.0478 (16)
Ni2—N5 2.1505 (16)
Ni2—N4 2.0797 (16)
Ni2—N8 2.0715 (17)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.83 (1) 1.80 (1) 2.604 (2) 161 (3)
N2—H22⋯N10i 0.88 (1) 2.32 (2) 3.121 (2) 153 (2)
N4—H42⋯N10i 0.87 (1) 2.19 (1) 3.040 (2) 165 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge practical support of this study by the Islamic Azad University, Saveh Branch, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

The design and magnetism of polynuclear complexes containing paramagnetic centres connected through pseudo-halide bridges have attracted significant recent interest owing to their importance in understanding the basics of magnetic interactions and magneto-structural correlations with relevance to condensed matter physics, materials chemistry and coordination chemistry. Amongst these materials investigated, and relevant to the present report describing the crystal structure determination of the title complex (I), are azido derivatives of tridentate Schiff base NiII structures (Ribas et al., 1999; Koner et al., 2009; Biswas et al., 2011). Recently, we described the structure of a centrosymmetric CuII complex which featured asymmetrically bridging azido ligands and a tridentate mode of coordination of the Schiff base ligand (Ghaemi et al., 2012). Herein, a related binuclear NiII complex (I) is described.

In the binuclear complex (I), Fig. 1, the NiII atoms are bridged by a µ2-oxido atom and one end of a µ2-azido ligand to generate a Ni2ON core. The coordination geometry for the Ni1 atom is completed by a methoxy-O atom derived from the same ligand that provides the µ2-oxido bridge and the oxido-O, imine-O and amine-N donor atoms derived from a tridentate uninegative Schiff base ligand. The coordination geometry about the Ni2 atom is completed by the imine-N and amine-N atoms of the original Schiff base ligand, indicating that this is pentadentate, a terminally coordinate azido-N and a methanol-O atom. The N3O3 donor set for the Ni1 atom defines a fac-octahedron, whereas the N4O2 donor set for the Ni2 atom defines a cis-octahedron. Table 1 collects the Ni—L bond lengths and shows that the µ2-oxido bridge is symmetric but some asymmetry is present in the µ2-azido bridge. The longest Ni—O bond lengths for each Ni atom involves methoxy-O (Ni1) and methanol-O (Ni2). As expected, the Ni—N(terminal azide) bond is shorter than the Ni—N bridging distances. The Ni—N(imine) bond lengths are the shorter of the Ni—N bond lengths for the two environments.

Hydrogen bonding occurs in the structure, Table 1. The methanol-H forms an intramolecular hydrogen bond to the oxido-O2 atom to close six-membered {···HONiONiO} and {···HONiNNiO} synthons, Fig. 2. Two of the amine-H atoms form hydrogen bonds to the terminal-N10 atom of the monodentate azido ligand to form eight-membered {···HNNiONiNH···N} and {···HNNiNNiNH···N} synthons, Fig. 2, and a linear supramolecular chain along the a axis, Fig. 3.

Experimental

To prepare this complex, a methanolic solution (40 ml) of 2,2'-dimethylpropylenediamine (1 mmol, 0.102 g) was first mixed with 2-hydroxy-3-methoxybenzaldehyde (2 mmol, 0.304 g) under stirring to prepare the desired Schiff-base in situ. Stirring was continued for 30 min. Then, Cu(NO3)2.3H2O (0.120 g, 0.5 mmol) and Ni(NO3)2.6H2O (0.145 g, 0.5 mmol) dissolved in methanol (20 ml) was added to the solution and the resulting mixture was stirred for about 10 min. Finally, an aqueous solution of NaN3 (2 ml, 8 mmol, 0.52 g) was added drop-wise to the resulting mixture with continuous stirring, and the solution was filtered. Dark-green crystals were formed within few days from the filtered solution. Analysis confirmed the formation of a di-nickel(II) complex rather than the anticipated hetero-metallic complex, as confirmed by X-ray crystallography. Anal. Calc. for C27H42N10Ni2O5: C, 46.06; H, 6.01; N, 19.89. Found: C, 45.93; H, 5.85; N, 19.76%. IR (KBr) [cm-1]: νas(N3) 2047, 2068 vs, ν(C═N) 1620 s, ν(C═C) 1540 s, ν(C—O) 1224 m, ν(O—H) 3340 b. Yield: 56%, M.pt: 544–548 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxyl-H and amine-H H-atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the hydrogen bonding in (I) showing the formation of seven- and eight-membered synthons. The O—H···O and N—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.

Fig. 3.

Fig. 3.

A view of the supramolecular chain in (I) propagated along the a axis. The O—H···O and N—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.

Crystal data

[Ni2(C13H19N2O2)2(N3)2(CH4O)] F(000) = 1480
Mr = 704.13 Dx = 1.488 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9647 reflections
a = 8.0907 (2) Å θ = 2.4–27.5°
b = 18.5230 (4) Å µ = 1.25 mm1
c = 21.1162 (4) Å T = 100 K
β = 96.674 (2)° Prism, green
V = 3143.11 (12) Å3 0.24 × 0.18 × 0.18 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 7266 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 6115 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −10→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −24→23
Tmin = 0.753, Tmax = 0.806 l = −20→27
21789 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0296P)2 + 2.1117P] where P = (Fo2 + 2Fc2)/3
7266 reflections (Δ/σ)max = 0.001
417 parameters Δρmax = 0.49 e Å3
5 restraints Δρmin = −0.44 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.76377 (3) 0.497301 (13) 0.206798 (11) 0.01246 (7)
Ni2 0.60168 (3) 0.568768 (13) 0.320859 (11) 0.01225 (7)
O1 0.30566 (18) 0.34321 (8) 0.21466 (7) 0.0224 (3)
O2 0.55396 (17) 0.43769 (7) 0.19832 (6) 0.0175 (3)
O3 0.88920 (17) 0.39094 (7) 0.23383 (6) 0.0169 (3)
O4 0.77159 (16) 0.49200 (7) 0.30265 (6) 0.0123 (3)
O5 0.40544 (18) 0.49563 (7) 0.28883 (7) 0.0174 (3)
H5 0.438 (3) 0.4697 (12) 0.2606 (9) 0.038 (8)*
N1 0.7467 (2) 0.50350 (8) 0.11091 (7) 0.0141 (3)
N2 0.9982 (2) 0.54253 (9) 0.21894 (8) 0.0158 (3)
H21 1.072 (2) 0.5079 (9) 0.2186 (11) 0.020 (6)*
H22 1.007 (3) 0.5592 (12) 0.2581 (6) 0.032 (7)*
N3 0.63088 (19) 0.53036 (9) 0.41241 (7) 0.0146 (3)
N4 0.7772 (2) 0.64761 (9) 0.34998 (8) 0.0146 (3)
H41 0.778 (3) 0.6781 (9) 0.3171 (7) 0.012 (5)*
H42 0.8797 (15) 0.6324 (13) 0.3523 (12) 0.034 (7)*
N5 0.6386 (2) 0.59256 (9) 0.22382 (7) 0.0152 (3)
N6 0.5399 (2) 0.61611 (9) 0.18170 (8) 0.0157 (3)
N7 0.4510 (2) 0.63934 (10) 0.14030 (9) 0.0279 (4)
N8 0.4217 (2) 0.64681 (9) 0.32858 (8) 0.0197 (4)
N9 0.2826 (2) 0.63245 (9) 0.33620 (8) 0.0170 (3)
N10 0.1456 (2) 0.62014 (11) 0.34411 (10) 0.0305 (5)
C1 0.3810 (3) 0.28869 (12) 0.25635 (11) 0.0339 (6)
H1A 0.3312 0.2894 0.2965 0.051*
H1B 0.5008 0.2979 0.2650 0.051*
H1C 0.3629 0.2413 0.2361 0.051*
C2 0.3687 (2) 0.34659 (11) 0.15632 (9) 0.0177 (4)
C3 0.3041 (3) 0.30317 (11) 0.10674 (10) 0.0196 (4)
H3 0.2214 0.2685 0.1134 0.024*
C4 0.3589 (3) 0.30964 (11) 0.04667 (10) 0.0213 (4)
H4 0.3148 0.2792 0.0126 0.026*
C5 0.4770 (3) 0.36038 (11) 0.03738 (9) 0.0188 (4)
H5A 0.5127 0.3655 −0.0037 0.023*
C6 0.5466 (2) 0.40518 (10) 0.08773 (9) 0.0152 (4)
C7 0.4949 (2) 0.39842 (10) 0.14951 (9) 0.0151 (4)
C8 0.6576 (2) 0.46182 (10) 0.07183 (9) 0.0158 (4)
H8 0.6657 0.4691 0.0278 0.019*
C9 0.8245 (2) 0.56541 (10) 0.08267 (9) 0.0154 (4)
H9A 0.7621 0.6095 0.0918 0.018*
H9B 0.8118 0.5590 0.0358 0.018*
C10 1.0093 (2) 0.57828 (10) 0.10513 (9) 0.0164 (4)
C11 1.0368 (2) 0.60104 (10) 0.17535 (9) 0.0163 (4)
H11A 1.1542 0.6159 0.1862 0.020*
H11B 0.9656 0.6433 0.1817 0.020*
C12 1.1134 (3) 0.51171 (11) 0.09389 (10) 0.0220 (4)
H12A 1.2305 0.5213 0.1089 0.033*
H12B 1.1021 0.5005 0.0482 0.033*
H12C 1.0743 0.4706 0.1173 0.033*
C13 1.0618 (3) 0.64185 (12) 0.06528 (10) 0.0232 (5)
H13A 1.1797 0.6526 0.0776 0.035*
H13B 0.9948 0.6844 0.0729 0.035*
H13C 1.0442 0.6292 0.0199 0.035*
C14 0.9007 (3) 0.33467 (11) 0.18754 (9) 0.0204 (4)
H14A 0.9590 0.2930 0.2082 0.031*
H14B 0.9625 0.3525 0.1534 0.031*
H14C 0.7886 0.3202 0.1694 0.031*
C15 0.8407 (2) 0.36947 (10) 0.29201 (9) 0.0151 (4)
C16 0.8521 (3) 0.29996 (11) 0.31517 (10) 0.0200 (4)
H16 0.8952 0.2626 0.2909 0.024*
C17 0.7998 (3) 0.28455 (11) 0.37473 (10) 0.0206 (4)
H17 0.8056 0.2365 0.3906 0.025*
C18 0.7403 (2) 0.33867 (11) 0.40992 (9) 0.0180 (4)
H18 0.7066 0.3278 0.4505 0.022*
C19 0.7280 (2) 0.41017 (10) 0.38728 (9) 0.0146 (4)
C20 0.7773 (2) 0.42644 (10) 0.32705 (9) 0.0129 (4)
C21 0.6803 (2) 0.46681 (10) 0.42907 (9) 0.0149 (4)
H21A 0.6865 0.4556 0.4732 0.018*
C22 0.6171 (3) 0.58335 (11) 0.46303 (9) 0.0181 (4)
H22A 0.6166 0.5579 0.5042 0.022*
H22B 0.5104 0.6096 0.4542 0.022*
C23 0.7622 (3) 0.63805 (11) 0.46827 (9) 0.0187 (4)
C24 0.7553 (2) 0.68694 (10) 0.40948 (9) 0.0169 (4)
H24A 0.6466 0.7121 0.4039 0.020*
H24B 0.8433 0.7241 0.4170 0.020*
C25 0.7405 (3) 0.68711 (12) 0.52552 (10) 0.0301 (5)
H25A 0.7442 0.6578 0.5643 0.045*
H25B 0.6330 0.7120 0.5182 0.045*
H25C 0.8303 0.7228 0.5306 0.045*
C26 0.9292 (3) 0.59914 (12) 0.47949 (10) 0.0244 (5)
H26A 0.9307 0.5678 0.5169 0.037*
H26B 1.0190 0.6347 0.4868 0.037*
H26C 0.9452 0.5699 0.4420 0.037*
C27 0.3146 (3) 0.45380 (12) 0.33012 (10) 0.0216 (4)
H27A 0.2309 0.4246 0.3045 0.032*
H27B 0.2593 0.4862 0.3577 0.032*
H27C 0.3914 0.4220 0.3564 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01189 (13) 0.01354 (12) 0.01216 (12) −0.00137 (9) 0.00225 (9) −0.00016 (9)
Ni2 0.01019 (12) 0.01284 (12) 0.01395 (12) 0.00028 (9) 0.00238 (9) 0.00016 (9)
O1 0.0190 (8) 0.0268 (8) 0.0220 (7) −0.0050 (6) 0.0044 (6) 0.0041 (6)
O2 0.0159 (7) 0.0219 (7) 0.0147 (6) −0.0061 (6) 0.0026 (5) −0.0028 (6)
O3 0.0204 (7) 0.0150 (7) 0.0162 (7) 0.0005 (6) 0.0061 (5) −0.0026 (5)
O4 0.0124 (6) 0.0121 (6) 0.0128 (6) 0.0007 (5) 0.0029 (5) 0.0007 (5)
O5 0.0150 (7) 0.0192 (7) 0.0187 (7) −0.0035 (6) 0.0053 (6) −0.0009 (6)
N1 0.0121 (8) 0.0156 (8) 0.0150 (8) −0.0007 (6) 0.0030 (6) 0.0012 (6)
N2 0.0155 (9) 0.0180 (8) 0.0144 (8) −0.0009 (7) 0.0033 (7) −0.0001 (7)
N3 0.0108 (8) 0.0171 (8) 0.0164 (8) −0.0018 (6) 0.0040 (6) −0.0016 (7)
N4 0.0117 (8) 0.0161 (8) 0.0165 (8) −0.0001 (7) 0.0038 (6) −0.0013 (7)
N5 0.0138 (8) 0.0174 (8) 0.0145 (8) 0.0021 (7) 0.0019 (6) 0.0017 (6)
N6 0.0129 (8) 0.0142 (8) 0.0207 (8) −0.0034 (7) 0.0041 (7) 0.0006 (7)
N7 0.0202 (10) 0.0327 (10) 0.0290 (10) 0.0018 (8) −0.0049 (8) 0.0104 (9)
N8 0.0109 (8) 0.0179 (8) 0.0304 (9) 0.0021 (7) 0.0029 (7) −0.0006 (7)
N9 0.0153 (9) 0.0165 (8) 0.0187 (8) 0.0028 (7) 0.0001 (7) −0.0052 (7)
N10 0.0156 (9) 0.0310 (11) 0.0468 (12) −0.0016 (8) 0.0107 (8) −0.0135 (9)
C1 0.0513 (16) 0.0271 (12) 0.0223 (11) 0.0001 (11) 0.0005 (11) 0.0040 (10)
C2 0.0154 (10) 0.0186 (10) 0.0188 (10) 0.0019 (8) 0.0007 (8) 0.0023 (8)
C3 0.0158 (10) 0.0141 (9) 0.0281 (11) −0.0027 (8) −0.0016 (8) 0.0001 (8)
C4 0.0233 (11) 0.0167 (10) 0.0223 (10) −0.0013 (8) −0.0034 (9) −0.0044 (8)
C5 0.0212 (11) 0.0198 (10) 0.0146 (9) 0.0032 (8) −0.0006 (8) −0.0024 (8)
C6 0.0142 (10) 0.0140 (9) 0.0169 (9) 0.0009 (8) −0.0005 (7) −0.0003 (8)
C7 0.0136 (9) 0.0144 (9) 0.0164 (9) 0.0025 (7) −0.0020 (7) 0.0003 (8)
C8 0.0158 (10) 0.0186 (10) 0.0129 (9) 0.0041 (8) 0.0017 (7) −0.0004 (8)
C9 0.0160 (10) 0.0161 (9) 0.0144 (9) −0.0006 (8) 0.0033 (7) 0.0024 (8)
C10 0.0157 (10) 0.0182 (10) 0.0160 (9) −0.0009 (8) 0.0046 (7) 0.0025 (8)
C11 0.0158 (10) 0.0166 (9) 0.0169 (9) −0.0019 (8) 0.0036 (7) 0.0003 (8)
C12 0.0202 (11) 0.0271 (11) 0.0199 (10) 0.0021 (9) 0.0067 (8) −0.0019 (9)
C13 0.0176 (10) 0.0275 (11) 0.0246 (11) −0.0047 (9) 0.0030 (8) 0.0080 (9)
C14 0.0242 (11) 0.0195 (10) 0.0186 (10) 0.0016 (9) 0.0076 (8) −0.0051 (8)
C15 0.0130 (9) 0.0174 (9) 0.0151 (9) −0.0003 (8) 0.0025 (7) −0.0012 (8)
C16 0.0233 (11) 0.0142 (9) 0.0223 (10) 0.0026 (8) 0.0020 (8) −0.0028 (8)
C17 0.0250 (11) 0.0138 (9) 0.0225 (10) −0.0001 (8) −0.0001 (8) 0.0039 (8)
C18 0.0183 (10) 0.0195 (10) 0.0157 (9) −0.0012 (8) 0.0002 (8) 0.0035 (8)
C19 0.0121 (9) 0.0157 (9) 0.0156 (9) −0.0006 (7) 0.0003 (7) 0.0004 (8)
C20 0.0095 (9) 0.0130 (9) 0.0157 (9) −0.0013 (7) −0.0007 (7) −0.0007 (7)
C21 0.0133 (9) 0.0192 (10) 0.0125 (9) −0.0031 (8) 0.0031 (7) 0.0014 (8)
C22 0.0217 (11) 0.0192 (10) 0.0147 (9) 0.0026 (8) 0.0075 (8) −0.0008 (8)
C23 0.0222 (11) 0.0178 (10) 0.0163 (9) 0.0005 (8) 0.0030 (8) −0.0038 (8)
C24 0.0162 (10) 0.0152 (9) 0.0196 (10) 0.0000 (8) 0.0038 (8) −0.0043 (8)
C25 0.0452 (15) 0.0250 (11) 0.0212 (11) −0.0049 (11) 0.0093 (10) −0.0086 (9)
C26 0.0217 (11) 0.0240 (11) 0.0254 (11) −0.0002 (9) −0.0055 (9) 0.0009 (9)
C27 0.0165 (10) 0.0256 (11) 0.0233 (10) −0.0035 (8) 0.0046 (8) 0.0013 (9)

Geometric parameters (Å, º)

Ni1—O2 2.0155 (14) C8—H8 0.9500
Ni1—O3 2.2589 (13) C9—C10 1.534 (3)
Ni1—O4 2.0201 (13) C9—H9A 0.9900
Ni1—N1 2.0166 (16) C9—H9B 0.9900
Ni1—N2 2.0621 (17) C10—C12 1.527 (3)
Ni1—N5 2.0862 (16) C10—C11 1.533 (3)
Ni2—O4 2.0451 (13) C10—C13 1.535 (3)
Ni2—O5 2.1364 (14) C11—H11A 0.9900
Ni2—N3 2.0478 (16) C11—H11B 0.9900
Ni2—N5 2.1505 (16) C12—H12A 0.9800
Ni2—N4 2.0797 (16) C12—H12B 0.9800
Ni2—N8 2.0715 (17) C12—H12C 0.9800
O1—C2 1.388 (2) C13—H13A 0.9800
O1—C1 1.429 (3) C13—H13B 0.9800
O2—C7 1.306 (2) C13—H13C 0.9800
O3—C15 1.390 (2) C14—H14A 0.9800
O3—C14 1.439 (2) C14—H14B 0.9800
O4—C20 1.318 (2) C14—H14C 0.9800
O5—C27 1.432 (2) C15—C16 1.377 (3)
O5—H5 0.832 (10) C15—C20 1.419 (3)
N1—C8 1.288 (2) C16—C17 1.402 (3)
N1—C9 1.468 (2) C16—H16 0.9500
N2—C11 1.478 (2) C17—C18 1.368 (3)
N2—H21 0.879 (10) C17—H17 0.9500
N2—H22 0.877 (10) C18—C19 1.408 (3)
N3—C21 1.279 (2) C18—H18 0.9500
N3—C22 1.465 (2) C19—C20 1.409 (3)
N4—C24 1.481 (2) C19—C21 1.452 (3)
N4—H41 0.895 (9) C21—H21A 0.9500
N4—H42 0.872 (10) C22—C23 1.545 (3)
N5—N6 1.206 (2) C22—H22A 0.9900
N6—N7 1.150 (2) C22—H22B 0.9900
N8—N9 1.186 (2) C23—C26 1.525 (3)
N9—N10 1.162 (2) C23—C24 1.532 (3)
C1—H1A 0.9800 C23—C25 1.539 (3)
C1—H1B 0.9800 C24—H24A 0.9900
C1—H1C 0.9800 C24—H24B 0.9900
C2—C3 1.375 (3) C25—H25A 0.9800
C2—C7 1.421 (3) C25—H25B 0.9800
C3—C4 1.397 (3) C25—H25C 0.9800
C3—H3 0.9500 C26—H26A 0.9800
C4—C5 1.370 (3) C26—H26B 0.9800
C4—H4 0.9500 C26—H26C 0.9800
C5—C6 1.413 (3) C27—H27A 0.9800
C5—H5A 0.9500 C27—H27B 0.9800
C6—C7 1.421 (3) C27—H27C 0.9800
C6—C8 1.445 (3)
N1—Ni1—O2 89.03 (6) N1—C9—H9A 108.2
N1—Ni1—O4 177.81 (6) C10—C9—H9A 108.2
O2—Ni1—O4 89.45 (5) N1—C9—H9B 108.2
N1—Ni1—N2 93.24 (7) C10—C9—H9B 108.2
O2—Ni1—N2 170.63 (6) H9A—C9—H9B 107.3
O4—Ni1—N2 88.51 (6) C12—C10—C9 111.21 (16)
N1—Ni1—N5 98.44 (6) C12—C10—C11 110.60 (16)
O2—Ni1—N5 93.33 (6) C9—C10—C11 111.61 (16)
O4—Ni1—N5 80.08 (6) C12—C10—C13 109.99 (17)
N2—Ni1—N5 95.32 (7) C9—C10—C13 105.73 (15)
N1—Ni1—O3 106.25 (6) C11—C10—C13 107.52 (16)
O2—Ni1—O3 83.89 (5) N2—C11—C10 112.55 (15)
O4—Ni1—O3 75.14 (5) N2—C11—H11A 109.1
N2—Ni1—O3 86.75 (6) C10—C11—H11A 109.1
N5—Ni1—O3 155.08 (6) N2—C11—H11B 109.1
O4—Ni2—N3 85.96 (6) C10—C11—H11B 109.1
O4—Ni2—N8 173.69 (6) H11A—C11—H11B 107.8
N3—Ni2—N8 99.97 (7) C10—C12—H12A 109.5
O4—Ni2—N4 95.33 (6) C10—C12—H12B 109.5
N3—Ni2—N4 87.99 (6) H12A—C12—H12B 109.5
N8—Ni2—N4 87.06 (7) C10—C12—H12C 109.5
O4—Ni2—O5 89.46 (5) H12A—C12—H12C 109.5
N3—Ni2—O5 94.50 (6) H12B—C12—H12C 109.5
N8—Ni2—O5 87.95 (6) C10—C13—H13A 109.5
N4—Ni2—O5 174.74 (6) C10—C13—H13B 109.5
O4—Ni2—N5 78.02 (6) H13A—C13—H13B 109.5
N3—Ni2—N5 163.17 (6) C10—C13—H13C 109.5
N8—Ni2—N5 96.25 (7) H13A—C13—H13C 109.5
N4—Ni2—N5 88.39 (6) H13B—C13—H13C 109.5
O5—Ni2—N5 90.50 (6) O3—C14—H14A 109.5
C2—O1—C1 113.83 (17) O3—C14—H14B 109.5
C7—O2—Ni1 127.05 (13) H14A—C14—H14B 109.5
C15—O3—C14 116.12 (15) O3—C14—H14C 109.5
C15—O3—Ni1 107.95 (11) H14A—C14—H14C 109.5
C14—O3—Ni1 121.51 (11) H14B—C14—H14C 109.5
C20—O4—Ni1 115.60 (11) C16—C15—O3 124.56 (18)
C20—O4—Ni2 124.11 (12) C16—C15—C20 121.58 (18)
Ni1—O4—Ni2 102.19 (5) O3—C15—C20 113.86 (16)
C27—O5—Ni2 124.44 (12) C15—C16—C17 119.63 (19)
C27—O5—H5 110.5 (19) C15—C16—H16 120.2
Ni2—O5—H5 108.1 (19) C17—C16—H16 120.2
C8—N1—C9 116.27 (16) C18—C17—C16 120.00 (18)
C8—N1—Ni1 125.26 (14) C18—C17—H17 120.0
C9—N1—Ni1 118.02 (12) C16—C17—H17 120.0
C11—N2—Ni1 118.56 (12) C17—C18—C19 121.35 (19)
C11—N2—H21 109.6 (16) C17—C18—H18 119.3
Ni1—N2—H21 108.7 (15) C19—C18—H18 119.3
C11—N2—H22 109.2 (16) C18—C19—C20 119.45 (18)
Ni1—N2—H22 103.3 (17) C18—C19—C21 119.13 (18)
H21—N2—H22 107 (2) C20—C19—C21 121.14 (17)
C21—N3—C22 117.64 (16) O4—C20—C19 123.33 (17)
C21—N3—Ni2 125.26 (13) O4—C20—C15 118.66 (17)
C22—N3—Ni2 116.48 (12) C19—C20—C15 117.98 (17)
C24—N4—Ni2 116.81 (12) N3—C21—C19 126.49 (17)
C24—N4—H41 111.1 (13) N3—C21—H21A 116.8
Ni2—N4—H41 106.3 (13) C19—C21—H21A 116.8
C24—N4—H42 108.6 (16) N3—C22—C23 111.72 (16)
Ni2—N4—H42 113.7 (16) N3—C22—H22A 109.3
H41—N4—H42 99 (2) C23—C22—H22A 109.3
N6—N5—Ni1 118.16 (13) N3—C22—H22B 109.3
N6—N5—Ni2 128.57 (14) C23—C22—H22B 109.3
Ni1—N5—Ni2 96.60 (6) H22A—C22—H22B 107.9
N7—N6—N5 177.3 (2) C26—C23—C24 110.71 (18)
N9—N8—Ni2 122.77 (14) C26—C23—C25 109.70 (17)
N10—N9—N8 178.3 (2) C24—C23—C25 106.90 (16)
O1—C1—H1A 109.5 C26—C23—C22 110.68 (17)
O1—C1—H1B 109.5 C24—C23—C22 111.93 (16)
H1A—C1—H1B 109.5 C25—C23—C22 106.75 (17)
O1—C1—H1C 109.5 N4—C24—C23 113.58 (16)
H1A—C1—H1C 109.5 N4—C24—H24A 108.8
H1B—C1—H1C 109.5 C23—C24—H24A 108.8
C3—C2—O1 120.20 (18) N4—C24—H24B 108.8
C3—C2—C7 122.17 (19) C23—C24—H24B 108.8
O1—C2—C7 117.56 (17) H24A—C24—H24B 107.7
C2—C3—C4 120.57 (19) C23—C25—H25A 109.5
C2—C3—H3 119.7 C23—C25—H25B 109.5
C4—C3—H3 119.7 H25A—C25—H25B 109.5
C5—C4—C3 119.29 (18) C23—C25—H25C 109.5
C5—C4—H4 120.4 H25A—C25—H25C 109.5
C3—C4—H4 120.4 H25B—C25—H25C 109.5
C4—C5—C6 121.24 (19) C23—C26—H26A 109.5
C4—C5—H5A 119.4 C23—C26—H26B 109.5
C6—C5—H5A 119.4 H26A—C26—H26B 109.5
C5—C6—C7 120.30 (18) C23—C26—H26C 109.5
C5—C6—C8 117.10 (18) H26A—C26—H26C 109.5
C7—C6—C8 122.30 (17) H26B—C26—H26C 109.5
O2—C7—C6 123.75 (18) O5—C27—H27A 109.5
O2—C7—C2 119.85 (18) O5—C27—H27B 109.5
C6—C7—C2 116.38 (17) H27A—C27—H27B 109.5
N1—C8—C6 127.07 (18) O5—C27—H27C 109.5
N1—C8—H8 116.5 H27A—C27—H27C 109.5
C6—C8—H8 116.5 H27B—C27—H27C 109.5
N1—C9—C10 116.40 (15)
N1—Ni1—O2—C7 24.42 (15) O4—Ni2—N5—Ni1 12.98 (5)
O4—Ni1—O2—C7 −157.15 (15) N3—Ni2—N5—Ni1 31.1 (2)
N5—Ni1—O2—C7 122.82 (15) N8—Ni2—N5—Ni1 −164.35 (6)
O3—Ni1—O2—C7 −82.03 (15) N4—Ni2—N5—Ni1 108.78 (7)
N1—Ni1—O3—C15 −154.40 (11) O5—Ni2—N5—Ni1 −76.36 (6)
O2—Ni1—O3—C15 −67.20 (11) N3—Ni2—N8—N9 −69.32 (17)
O4—Ni1—O3—C15 23.85 (11) N4—Ni2—N8—N9 −156.76 (17)
N2—Ni1—O3—C15 113.17 (12) O5—Ni2—N8—N9 24.90 (16)
N5—Ni1—O3—C15 17.54 (19) N5—Ni2—N8—N9 115.18 (17)
N1—Ni1—O3—C14 −16.55 (15) C1—O1—C2—C3 86.4 (2)
O2—Ni1—O3—C14 70.65 (14) C1—O1—C2—C7 −96.6 (2)
O4—Ni1—O3—C14 161.70 (15) O1—C2—C3—C4 175.66 (18)
N2—Ni1—O3—C14 −108.98 (14) C7—C2—C3—C4 −1.3 (3)
N5—Ni1—O3—C14 155.38 (15) C2—C3—C4—C5 −0.7 (3)
O2—Ni1—O4—C20 58.20 (13) C3—C4—C5—C6 1.3 (3)
N2—Ni1—O4—C20 −112.66 (13) C4—C5—C6—C7 0.0 (3)
N5—Ni1—O4—C20 151.67 (13) C4—C5—C6—C8 −173.92 (18)
O3—Ni1—O4—C20 −25.63 (12) Ni1—O2—C7—C6 −16.5 (3)
O2—Ni1—O4—Ni2 −79.51 (6) Ni1—O2—C7—C2 165.10 (13)
N2—Ni1—O4—Ni2 109.64 (7) C5—C6—C7—O2 179.77 (17)
N5—Ni1—O4—Ni2 13.97 (6) C8—C6—C7—O2 −6.7 (3)
O3—Ni1—O4—Ni2 −163.34 (6) C5—C6—C7—C2 −1.8 (3)
N3—Ni2—O4—C20 38.68 (13) C8—C6—C7—C2 171.77 (17)
N4—Ni2—O4—C20 126.28 (13) C3—C2—C7—O2 −179.03 (18)
O5—Ni2—O4—C20 −55.88 (13) O1—C2—C7—O2 4.0 (3)
N5—Ni2—O4—C20 −146.51 (14) C3—C2—C7—C6 2.5 (3)
N3—Ni2—O4—Ni1 171.54 (6) O1—C2—C7—C6 −174.56 (17)
N4—Ni2—O4—Ni1 −100.85 (6) C9—N1—C8—C6 −168.84 (18)
O5—Ni2—O4—Ni1 76.99 (6) Ni1—N1—C8—C6 3.3 (3)
N5—Ni2—O4—Ni1 −13.64 (6) C5—C6—C8—N1 −172.40 (19)
O4—Ni2—O5—C27 100.30 (15) C7—C6—C8—N1 13.9 (3)
N3—Ni2—O5—C27 14.39 (16) C8—N1—C9—C10 −132.96 (18)
N8—Ni2—O5—C27 −85.45 (15) Ni1—N1—C9—C10 54.3 (2)
N5—Ni2—O5—C27 178.32 (15) N1—C9—C10—C12 56.7 (2)
O2—Ni1—N1—C8 −17.53 (16) N1—C9—C10—C11 −67.3 (2)
N2—Ni1—N1—C8 153.38 (16) N1—C9—C10—C13 176.07 (17)
N5—Ni1—N1—C8 −110.75 (16) Ni1—N2—C11—C10 −56.9 (2)
O3—Ni1—N1—C8 65.83 (17) C12—C10—C11—N2 −57.1 (2)
O2—Ni1—N1—C9 154.47 (14) C9—C10—C11—N2 67.3 (2)
N2—Ni1—N1—C9 −34.62 (14) C13—C10—C11—N2 −177.17 (16)
N5—Ni1—N1—C9 61.25 (14) C14—O3—C15—C16 20.5 (3)
O3—Ni1—N1—C9 −122.17 (13) Ni1—O3—C15—C16 160.90 (16)
N1—Ni1—N2—C11 37.14 (15) C14—O3—C15—C20 −159.81 (16)
O4—Ni1—N2—C11 −141.55 (14) Ni1—O3—C15—C20 −19.40 (18)
N5—Ni1—N2—C11 −61.65 (14) O3—C15—C16—C17 179.80 (18)
O3—Ni1—N2—C11 143.25 (14) C20—C15—C16—C17 0.1 (3)
O4—Ni2—N3—C21 −24.19 (16) C15—C16—C17—C18 −1.0 (3)
N8—Ni2—N3—C21 153.66 (16) C16—C17—C18—C19 0.9 (3)
N4—Ni2—N3—C21 −119.68 (17) C17—C18—C19—C20 0.3 (3)
O5—Ni2—N3—C21 64.95 (16) C17—C18—C19—C21 −173.75 (18)
N5—Ni2—N3—C21 −42.0 (3) Ni1—O4—C20—C19 −157.92 (14)
O4—Ni2—N3—C22 146.46 (13) Ni2—O4—C20—C19 −30.5 (2)
N8—Ni2—N3—C22 −35.69 (14) Ni1—O4—C20—C15 24.0 (2)
N4—Ni2—N3—C22 50.97 (14) Ni2—O4—C20—C15 151.43 (13)
O5—Ni2—N3—C22 −124.40 (13) C18—C19—C20—O4 −179.20 (17)
N5—Ni2—N3—C22 128.7 (2) C21—C19—C20—O4 −5.3 (3)
O4—Ni2—N4—C24 −133.28 (13) C18—C19—C20—C15 −1.1 (3)
N3—Ni2—N4—C24 −47.52 (13) C21—C19—C20—C15 172.73 (17)
N8—Ni2—N4—C24 52.57 (13) C16—C15—C20—O4 179.12 (17)
N5—Ni2—N4—C24 148.92 (13) O3—C15—C20—O4 −0.6 (2)
N1—Ni1—N5—N6 24.62 (16) C16—C15—C20—C19 1.0 (3)
O2—Ni1—N5—N6 −64.89 (15) O3—C15—C20—C19 −178.74 (16)
O4—Ni1—N5—N6 −153.75 (15) C22—N3—C21—C19 −169.38 (18)
N2—Ni1—N5—N6 118.71 (15) Ni2—N3—C21—C19 1.2 (3)
O3—Ni1—N5—N6 −147.55 (14) C18—C19—C21—N3 −164.60 (19)
N1—Ni1—N5—Ni2 165.32 (6) C20—C19—C21—N3 21.5 (3)
O2—Ni1—N5—Ni2 75.80 (6) C21—N3—C22—C23 104.2 (2)
O4—Ni1—N5—Ni2 −13.05 (6) Ni2—N3—C22—C23 −67.23 (18)
N2—Ni1—N5—Ni2 −100.60 (7) N3—C22—C23—C26 −56.9 (2)
O3—Ni1—N5—Ni2 −6.86 (17) N3—C22—C23—C24 67.2 (2)
O4—Ni2—N5—N6 147.40 (17) N3—C22—C23—C25 −176.20 (16)
N3—Ni2—N5—N6 165.54 (19) Ni2—N4—C24—C23 61.01 (19)
N8—Ni2—N5—N6 −29.93 (17) C26—C23—C24—N4 59.6 (2)
N4—Ni2—N5—N6 −116.80 (17) C25—C23—C24—N4 179.07 (17)
O5—Ni2—N5—N6 58.06 (17) C22—C23—C24—N4 −64.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O2 0.83 (1) 1.80 (1) 2.604 (2) 161 (3)
N2—H22···N10i 0.88 (1) 2.32 (2) 3.121 (2) 153 (2)
N4—H42···N10i 0.87 (1) 2.19 (1) 3.040 (2) 165 (2)

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5496).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Biswas, R., Kar, P., Song, Y. & Ghosh, A. (2011). Dalton Trans. 40, 5324–5331. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Ghaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst E68, m993–m994. [DOI] [PMC free article] [PubMed]
  6. Koner, R., Hazra, S., Fleck, M., Jana, A., Lucas, C. R. & Mohanta, S. (2009). Eur. J. Inorg. Chem. pp. 4982–4988.
  7. Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev 193–195, 1027–1068.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029662/lh5496sup1.cif

e-68-m1027-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029662/lh5496Isup2.hkl

e-68-m1027-Isup2.hkl (355.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES