Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 14;68(Pt 8):m1055. doi: 10.1107/S1600536812030917

Bis[2-(2-hy­droxy­meth­yl)pyridine-κ2 N,O](pivalato-κO)copper(II)

M Mobin Shaikh a,*, Veenu Mishra a, Priti Ram a, Anil Birla a
PMCID: PMC3414121  PMID: 22904728

Abstract

The structure of the centrosymmetric title complex, [Cu(C5H9O2)2(C6H7NO)2], has the CuII atom on a centre of inversion. The CuII atom is six-coordinate with a distorted octa­hedral geometry, defined by the N and O atoms of the chelating 2-(2-hydroxymethyl)pyridine ligands and two carboxyl­ate O atoms from two monodentate pivalate ions. The crystal packing is stabilized by inter­molecular C—H⋯O and intra­molecular O—H⋯O hydrogen-bond inter­actions.

Related literature  

For pyridine alcohol-based biomimetic sensors, see: Shaikh et al. (2010). For solid-state transformations, see: Shaikh et al. (2009, 2010). For structures with pyridine alcohols, see: Hamamci et al. (2004); Lah et al. (2006).graphic file with name e-68-m1055-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C5H9O2)2(C6H7NO)2]

  • M r = 484.04

  • Monoclinic, Inline graphic

  • a = 9.797 (5) Å

  • b = 8.829 (5) Å

  • c = 13.674 (5) Å

  • β = 91.907 (5)°

  • V = 1182.1 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.63 mm−1

  • T = 150 K

  • 0.33 × 0.28 × 0.23 mm

Data collection  

  • Oxford Super Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.615, T max = 0.706

  • 6929 measured reflections

  • 2282 independent reflections

  • 2052 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 1.06

  • 2282 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030917/bt5967sup1.cif

e-68-m1055-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030917/bt5967Isup2.hkl

e-68-m1055-Isup2.hkl (109.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O3 0.95 (4) 1.64 (4) 2.588 (2) 171 (3)
C2—H2⋯O3i 0.95 2.57 3.289 (3) 132
C4—H4⋯O3ii 0.95 2.50 3.392 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the IIT Indore–Agilent Technologies–Aimil Summer Fellowship Programme on X-ray Crystallography. PR and AB would like to thank Agilent Technologies and Aimil Ltd for providing the fellowship. The authors acknowledge the Single-Crystal Diffraction Facility at the Sophisticated X-ray Instrumentation Centre (SIC), IIT Indore.

supplementary crystallographic information

Comment

We have reported a series of pyridine alcohol based Cu(II) complexes with a range of applications such as biomimetic sensors (Shaikh et al., 2010) and solid-state transformations (Shaikh et al., 2009). Pyridine alcohols are used because they possess two functional groups, both having the ability to bind the metal centres (Hamamci et al., 2004; Lah et al., 2006).

Herein we report synthesis and crystal structure of a mononuclear Cu(II) complex with hmp-H acting as a bidentate chelating ligand. The Cu(II) atom is surrounded by two N and O atoms from hmp-H in a basal plane and the apical positions are occupied by two O atoms from monodentate pivalate group forming a distorted octahedral geometry (Fig. 1).

The packing reveals intra (O—H···O) and inter (C—H···O) hydrogen bonds. The intramolecular hydrogen bonding involves the alcoholic OH group of hmp-H and an O atom of the pivalate group (Fig. 2). The intermolecular C(4)—H(4)···.O(3) hydrogen bond involves an H-atom of pyridine ring and an O atom of the pivalate group forming one-dimensional chain along the b-axis which binds to a neighbouring one-dimensional chain via C(2)—H(2)···O(3) along c-axis, leading to the formation of hydrogen bonded two-dimensional network (Fig. 3).

Experimental

A solution of pivalic acid (102 mg, 1.0 mmol) in 10 ml methanol was added to a 30 ml methanolic solution of Cu(CH3COO)2.2H2O (199 mg, 1.0 mmol) and hmp-H (109 mg, 1.0 mmol). The resultant solution was stirred for 12 h at room temperature. The solution was then passed through filter paper (Whatman filter paper, 70 mm) in order to remove any unreacted materials. The filtrate was allowed to stand at room temperature for crystallization. On slow evaporation light-blue single crystals of [Cu(C5H7ON)2(C5H9O2)2] were obtained after 2–3 d. M.p. 476–478 K. Yield: 88%. Anal. Calcd for C22H32CuN2O6 (Mr = 484.04): C, 54.59; H, 6.66; N, 5.79. Found: C 54.62; H 6.70; N 5.76.

Refinement

H atoms bonded to C were placed geometrically and treated as riding on their parent atoms, with C—H 0.95 (pyridyl), C—H 0.99 (methylene) Å [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl)]. The hydroxyl H atom was freely refined.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The symmetry-related moiety was generated by (-x, -y, -z).

Fig. 2.

Fig. 2.

Intra-molecular hydrogen bonding in the title compound.

Fig. 3.

Fig. 3.

A perspective view of the hydrogen bonded two-dimensional-network; view along the a-axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

[Cu(C5H9O2)2(C6H7NO)2] F(000) = 510
Mr = 484.04 Dx = 1.360 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2yn Cell parameters from 3855 reflections
a = 9.797 (5) Å θ = 3.2–71.6°
b = 8.829 (5) Å µ = 1.63 mm1
c = 13.674 (5) Å T = 150 K
β = 91.907 (5)° Block, blue
V = 1182.1 (10) Å3 0.33 × 0.28 × 0.23 mm
Z = 2

Data collection

Oxford Super Nova diffractometer 2282 independent reflections
Radiation source: Micro-Focus (Cu) X-ray Source 2052 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 15.9948 pixels mm-1 θmax = 71.8°, θmin = 5.5°
ω/θ scans h = −12→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −7→10
Tmin = 0.615, Tmax = 0.706 l = −16→16
6929 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5457P] where P = (Fo2 + 2Fc2)/3
2282 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.5000 0.0000 0.5000 0.02121 (17)
O1 0.52417 (16) −0.22601 (17) 0.40801 (10) 0.0281 (3)
O2 0.31138 (15) −0.04928 (18) 0.54027 (11) 0.0284 (3)
O3 0.28735 (16) −0.28213 (18) 0.47823 (11) 0.0323 (4)
N1 0.57203 (17) −0.14564 (18) 0.59959 (12) 0.0231 (4)
C1 0.5683 (2) −0.1127 (2) 0.69555 (15) 0.0266 (4)
H1 0.5305 −0.0185 0.7147 0.032*
C2 0.6170 (2) −0.2102 (3) 0.76689 (16) 0.0315 (5)
H2 0.6142 −0.1836 0.8341 0.038*
C3 0.6701 (2) −0.3477 (3) 0.73850 (18) 0.0347 (5)
H3 0.7055 −0.4168 0.7861 0.042*
C4 0.6712 (2) −0.3839 (3) 0.63980 (18) 0.0325 (5)
H4 0.7049 −0.4792 0.6192 0.039*
C5 0.6222 (2) −0.2788 (2) 0.57143 (15) 0.0251 (4)
C6 0.6241 (2) −0.3092 (3) 0.46280 (17) 0.0323 (5)
H6A 0.7156 −0.2834 0.4390 0.039*
H6B 0.6090 −0.4186 0.4512 0.039*
C7 0.2550 (2) −0.1780 (2) 0.53540 (13) 0.0227 (4)
C8 0.1446 (2) −0.2117 (3) 0.60946 (15) 0.0280 (5)
C9 0.2209 (3) −0.2819 (4) 0.6974 (2) 0.0605 (9)
H9A 0.2864 −0.2085 0.7251 0.091*
H9B 0.2696 −0.3726 0.6765 0.091*
H9C 0.1555 −0.3097 0.7470 0.091*
C10 0.0713 (3) −0.0693 (4) 0.6412 (2) 0.0593 (8)
H10A 0.1382 0.0035 0.6680 0.089*
H10B 0.0061 −0.0950 0.6914 0.089*
H10C 0.0223 −0.0244 0.5847 0.089*
C11 0.0425 (3) −0.3258 (4) 0.5677 (2) 0.0659 (10)
H11A 0.0909 −0.4175 0.5480 0.099*
H11B −0.0059 −0.2819 0.5105 0.099*
H11C −0.0233 −0.3516 0.6174 0.099*
H101 0.434 (4) −0.251 (4) 0.428 (2) 0.053 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0266 (3) 0.0185 (3) 0.0187 (3) −0.00076 (14) 0.00306 (17) 0.00341 (14)
O1 0.0340 (8) 0.0301 (8) 0.0206 (7) 0.0000 (6) 0.0055 (6) −0.0007 (6)
O2 0.0301 (8) 0.0233 (8) 0.0323 (8) −0.0012 (6) 0.0069 (6) 0.0034 (6)
O3 0.0342 (8) 0.0389 (9) 0.0242 (7) −0.0084 (6) 0.0074 (6) −0.0125 (6)
N1 0.0272 (8) 0.0205 (8) 0.0219 (8) −0.0017 (6) 0.0033 (6) 0.0019 (6)
C1 0.0305 (10) 0.0265 (10) 0.0229 (10) −0.0038 (8) 0.0003 (8) −0.0007 (8)
C2 0.0338 (11) 0.0375 (12) 0.0229 (10) −0.0062 (9) −0.0033 (8) 0.0053 (9)
C3 0.0305 (11) 0.0359 (12) 0.0371 (12) −0.0027 (9) −0.0050 (9) 0.0155 (10)
C4 0.0310 (11) 0.0247 (11) 0.0419 (13) 0.0032 (8) 0.0010 (9) 0.0074 (9)
C5 0.0255 (10) 0.0219 (10) 0.0282 (11) −0.0009 (8) 0.0032 (8) 0.0024 (8)
C6 0.0370 (12) 0.0304 (11) 0.0298 (11) 0.0056 (9) 0.0068 (9) −0.0018 (9)
C7 0.0260 (10) 0.0271 (10) 0.0148 (9) −0.0013 (8) −0.0011 (7) 0.0008 (7)
C8 0.0300 (11) 0.0317 (11) 0.0228 (10) −0.0058 (8) 0.0069 (8) −0.0031 (8)
C9 0.0534 (18) 0.096 (2) 0.0332 (14) 0.0017 (16) 0.0136 (12) 0.0251 (15)
C10 0.0640 (19) 0.0502 (18) 0.066 (2) 0.0039 (14) 0.0370 (16) −0.0086 (15)
C11 0.0546 (18) 0.088 (2) 0.0568 (18) −0.0427 (17) 0.0249 (15) −0.0278 (17)

Geometric parameters (Å, º)

Cu1—N1 1.9855 (17) C4—H4 0.9500
Cu1—N1i 1.9855 (17) C5—C6 1.510 (3)
Cu1—O2 1.9937 (17) C6—H6A 0.9900
Cu1—O2i 1.9937 (17) C6—H6B 0.9900
Cu1—O1i 2.3748 (18) C7—O3 1.254 (3)
Cu1—O1 2.3748 (18) C7—C8 1.535 (3)
O1—C6 1.418 (3) C8—C11 1.518 (3)
O1—H101 0.95 (4) C8—C10 1.518 (4)
O2—C7 1.265 (3) C8—C9 1.526 (4)
O3—C7 1.254 (3) C9—H9A 0.9800
N1—C5 1.336 (3) C9—H9B 0.9800
N1—C1 1.346 (3) C9—H9C 0.9800
C1—C2 1.375 (3) C10—H10A 0.9800
C1—H1 0.9500 C10—H10B 0.9800
C2—C3 1.382 (4) C10—H10C 0.9800
C2—H2 0.9500 C11—H11A 0.9800
C3—C4 1.387 (4) C11—H11B 0.9800
C3—H3 0.9500 C11—H11C 0.9800
C4—C5 1.391 (3)
N1—Cu1—N1i 180.00 (7) C4—C5—C6 121.8 (2)
N1—Cu1—O2 88.90 (7) O1—C6—C5 113.40 (18)
N1i—Cu1—O2 91.10 (7) O1—C6—H6A 108.9
N1—Cu1—O2i 91.10 (7) C5—C6—H6A 108.9
N1i—Cu1—O2i 88.90 (7) O1—C6—H6B 108.9
O2—Cu1—O2i 180.0 C5—C6—H6B 108.9
N1—Cu1—O1i 102.73 (7) H6A—C6—H6B 107.7
N1i—Cu1—O1i 77.27 (7) O3—C7—O2 124.95 (19)
O2—Cu1—O1i 85.84 (6) O3—C7—O2 124.95 (19)
O2i—Cu1—O1i 94.16 (6) O3—C7—C8 117.88 (18)
N1—Cu1—O1 77.27 (7) O3—C7—C8 117.88 (18)
N1i—Cu1—O1 102.73 (7) O2—C7—C8 117.07 (17)
O2—Cu1—O1 94.16 (6) C11—C8—C10 110.2 (2)
O2i—Cu1—O1 85.84 (6) C11—C8—C9 109.0 (3)
O1i—Cu1—O1 180.0 C10—C8—C9 109.6 (2)
C6—O1—Cu1 103.56 (12) C11—C8—C7 110.48 (18)
C6—O1—H101 111 (2) C10—C8—C7 112.25 (19)
Cu1—O1—H101 86.1 (19) C9—C8—C7 105.14 (19)
C7—O2—Cu1 126.06 (13) C8—C9—H9A 109.5
C5—N1—C1 119.59 (18) C8—C9—H9B 109.5
C5—N1—Cu1 119.87 (14) H9A—C9—H9B 109.5
C1—N1—Cu1 120.52 (14) C8—C9—H9C 109.5
N1—C1—C2 122.4 (2) H9A—C9—H9C 109.5
N1—C1—H1 118.8 H9B—C9—H9C 109.5
C2—C1—H1 118.8 C8—C10—H10A 109.5
C1—C2—C3 118.4 (2) C8—C10—H10B 109.5
C1—C2—H2 120.8 H10A—C10—H10B 109.5
C3—C2—H2 120.8 C8—C10—H10C 109.5
C2—C3—C4 119.4 (2) H10A—C10—H10C 109.5
C2—C3—H3 120.3 H10B—C10—H10C 109.5
C4—C3—H3 120.3 C8—C11—H11A 109.5
C3—C4—C5 119.1 (2) C8—C11—H11B 109.5
C3—C4—H4 120.4 H11A—C11—H11B 109.5
C5—C4—H4 120.4 C8—C11—H11C 109.5
N1—C5—C4 121.0 (2) H11A—C11—H11C 109.5
N1—C5—C6 117.14 (18) H11B—C11—H11C 109.5
N1—Cu1—O1—C6 −23.50 (13) Cu1—N1—C5—C4 −178.92 (16)
N1i—Cu1—O1—C6 156.50 (13) C1—N1—C5—C6 −179.83 (19)
O2—Cu1—O1—C6 −111.43 (13) Cu1—N1—C5—C6 1.5 (2)
O2i—Cu1—O1—C6 68.57 (13) C3—C4—C5—N1 −1.3 (3)
N1—Cu1—O2—C7 −61.13 (16) C3—C4—C5—C6 178.2 (2)
N1i—Cu1—O2—C7 118.87 (16) Cu1—O1—C6—C5 30.6 (2)
O1i—Cu1—O2—C7 −163.98 (16) N1—C5—C6—O1 −25.3 (3)
O1—Cu1—O2—C7 16.02 (16) C4—C5—C6—O1 155.2 (2)
O2—Cu1—N1—C5 106.78 (16) O3—O3—C7—O2 0.00 (19)
O2i—Cu1—N1—C5 −73.22 (16) O3—O3—C7—C8 0.00 (10)
O1i—Cu1—N1—C5 −167.74 (15) Cu1—O2—C7—O3 −24.1 (3)
O1—Cu1—N1—C5 12.26 (15) Cu1—O2—C7—O3 −24.1 (3)
O2—Cu1—N1—C1 −71.87 (16) Cu1—O2—C7—C8 152.14 (14)
O2i—Cu1—N1—C1 108.13 (16) O3—C7—C8—C11 −31.3 (3)
O1i—Cu1—N1—C1 13.62 (16) O3—C7—C8—C11 −31.3 (3)
O1—Cu1—N1—C1 −166.38 (16) O2—C7—C8—C11 152.3 (2)
C5—N1—C1—C2 1.4 (3) O3—C7—C8—C10 −154.7 (2)
Cu1—N1—C1—C2 −179.99 (16) O3—C7—C8—C10 −154.7 (2)
N1—C1—C2—C3 −0.8 (3) O2—C7—C8—C10 28.8 (3)
C1—C2—C3—C4 −0.8 (3) O3—C7—C8—C9 86.3 (2)
C2—C3—C4—C5 1.8 (3) O3—C7—C8—C9 86.3 (2)
C1—N1—C5—C4 −0.3 (3) O2—C7—C8—C9 −90.2 (3)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H101···O3 0.95 (4) 1.64 (4) 2.588 (2) 171 (3)
C2—H2···O3ii 0.95 2.57 3.289 (3) 132
C4—H4···O3iii 0.95 2.50 3.392 (3) 157

Symmetry codes: (ii) x+1/2, −y−1/2, z+1/2; (iii) −x+1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5967).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Hamamci, S., Yilmaz, V. T. & Thöne, C. (2004). Acta Cryst. E60, m159–m161.
  3. Lah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888–4894.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  5. Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2009). Inorg. Chem 48, 4652–4654. [DOI] [PubMed]
  6. Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030917/bt5967sup1.cif

e-68-m1055-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030917/bt5967Isup2.hkl

e-68-m1055-Isup2.hkl (109.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES