Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 18;68(Pt 8):m1073–m1074. doi: 10.1107/S1600536812031303

Poly[diaqua­(μ5-1H-imidazole-4,5-di­carboxyl­ato)(μ4-1H-imidazole-4,5-di­carboxyl­ato)tris­ilver(I)ytterbium(III)]

Si-Ming Zhu a,*
PMCID: PMC3414133  PMID: 22904740

Abstract

The asymmetric unit of the title compound, [Ag3Yb(C5HN2O4)2(H2O)2]n, contains three AgI ions, one YbIII ion, two imidazole-4,5-dicarboxyl­ate ligands and two coordinating water mol­ecules. The YbIII atom is eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxyl­ate ligands and two coordinating water mol­ecules. The two-coordinated AgI ions exhibit three types of coordination environments. One AgI atom is bonded to two N atoms from two different imidazole-4,5-dicarboxyl­ate ligands. The other two AgI atoms are each coordinated by one O atom and one N atom from two different imidazole-4,5-dicarboxyl­ate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate ligands, generating a two-dimensional heterometallic layer. These layers are stacked along the a axis via O—H⋯O hydrogen-bonding inter­actions to generate a three-dimensional framework.

Related literature  

For the application of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).graphic file with name e-68-m1073-scheme1.jpg

Experimental  

Crystal data  

  • [Ag3Yb(C5HN2O4)2(H2O)2]

  • M r = 838.84

  • Monoclinic, Inline graphic

  • a = 12.6850 (7) Å

  • b = 8.6643 (5) Å

  • c = 28.4015 (16) Å

  • β = 97.686 (1)°

  • V = 3093.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.80 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.162, T max = 0.189

  • 7613 measured reflections

  • 2794 independent reflections

  • 2629 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.055

  • S = 1.19

  • 2794 reflections

  • 265 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −1.29 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812031303/rk2366sup1.cif

e-68-m1073-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031303/rk2366Isup2.hkl

e-68-m1073-Isup2.hkl (137.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O8i 0.82 (2) 2.11 (5) 2.751 (5) 136 (6)
O1W—H2W⋯O2ii 0.81 (2) 2.03 (3) 2.823 (5) 165 (6)
O2W—H4W⋯O1iii 0.81 (2) 1.88 (4) 2.634 (5) 154 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of South China University of Technology (grant No. 2012ZM0072).

supplementary crystallographic information

Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains three AgI ions, one YbIII ion, two imidazole-4,5-dicarboxylate ligands, and two coordinated water molecules. The YbIII are eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxylate ligands and two coordinated water molecules. The two-coordinated AgI ions exhibit three types of coordination environment. One AgI ion is linear bonded to two N atoms from two different imidazole-4,5-dicarboxylate ligands with N2iv-Ag3-N3 angle 176.23 (17)°. The other two AgI ions are coordinated in a bow-like conformation each by one O atom and one N atom from two different imidazole-4,5-dicarboxylate ligands with N-Ag-O angle 157.45 (14)° and 159.80 (14)°, respectively. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along a axis via O–H···O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2). Symmetry code: (iv) -x, y, -z+3/2.

Experimental

A mixture of AgNO3 (0.102 g, 0.6 mmol), Yb2O3 (0.118 g, 0.3 mmol), imidazole-4,5-dicarboxylic acid (0.188 g, 1.2 mmol), H2O (10 ml), and HClO4 (0.385 mmol) was sealed in a 20 ml teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colourless block crystals suitable for X-ray analysis were obtained.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O–H = 0.82Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) -x, -y, 1-z; (ii) x, 1+y, z; (iv) -x, y, 3/2-z.

Fig. 2.

Fig. 2.

A view of the three-dimensional structure of the title compound. The hydrogen bonding interactions showed as broken lines.

Crystal data

[Ag3Yb(C5HN2O4)2(H2O)2] F(000) = 3080
Mr = 838.84 Dx = 3.602 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4947 reflections
a = 12.6850 (7) Å θ = 2.9–28.1°
b = 8.6643 (5) Å µ = 9.80 mm1
c = 28.4015 (16) Å T = 295 K
β = 97.686 (1)° Block, colourless
V = 3093.5 (3) Å3 0.20 × 0.18 × 0.17 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 2794 independent reflections
Radiation source: fine-focus sealed tube 2629 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scan θmax = 25.2°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→15
Tmin = 0.162, Tmax = 0.189 k = −10→8
7613 measured reflections l = −34→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0213P)2 + 8.4063P] where P = (Fo2 + 2Fc2)/3
2794 reflections (Δ/σ)max = 0.001
265 parameters Δρmax = 0.58 e Å3
4 restraints Δρmin = −1.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Yb1 0.062585 (17) 0.17662 (3) 0.534835 (7) 0.01157 (8)
Ag1 −0.08531 (4) 0.52086 (5) 0.638040 (16) 0.02463 (12)
Ag2 0.18074 (4) 0.78628 (5) 0.663984 (15) 0.02278 (12)
Ag3 −0.12303 (3) 0.14446 (5) 0.739965 (13) 0.02025 (11)
C1 0.1656 (4) 0.4861 (6) 0.59111 (17) 0.0128 (11)
C2 0.1594 (4) 0.4326 (6) 0.64091 (16) 0.0114 (10)
C3 0.1486 (4) 0.4663 (6) 0.71522 (17) 0.0163 (11)
H3 0.1434 0.5143 0.7441 0.020*
C4 0.1601 (4) 0.2898 (6) 0.66262 (17) 0.0119 (10)
C5 0.1733 (4) 0.1266 (6) 0.64641 (17) 0.0120 (11)
C6 −0.0760 (4) 0.1879 (6) 0.62733 (17) 0.0121 (11)
C7 −0.0744 (4) 0.0214 (6) 0.64145 (16) 0.0124 (11)
C8 −0.0872 (4) −0.1680 (6) 0.68906 (18) 0.0173 (12)
H8 −0.0933 −0.2230 0.7167 0.021*
C9 −0.0685 (4) −0.1163 (6) 0.61662 (17) 0.0114 (10)
C10 −0.0598 (4) −0.1506 (6) 0.56693 (17) 0.0121 (11)
O1 0.1765 (3) 0.6248 (4) 0.58442 (12) 0.0255 (10)
O2 0.1559 (3) 0.3874 (4) 0.55739 (12) 0.0172 (8)
O3 0.1588 (3) 0.0949 (4) 0.60304 (12) 0.0169 (8)
O4 0.1991 (3) 0.0300 (4) 0.67886 (12) 0.0196 (8)
O5 −0.1075 (3) 0.2825 (4) 0.65620 (13) 0.0200 (8)
O6 −0.0463 (3) 0.2298 (4) 0.58910 (12) 0.0171 (8)
O7 −0.0256 (3) −0.0485 (4) 0.54003 (11) 0.0164 (8)
O8 −0.0893 (3) −0.2776 (4) 0.54873 (12) 0.0193 (8)
N1 0.1517 (3) 0.5441 (5) 0.67471 (14) 0.0148 (9)
N2 0.1537 (4) 0.3137 (5) 0.71038 (14) 0.0149 (9)
N3 −0.0869 (3) −0.0151 (5) 0.68748 (14) 0.0140 (9)
N4 −0.0780 (3) −0.2366 (5) 0.64767 (14) 0.0142 (9)
O1W 0.2245 (3) 0.0680 (5) 0.51848 (13) 0.0221 (9)
H1W 0.275 (4) 0.079 (8) 0.5390 (17) 0.033*
H2W 0.249 (5) 0.075 (8) 0.4936 (13) 0.033*
O2W −0.0917 (4) 0.2942 (6) 0.50178 (14) 0.0347 (11)
H4W −0.130 (5) 0.298 (9) 0.4768 (15) 0.052*
H3W −0.138 (5) 0.331 (8) 0.515 (3) 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Yb1 0.01795 (13) 0.01015 (13) 0.00699 (12) −0.00344 (9) 0.00307 (8) −0.00139 (8)
Ag1 0.0334 (3) 0.0086 (2) 0.0326 (3) −0.00032 (18) 0.00726 (19) 0.00049 (18)
Ag2 0.0308 (3) 0.0085 (2) 0.0290 (2) −0.00071 (17) 0.00390 (19) −0.00148 (17)
Ag3 0.0304 (3) 0.0191 (2) 0.0125 (2) 0.00166 (18) 0.00737 (17) −0.00609 (16)
C1 0.015 (3) 0.010 (3) 0.012 (2) −0.003 (2) −0.001 (2) 0.001 (2)
C2 0.015 (3) 0.011 (3) 0.008 (2) 0.001 (2) 0.0039 (19) 0.000 (2)
C3 0.027 (3) 0.015 (3) 0.008 (2) 0.002 (2) 0.007 (2) −0.003 (2)
C4 0.020 (3) 0.008 (3) 0.009 (2) −0.002 (2) 0.004 (2) −0.0018 (19)
C5 0.010 (2) 0.012 (3) 0.014 (3) −0.002 (2) 0.0024 (19) −0.001 (2)
C6 0.016 (3) 0.010 (3) 0.010 (2) −0.002 (2) 0.001 (2) −0.001 (2)
C7 0.018 (3) 0.011 (3) 0.008 (2) 0.003 (2) 0.0023 (19) −0.0003 (19)
C8 0.026 (3) 0.012 (3) 0.015 (3) 0.000 (2) 0.009 (2) 0.003 (2)
C9 0.012 (3) 0.008 (3) 0.015 (2) −0.003 (2) 0.004 (2) 0.002 (2)
C10 0.011 (3) 0.011 (3) 0.013 (2) −0.001 (2) −0.001 (2) 0.001 (2)
O1 0.052 (3) 0.010 (2) 0.0124 (19) −0.0062 (18) −0.0007 (18) 0.0020 (15)
O2 0.030 (2) 0.014 (2) 0.0091 (17) −0.0080 (16) 0.0047 (15) −0.0025 (15)
O3 0.026 (2) 0.015 (2) 0.0093 (17) 0.0017 (16) 0.0018 (14) −0.0024 (15)
O4 0.039 (2) 0.0067 (19) 0.0121 (18) 0.0035 (17) 0.0004 (16) −0.0005 (15)
O5 0.035 (2) 0.009 (2) 0.0194 (19) 0.0001 (16) 0.0143 (17) −0.0007 (16)
O6 0.026 (2) 0.014 (2) 0.0124 (18) −0.0004 (16) 0.0070 (15) 0.0023 (15)
O7 0.026 (2) 0.015 (2) 0.0091 (17) −0.0094 (16) 0.0056 (15) −0.0020 (15)
O8 0.029 (2) 0.013 (2) 0.0175 (19) −0.0060 (16) 0.0063 (16) −0.0095 (16)
N1 0.022 (2) 0.011 (2) 0.011 (2) −0.0014 (19) 0.0023 (17) −0.0002 (18)
N2 0.024 (2) 0.013 (2) 0.008 (2) −0.0016 (18) 0.0048 (17) −0.0012 (17)
N3 0.023 (2) 0.010 (2) 0.010 (2) 0.0014 (18) 0.0071 (18) 0.0000 (17)
N4 0.022 (2) 0.007 (2) 0.015 (2) 0.0018 (18) 0.0071 (18) 0.0032 (17)
O1W 0.019 (2) 0.032 (2) 0.015 (2) −0.0022 (18) 0.0042 (15) −0.0015 (18)
O2W 0.039 (3) 0.052 (3) 0.014 (2) 0.024 (2) 0.0048 (18) 0.008 (2)

Geometric parameters (Å, º)

Yb1—O2 2.224 (4) C4—N2 1.385 (6)
Yb1—O6 2.251 (3) C4—C5 1.504 (7)
Yb1—O3 2.261 (3) C5—O3 1.251 (6)
Yb1—O7 2.263 (3) C5—O4 1.255 (6)
Yb1—O2W 2.293 (4) C6—O6 1.249 (6)
Yb1—O1W 2.361 (4) C6—O5 1.262 (6)
Yb1—O7i 2.389 (3) C6—C7 1.496 (7)
Yb1—O8i 2.594 (4) C7—N3 1.375 (6)
Yb1—C10i 2.895 (5) C7—C9 1.393 (7)
Yb1—Yb1i 3.8682 (5) C8—N3 1.326 (7)
Ag1—N4ii 2.119 (4) C8—N4 1.336 (7)
Ag1—O5 2.157 (4) C8—H8 0.9300
Ag2—N1 2.159 (4) C9—N4 1.381 (6)
Ag2—O4ii 2.160 (4) C9—C10 1.461 (7)
Ag2—Ag3iii 3.3055 (6) C10—O8 1.251 (6)
Ag3—N2iv 2.107 (4) C10—O7 1.283 (6)
Ag3—N3 2.127 (4) C10—Yb1i 2.895 (5)
Ag3—Ag3iv 3.0969 (9) O4—Ag2vi 2.160 (3)
Ag3—Ag2v 3.3055 (6) O7—Yb1i 2.389 (3)
C1—O1 1.228 (6) O8—Yb1i 2.594 (4)
C1—O2 1.277 (6) N2—Ag3iv 2.107 (4)
C1—C2 1.500 (7) N4—Ag1vi 2.119 (4)
C2—N1 1.375 (6) O1W—H1W 0.82 (2)
C2—C4 1.382 (7) O1W—H2W 0.81 (2)
C3—N2 1.331 (7) O2W—H4W 0.81 (2)
C3—N1 1.339 (7) O2W—H3W 0.81 (2)
C3—H3 0.9300
O2—Yb1—O6 89.21 (13) N1—C2—C4 108.3 (4)
O2—Yb1—O3 78.74 (13) N1—C2—C1 117.3 (4)
O6—Yb1—O3 77.75 (13) C4—C2—C1 134.4 (5)
O2—Yb1—O7 159.69 (12) N2—C3—N1 113.8 (4)
O6—Yb1—O7 77.17 (13) N2—C3—H3 123.1
O3—Yb1—O7 83.64 (13) N1—C3—H3 123.1
O2—Yb1—O2W 98.34 (17) C2—C4—N2 107.8 (4)
O6—Yb1—O2W 67.73 (13) C2—C4—C5 134.4 (4)
O3—Yb1—O2W 145.43 (14) N2—C4—C5 117.6 (4)
O7—Yb1—O2W 90.43 (17) O3—C5—O4 124.5 (5)
O2—Yb1—O1W 86.59 (14) O3—C5—C4 120.0 (4)
O6—Yb1—O1W 147.79 (13) O4—C5—C4 115.5 (4)
O3—Yb1—O1W 70.10 (13) O6—C6—O5 122.3 (5)
O7—Yb1—O1W 96.89 (14) O6—C6—C7 121.2 (4)
O2W—Yb1—O1W 144.46 (13) O5—C6—C7 116.5 (4)
O2—Yb1—O7i 132.22 (12) N3—C7—C9 107.8 (4)
O6—Yb1—O7i 129.72 (12) N3—C7—C6 118.5 (4)
O3—Yb1—O7i 129.53 (13) C9—C7—C6 133.6 (4)
O7—Yb1—O7i 67.50 (13) N3—C8—N4 114.5 (5)
O2W—Yb1—O7i 77.69 (15) N3—C8—H8 122.8
O1W—Yb1—O7i 73.28 (13) N4—C8—H8 122.8
O2—Yb1—O8i 81.79 (11) N4—C9—C7 107.9 (4)
O6—Yb1—O8i 136.44 (12) N4—C9—C10 119.2 (4)
O3—Yb1—O8i 140.18 (13) C7—C9—C10 132.8 (4)
O7—Yb1—O8i 118.45 (11) O8—C10—O7 117.8 (4)
O2W—Yb1—O8i 71.58 (14) O8—C10—C9 121.4 (5)
O1W—Yb1—O8i 74.40 (13) O7—C10—C9 120.7 (4)
O7i—Yb1—O8i 51.43 (11) O8—C10—Yb1i 63.6 (3)
O2—Yb1—C10i 106.65 (13) O7—C10—Yb1i 54.5 (2)
O6—Yb1—C10i 140.62 (13) C9—C10—Yb1i 171.2 (4)
O3—Yb1—C10i 139.85 (13) C1—O2—Yb1 139.5 (3)
O7—Yb1—C10i 93.32 (13) C5—O3—Yb1 140.0 (3)
O2W—Yb1—C10i 74.33 (14) C5—O4—Ag2vi 119.8 (3)
O1W—Yb1—C10i 70.57 (13) C6—O5—Ag1 113.8 (3)
O7i—Yb1—C10i 25.90 (12) C6—O6—Yb1 145.0 (3)
O8i—Yb1—C10i 25.60 (12) C10—O7—Yb1 147.5 (3)
O2—Yb1—Yb1i 164.48 (9) C10—O7—Yb1i 99.6 (3)
O6—Yb1—Yb1i 105.35 (9) Yb1—O7—Yb1i 112.50 (13)
O3—Yb1—Yb1i 109.17 (9) C10—O8—Yb1i 90.8 (3)
O7—Yb1—Yb1i 34.79 (8) C3—N1—C2 105.0 (4)
O2W—Yb1—Yb1i 82.69 (13) C3—N1—Ag2 129.5 (4)
O1W—Yb1—Yb1i 83.82 (10) C2—N1—Ag2 123.7 (3)
O7i—Yb1—Yb1i 32.71 (8) C3—N2—C4 105.0 (4)
O8i—Yb1—Yb1i 83.89 (8) C3—N2—Ag3iv 127.3 (3)
C10i—Yb1—Yb1i 58.56 (10) C4—N2—Ag3iv 126.3 (3)
N4ii—Ag1—O5 157.46 (14) C8—N3—C7 105.3 (4)
N1—Ag2—O4ii 159.80 (14) C8—N3—Ag3 128.6 (3)
N1—Ag2—Ag3iii 70.99 (11) C7—N3—Ag3 125.5 (3)
O4ii—Ag2—Ag3iii 100.58 (10) C8—N4—C9 104.6 (4)
N2iv—Ag3—N3 176.23 (17) C8—N4—Ag1vi 123.2 (3)
N2iv—Ag3—Ag3iv 98.55 (12) C9—N4—Ag1vi 132.2 (3)
N3—Ag3—Ag3iv 79.79 (12) Yb1—O1W—H1W 116 (5)
N2iv—Ag3—Ag2v 89.30 (12) Yb1—O1W—H2W 126 (5)
N3—Ag3—Ag2v 89.89 (11) H1W—O1W—H2W 105 (6)
Ag3iv—Ag3—Ag2v 140.588 (19) Yb1—O2W—H4W 140 (6)
O1—C1—O2 122.7 (5) Yb1—O2W—H3W 128 (6)
O1—C1—C2 118.0 (5) H4W—O2W—H3W 90 (7)
O2—C1—C2 119.2 (4)

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) −x, y, −z+3/2; (v) x−1/2, y−1/2, z; (vi) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O8iii 0.82 (2) 2.11 (5) 2.751 (5) 136 (6)
O1W—H2W···O2vii 0.81 (2) 2.03 (3) 2.823 (5) 165 (6)
O2W—H4W···O1viii 0.81 (2) 1.88 (4) 2.634 (5) 154 (8)

Symmetry codes: (iii) x+1/2, y+1/2, z; (vii) −x+1/2, −y+1/2, −z+1; (viii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2366).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.
  3. Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun pp. 4700–4702. [DOI] [PubMed]
  7. Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun 13, 1299–1303.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812031303/rk2366sup1.cif

e-68-m1073-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031303/rk2366Isup2.hkl

e-68-m1073-Isup2.hkl (137.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES