Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 21;68(Pt 8):m1093–m1094. doi: 10.1107/S1600536812031753

Triclinic modification of diaqua­bis­(5-carb­oxy-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)iron(II)

Eriko Ohshima a, Kazuki Yoshida a, Kazumasa Sugiyama b,*, Hidehiro Uekusa c
PMCID: PMC3414146  PMID: 22904753

Abstract

The title compound, [Fe(C5H3N2O4)2(H2O)2], is a triclinic modification of a monoclinic form recently reported by Du et al. [Acta Cryst. (2011), E67, m997]. The FeII ion lies at an inversion center and is coordinated by two N and two O atoms from two 5-carb­oxy-1H-imidazole-4-carboxyl­ate ligands in trans positions, together with two water mol­ecules, completing a slightly distorted octahedral coordination. Inter­molecular N—H⋯O hydrogen bonding between the N—H group of the imidazole ring and the deprotonated carboxyl­ate group builds a chain of 5-carb­oxy-1H-imidazole-4-carboxyl­ate anions along the [101] direction. The water molecules form intermolecular hydrogen bonds to O—C and O=C sites of the carboxylate group in adjacent layers.

Related literature  

For the structural diversity of the coordination architecture of the metal complexes of 4,5-imidazole­dicarb­oxy­lic acid, see Shimizu et al. (2004); Fang & Zhang (2006). For the isotypic Co analog, see: Li et al. (2011). For the coexisting phase, see Yakubovich et al. (1995). For the monoclinic form, see: Du et al. (2011).graphic file with name e-68-m1093-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C5H3N2O4)2(H2O)2]

  • M r = 402.08

  • Triclinic, Inline graphic

  • a = 4.9290 (5) Å

  • b = 6.4258 (6) Å

  • c = 12.2812 (10) Å

  • α = 78.161 (3)°

  • β = 85.175 (3)°

  • γ = 72.776 (4)°

  • V = 363.52 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 K

  • 0.15 × 0.13 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) T min = 0.852, T max = 0.898

  • 3655 measured reflections

  • 1668 independent reflections

  • 1066 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.075

  • S = 0.92

  • 1668 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812031753/fj2571sup1.cif

e-68-m1093-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031753/fj2571Isup2.hkl

e-68-m1093-Isup2.hkl (80.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031753/fj2571Isup6.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O3i 0.86 (3) 1.86 (3) 2.705 (3) 165 (3)
O5—H2W⋯O4ii 0.79 (3) 1.95 (3) 2.702 (3) 158 (3)
N2—H2A⋯O1iii 0.86 1.95 2.767 (3) 157
O2—H2⋯O3 0.82 1.85 2.665 (3) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was supported financially by the Inter-University Cooperative Research Program of the Institute for Materials Research, Tohoku University (proposal No. 11 K0091).

supplementary crystallographic information

Comment

A number of studies on transition metal complexes with carboxylate ligands are reported in the literature. Recently, imidazole dicarboxylate has been recognized as an efficient building block, since it shows two different coordination modes to bridge or chelate metals through the carboxyl oxygen atoms and heterocyclic nitrogen donor. The crystal of diaquabis(5-carboxy-1H-imidazole-4-carboxylato-κ2N3,O)iron(II) is isostructural with Co analog 4,5-dicarboxyimidazole complexes (Li et al., 2011). Iron(II) ion lies at the inversion center that is coordinated by two 1H-imidazole-4,5-dicarboxylate monoanionic ligands at the trans positions and two water molecules in a distorted octahedral geometry. A previous report described a monoclinic metal complex with a similar chemical composition (Du et al., 2011). This structural diversity is attributed to the different types of coordination architectures of hydrogen bonding between molecules. The intermolecular hydrogen bonding between the N—H site of an imidazole ring and C═O site of a deprotonated carboxylate in the title compound builds a unique chain of 5-carboxy-1H- imidazole-4-carboxylate anion. The chain structures are further linked into a three-dimensional supermolecular framework through O—H···O hydrogen bonding interactions. The average distance of Fe—O agrees well with that of the monoclinic phase. Nevertheless, the average distance of Fe—N (2.165 Å) is longer than that in the monoclinic analog (2.147 Å).

Experimental

A mixture of FeSO4. 7H2O (13.33 mmol), 4,5-imidazoledicarboxamide (22.21 mmol), 85.0% H3PO4 (8.89 mmol), and H2O (8 ml) was placed in a 30 ml Teflon beaker. It was sealed in a stainless-steel reactor, heated to 453 K for 96 h under autogenous pressure, and then, slowly cooled to room temperature. Pale-yellow block crystals of the title complex were isolated, washed with distilled water, and dried in air. It may be added that NH4FePO4.H2O: see Yakubovich et al. (1995), Pale-green plate crystals were also crystallized in the present synthetic condition. This supports the hydrolysis of the 4,5-imidazoledicarboxamide during the synthesis.

Refinement

H atoms attached to C and N atoms were placed at calculated positions (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C, N). The carboxy H was located at the idealized position (O—H = 0.82 Å) and refined as a riding atom with Uiso(H) = 1.5 Ueq(O). On the other hand, H atoms of water molecules were located in a difference map, and their positions were subsequently refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[Fe(C5H3N2O4)2(H2O)2] Z = 1
Mr = 402.08 F(000) = 204
Triclinic, P1 Dx = 1.837 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 4.9290 (5) Å Cell parameters from 3918 reflections
b = 6.4258 (6) Å θ = 3.4–30.5°
c = 12.2812 (10) Å µ = 1.10 mm1
α = 78.161 (3)° T = 298 K
β = 85.175 (3)° Block, yellow
γ = 72.776 (4)° 0.15 × 0.13 × 0.10 mm
V = 363.52 (6) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 1668 independent reflections
Radiation source: fine-focus sealed tube 1066 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 100 pixels mm-1 θmax = 27.5°, θmin = 3.4°
ω scans h = −6→6
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) k = −8→8
Tmin = 0.852, Tmax = 0.898 l = −15→15
3655 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0339P)2] where P = (Fo2 + 2Fc2)/3
1668 reflections (Δ/σ)max < 0.001
122 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.0000 0.0000 0.0000 0.0224 (2)
O5 0.3576 (5) −0.2580 (4) 0.06771 (17) 0.0314 (5)
H1W 0.297 (7) −0.370 (6) 0.097 (2) 0.047*
H2W 0.489 (7) −0.278 (6) 0.026 (3) 0.047*
N1 0.1698 (5) −0.0023 (4) −0.16828 (18) 0.0237 (5)
C1 0.3247 (6) 0.0920 (5) −0.2439 (2) 0.0262 (7)
H1 0.4099 0.1967 −0.2323 0.031*
N2 0.3439 (5) 0.0184 (4) −0.33916 (18) 0.0277 (6)
H2A 0.4346 0.0598 −0.3986 0.033*
C2 0.1936 (6) −0.1351 (5) −0.3258 (2) 0.0233 (7)
C3 0.0869 (6) −0.1468 (4) −0.2178 (2) 0.0216 (6)
C4 0.1805 (6) −0.2443 (5) −0.4200 (2) 0.0279 (7)
O1 0.3050 (5) −0.2040 (4) −0.50906 (15) 0.0409 (6)
O2 0.0250 (6) −0.3870 (4) −0.40319 (18) 0.0551 (7)
H2 −0.0479 −0.3917 −0.3405 0.083*
C5 −0.0966 (6) −0.2761 (5) −0.1514 (2) 0.0236 (6)
O3 −0.1770 (4) −0.4089 (3) −0.19419 (15) 0.0328 (5)
O4 −0.1626 (4) −0.2417 (3) −0.05321 (14) 0.0262 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0257 (4) 0.0281 (4) 0.0170 (3) −0.0135 (3) 0.0060 (3) −0.0062 (3)
O5 0.0304 (14) 0.0328 (14) 0.0320 (12) −0.0157 (12) 0.0077 (9) −0.0019 (10)
N1 0.0283 (14) 0.0267 (14) 0.0211 (11) −0.0140 (12) 0.0014 (10) −0.0070 (10)
C1 0.0309 (18) 0.0317 (18) 0.0225 (14) −0.0184 (15) 0.0019 (13) −0.0067 (13)
N2 0.0314 (15) 0.0371 (16) 0.0195 (11) −0.0195 (13) 0.0077 (10) −0.0058 (11)
C2 0.0284 (17) 0.0243 (17) 0.0194 (14) −0.0103 (14) 0.0006 (12) −0.0056 (12)
C3 0.0225 (16) 0.0235 (16) 0.0191 (13) −0.0078 (14) 0.0012 (11) −0.0034 (12)
C4 0.0343 (19) 0.0304 (18) 0.0244 (16) −0.0168 (16) 0.0028 (13) −0.0077 (13)
O1 0.0533 (16) 0.0563 (16) 0.0234 (11) −0.0307 (14) 0.0124 (11) −0.0134 (11)
O2 0.073 (2) 0.0626 (18) 0.0436 (14) −0.0405 (16) 0.0158 (13) −0.0184 (14)
C5 0.0250 (17) 0.0234 (17) 0.0239 (15) −0.0083 (14) −0.0014 (12) −0.0052 (13)
O3 0.0458 (14) 0.0345 (13) 0.0281 (10) −0.0261 (12) 0.0047 (10) −0.0087 (9)
O4 0.0302 (12) 0.0313 (12) 0.0218 (10) −0.0179 (11) 0.0088 (9) −0.0057 (9)

Geometric parameters (Å, º)

Fe1—O5 2.121 (2) C1—H1 0.9300
Fe1—O5i 2.121 (2) N2—C2 1.377 (3)
Fe1—N1i 2.165 (2) N2—H2A 0.8600
Fe1—N1 2.165 (2) C2—C3 1.380 (3)
Fe1—O4i 2.1732 (16) C2—C4 1.487 (3)
Fe1—O4 2.1732 (16) C3—C5 1.489 (4)
O5—H1W 0.86 (3) C4—O1 1.226 (3)
O5—H2W 0.79 (3) C4—O2 1.335 (3)
N1—C1 1.317 (3) O2—H2 0.8200
N1—C3 1.377 (3) C5—O3 1.257 (3)
C1—N2 1.336 (3) C5—O4 1.269 (3)
O5—Fe1—O5i 180.00 (11) N1—C1—N2 111.5 (2)
O5—Fe1—N1i 87.70 (9) N1—C1—H1 124.3
O5i—Fe1—N1i 92.30 (9) N2—C1—H1 124.3
O5—Fe1—N1 92.30 (9) C1—N2—C2 108.2 (2)
O5i—Fe1—N1 87.70 (9) C1—N2—H2A 125.9
N1i—Fe1—N1 180.00 (16) C2—N2—H2A 125.9
O5—Fe1—O4i 90.06 (7) N2—C2—C3 105.0 (2)
O5i—Fe1—O4i 89.94 (7) N2—C2—C4 119.4 (2)
N1i—Fe1—O4i 76.79 (7) C3—C2—C4 135.6 (2)
N1—Fe1—O4i 103.21 (7) N1—C3—C2 109.3 (2)
O5—Fe1—O4 89.94 (7) N1—C3—C5 118.0 (2)
O5i—Fe1—O4 90.06 (7) C2—C3—C5 132.7 (2)
N1i—Fe1—O4 103.21 (7) O1—C4—O2 121.8 (2)
N1—Fe1—O4 76.79 (7) O1—C4—C2 121.5 (2)
O4i—Fe1—O4 180.00 (12) O2—C4—C2 116.7 (2)
Fe1—O5—H1W 107 (2) C4—O2—H2 109.5
Fe1—O5—H2W 113 (3) O3—C5—O4 124.3 (3)
H1W—O5—H2W 117 (3) O3—C5—C3 119.6 (2)
C1—N1—C3 106.0 (2) O4—C5—C3 116.1 (2)
C1—N1—Fe1 141.85 (18) C5—O4—Fe1 116.99 (16)
C3—N1—Fe1 112.14 (17)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1W···O3ii 0.86 (3) 1.86 (3) 2.705 (3) 165 (3)
O5—H2W···O4iii 0.79 (3) 1.95 (3) 2.702 (3) 158 (3)
N2—H2A···O1iv 0.86 1.95 2.767 (3) 157
O2—H2···O3 0.82 1.85 2.665 (3) 174

Symmetry codes: (ii) −x, −y−1, −z; (iii) x+1, y, z; (iv) −x+1, −y, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2571).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Du, C.-J., Song, X.-H., Wang, L.-S. & Du, C.-L. (2011). Acta Cryst. E67, m997. [DOI] [PMC free article] [PubMed]
  3. Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801–4810. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Li, J.-X., Du, Z.-X., Wang, L.-Z. & Huang, W.-P. (2011). Inorg. Chim. Acta, 376, 479–485.
  7. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shimizu, E., Kondo, M., Ruwa, Y., Sarker, R. P., Miyazawa, M., Ueno, M., Naito, T., Maeda, K. & Uchida, F. (2004). Inorg. Chem. Commun. 7, 1191–1194.
  10. Yakubovich, O. V., Karinova, O. V., Mel’nikov, O. K. & Urusov, V. S. (1995). Dokl. Akad. Nauk, 342, 40–44.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812031753/fj2571sup1.cif

e-68-m1093-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031753/fj2571Isup2.hkl

e-68-m1093-Isup2.hkl (80.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031753/fj2571Isup6.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES