Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 21;68(Pt 8):m1101–m1102. doi: 10.1107/S1600536812032229

(Ethano­lato-κO)[N′-(3-meth­oxy-2-oxidobenzyl­idene-κO 2)benzo­hydrazidato-κ2 N′,O]oxidovanadium(V)

Xiao-Hua Chen a,*, Qiong-Jie Wu b, Li-Juan Chen c, Ming-Xing Yang c
PMCID: PMC3414151  PMID: 22904758

Abstract

In the title complex, [V(C15H12N2O4)(C2H5O)O], the VV ion is coordinated by an oxide O atom, an ethano­late anion and two O atoms and one N atom from the tridentate benzo­hydrazidate dianion in a distorted square-pyramidal geometry; the V atom is displaced by 0.4748 (8) Å from the basal plane towards the axial oxide O atom. An intra­molecular O—H⋯N hydrogen bond occurs in the benzohydrazidate ligand. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal.

Related literature  

For general background to the coordination chemistry and biochemisty of vanadium, see: Deng et al. (2007); Monfared et al. (2011); Sutradhar et al. (2006). For related structures, see: Chen et al. (2004); Liu et al. (2006); Ghosh et al. (2007); Seena et al. (2008). For the synthesis, see: Gao et al. (1998); Huang et al. (2010).graphic file with name e-68-m1101-scheme1.jpg

Experimental  

Crystal data  

  • [V(C15H12N2O4)(C2H5O)O]

  • M r = 396.27

  • Monoclinic, Inline graphic

  • a = 15.808 (5) Å

  • b = 6.606 (2) Å

  • c = 16.693 (8) Å

  • β = 94.107 (16)°

  • V = 1738.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.37 × 0.25 × 0.13 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) T min = 0.834, T max = 0.924

  • 15371 measured reflections

  • 3968 independent reflections

  • 3243 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.105

  • S = 1.08

  • 3968 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032229/xu5587sup1.cif

e-68-m1101-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032229/xu5587Isup2.hkl

e-68-m1101-Isup2.hkl (194.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

V1—N1 2.1029 (15)
V1—O1 1.8325 (14)
V1—O3 1.9453 (14)
V1—O5 1.5762 (15)
V1—O6 1.7423 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯N2 0.82 1.86 2.581 (2) 147
C8—H8A⋯O4i 0.93 2.31 3.236 (2) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Foundation of Fujian Educational Committee, China (grant No. JB10007).

supplementary crystallographic information

Comment

In the recent years, the coordination chemistry and biochemisty of vanadium has received considerable attention (Deng et al., 2007; Monfared et al., 2011; Sutradhar et al., 2006). Generally, a tridentate hydrazone ligand is coordinated to the vanadium through O and N atoms, similar to those of the biological system. So, it is important to intensively study the relation ship of the syntheses and structural properties of vanadium hydrazone complexes.

In the title complex, [VO(C15H12N2O4)(C2H5O)], the VV ion exists in a distorted square-pyramidal coordination geometry. Three donor atoms (O1, O3 and N1) of the hydrozone ligand and O6 atom from the ethanol group define the coordination basal plane, with a maximum mean plane deviation of 0.030 (1) Å. The V atom is displaced towards the axial oxo O atom by 0.4748 (8) Å from the basal plane. Bond distances (Table 1) and bond angles around V1 atom are compared with those in reported oxovanadium complexes (Chen et al., 2004; Seena et al., 2008; Liu et al.,2006; Ghosh et al., 2007). In the crystal structure there are the intramolecular O—H···N hydrogen bonding and intermolecular C—H···O hydrogen bonding (Table 2).

Experimental

VO(acac)2 (acac = acetylacetonate) was synthesized according to the reported method of Gao et al. (1998). The synthesis of the hydrazone ligand has already been reported in the literature (Huang et al., 2010).

The title compound was prepared by reacting H2L (0.1 mmol) with VO(acac)2 (0.1 mmol) in ethanol solvent with stirring. The solution was filtered and allowed to stand at room temperature for one week, and dark-red crystals of complex (I) were obtained.

Refinement

All H atoms were placed in idealized positions and treated as riding with O—H = 0.82 Å, C—H = 0.93–0.97 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. A dashed line indicates the intramoleculat hydrogen bonding.

Crystal data

[V(C15H12N2O4)(C2H5O)O] F(000) = 816
Mr = 396.27 Dx = 1.514 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3243 reflections
a = 15.808 (5) Å θ = 3.3–27.5°
b = 6.606 (2) Å µ = 0.61 mm1
c = 16.693 (8) Å T = 293 K
β = 94.107 (16)° Prism, dark-red
V = 1738.6 (12) Å3 0.37 × 0.25 × 0.13 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3968 independent reflections
Radiation source: fine-focus sealed tube 3243 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) h = −19→20
Tmin = 0.834, Tmax = 0.924 k = −8→7
15371 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.3657P] where P = (Fo2 + 2Fc2)/3
3968 reflections (Δ/σ)max = 0.001
237 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.327165 (17) 0.03858 (5) 0.379657 (17) 0.03227 (11)
O1 0.30812 (8) 0.2237 (2) 0.45811 (8) 0.0442 (3)
O2 0.35894 (10) 0.5229 (2) 0.55498 (9) 0.0496 (4)
O3 0.28941 (8) −0.2038 (2) 0.32138 (8) 0.0407 (3)
O4 0.04552 (9) −0.2451 (3) 0.20545 (12) 0.0782 (6)
H4B 0.0647 −0.1583 0.2368 0.117*
O5 0.36775 (9) 0.1609 (2) 0.31098 (9) 0.0516 (4)
O6 0.40591 (8) −0.1056 (2) 0.43088 (8) 0.0435 (3)
N1 0.19698 (9) 0.0812 (2) 0.34927 (8) 0.0328 (3)
N2 0.15908 (9) −0.0609 (2) 0.29735 (9) 0.0372 (4)
C1 0.25579 (11) 0.3816 (3) 0.46463 (10) 0.0357 (4)
C2 0.17609 (11) 0.3877 (3) 0.42268 (10) 0.0358 (4)
C3 0.12022 (13) 0.5497 (3) 0.43503 (12) 0.0472 (5)
H3A 0.0668 0.5530 0.4077 0.057*
C4 0.14474 (15) 0.7014 (4) 0.48709 (13) 0.0546 (6)
H4A 0.1078 0.8079 0.4952 0.065*
C5 0.22441 (14) 0.6982 (3) 0.52816 (12) 0.0488 (5)
H5A 0.2402 0.8029 0.5633 0.059*
C6 0.28039 (13) 0.5414 (3) 0.51739 (11) 0.0394 (4)
C7 0.38639 (16) 0.6801 (4) 0.60921 (14) 0.0617 (6)
H7A 0.4451 0.6602 0.6263 0.092*
H7B 0.3531 0.6772 0.6551 0.092*
H7C 0.3795 0.8087 0.5828 0.092*
C8 0.14914 (11) 0.2298 (3) 0.36837 (11) 0.0366 (4)
H8A 0.0938 0.2341 0.3453 0.044*
C9 0.21338 (11) −0.2052 (3) 0.28567 (10) 0.0342 (4)
C10 0.18783 (11) −0.3739 (3) 0.23241 (10) 0.0353 (4)
C11 0.10557 (12) −0.3869 (4) 0.19530 (13) 0.0471 (5)
C12 0.08370 (15) −0.5527 (4) 0.14672 (14) 0.0570 (6)
H12A 0.0287 −0.5640 0.1234 0.068*
C13 0.14231 (15) −0.6997 (4) 0.13284 (13) 0.0541 (5)
H13A 0.1269 −0.8090 0.0998 0.065*
C14 0.22383 (15) −0.6862 (3) 0.16759 (13) 0.0509 (5)
H14A 0.2636 −0.7851 0.1575 0.061*
C15 0.24613 (13) −0.5261 (3) 0.21720 (11) 0.0409 (4)
H15A 0.3010 −0.5186 0.2411 0.049*
C16 0.47854 (16) −0.2211 (5) 0.41625 (15) 0.0726 (8)
H16A 0.4651 −0.3632 0.4225 0.087*
H16B 0.5233 −0.1876 0.4569 0.087*
C17 0.51099 (16) −0.1928 (5) 0.33759 (16) 0.0734 (8)
H17A 0.5644 −0.2613 0.3359 0.110*
H17B 0.5186 −0.0510 0.3279 0.110*
H17C 0.4713 −0.2476 0.2970 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.02768 (17) 0.03613 (19) 0.03235 (17) 0.00497 (12) −0.00236 (11) −0.00102 (12)
O1 0.0396 (7) 0.0454 (8) 0.0458 (7) 0.0120 (6) −0.0079 (5) −0.0127 (6)
O2 0.0487 (8) 0.0503 (8) 0.0481 (8) 0.0044 (7) −0.0073 (6) −0.0160 (7)
O3 0.0343 (7) 0.0413 (7) 0.0453 (7) 0.0066 (6) −0.0066 (5) −0.0083 (6)
O4 0.0364 (8) 0.0960 (14) 0.0991 (14) 0.0110 (9) −0.0166 (8) −0.0531 (11)
O5 0.0450 (8) 0.0587 (10) 0.0510 (8) 0.0002 (7) 0.0032 (6) 0.0117 (7)
O6 0.0391 (7) 0.0507 (8) 0.0391 (7) 0.0148 (6) −0.0069 (5) −0.0039 (6)
N1 0.0296 (7) 0.0363 (8) 0.0319 (7) 0.0023 (6) −0.0013 (6) −0.0012 (6)
N2 0.0315 (8) 0.0398 (9) 0.0393 (8) 0.0004 (7) −0.0037 (6) −0.0058 (7)
C1 0.0397 (9) 0.0352 (9) 0.0327 (9) 0.0047 (8) 0.0053 (7) −0.0010 (7)
C2 0.0365 (9) 0.0382 (10) 0.0329 (9) 0.0065 (8) 0.0047 (7) 0.0011 (7)
C3 0.0441 (11) 0.0514 (13) 0.0454 (11) 0.0150 (9) −0.0011 (9) −0.0037 (9)
C4 0.0640 (14) 0.0497 (13) 0.0499 (12) 0.0238 (11) 0.0034 (10) −0.0062 (10)
C5 0.0661 (13) 0.0419 (11) 0.0384 (10) 0.0080 (10) 0.0030 (9) −0.0084 (9)
C6 0.0464 (11) 0.0398 (10) 0.0319 (9) 0.0032 (8) 0.0024 (7) −0.0022 (8)
C7 0.0697 (15) 0.0599 (15) 0.0529 (13) 0.0004 (12) −0.0131 (11) −0.0198 (11)
C8 0.0298 (8) 0.0419 (10) 0.0376 (9) 0.0043 (8) −0.0002 (7) 0.0021 (8)
C9 0.0347 (9) 0.0370 (10) 0.0306 (8) 0.0002 (8) 0.0003 (7) 0.0020 (7)
C10 0.0381 (9) 0.0386 (10) 0.0294 (8) −0.0028 (8) 0.0037 (7) 0.0005 (7)
C11 0.0383 (10) 0.0558 (12) 0.0471 (11) −0.0018 (9) 0.0030 (8) −0.0124 (10)
C12 0.0467 (12) 0.0691 (16) 0.0548 (13) −0.0144 (11) 0.0012 (10) −0.0193 (11)
C13 0.0692 (15) 0.0495 (13) 0.0442 (11) −0.0149 (11) 0.0076 (10) −0.0117 (9)
C14 0.0667 (14) 0.0398 (11) 0.0464 (11) 0.0052 (10) 0.0061 (10) −0.0048 (9)
C15 0.0467 (11) 0.0382 (10) 0.0376 (10) 0.0027 (8) 0.0008 (8) 0.0014 (8)
C16 0.0608 (15) 0.094 (2) 0.0636 (15) 0.0445 (15) 0.0118 (12) 0.0132 (14)
C17 0.0587 (15) 0.087 (2) 0.0769 (18) 0.0242 (14) 0.0189 (13) 0.0034 (15)

Geometric parameters (Å, º)

V1—N1 2.1029 (15) C5—C6 1.382 (3)
V1—O1 1.8325 (14) C5—H5A 0.9300
V1—O3 1.9453 (14) C7—H7A 0.9600
V1—O5 1.5762 (15) C7—H7B 0.9600
V1—O6 1.7423 (13) C7—H7C 0.9600
O1—C1 1.340 (2) C8—H8A 0.9300
O2—C6 1.356 (2) C9—C10 1.464 (3)
O2—C7 1.424 (3) C10—C15 1.399 (3)
O3—C9 1.303 (2) C10—C11 1.402 (3)
O4—C11 1.353 (3) C11—C12 1.391 (3)
O4—H4B 0.8200 C12—C13 1.373 (3)
O6—C16 1.414 (2) C12—H12A 0.9300
N1—C8 1.293 (2) C13—C14 1.378 (3)
N1—N2 1.385 (2) C13—H13A 0.9300
N2—C9 1.307 (2) C14—C15 1.374 (3)
C1—C2 1.397 (3) C14—H14A 0.9300
C1—C6 1.411 (3) C15—H15A 0.9300
C2—C3 1.412 (3) C16—C17 1.456 (3)
C2—C8 1.427 (3) C16—H16A 0.9700
C3—C4 1.364 (3) C16—H16B 0.9700
C3—H3A 0.9300 C17—H17A 0.9600
C4—C5 1.390 (3) C17—H17B 0.9600
C4—H4A 0.9300 C17—H17C 0.9600
O5—V1—O6 108.88 (8) O2—C7—H7C 109.5
O5—V1—O1 105.89 (9) H7A—C7—H7C 109.5
O6—V1—O1 99.34 (7) H7B—C7—H7C 109.5
O5—V1—O3 100.64 (8) N1—C8—C2 123.93 (16)
O6—V1—O3 88.75 (6) N1—C8—H8A 118.0
O1—V1—O3 147.85 (6) C2—C8—H8A 118.0
O5—V1—N1 101.43 (7) O3—C9—N2 121.40 (17)
O6—V1—N1 147.57 (7) O3—C9—C10 119.24 (16)
O1—V1—N1 82.81 (6) N2—C9—C10 119.35 (16)
O3—V1—N1 74.32 (6) C15—C10—C11 118.54 (18)
C1—O1—V1 135.34 (12) C15—C10—C9 120.02 (17)
C6—O2—C7 117.11 (17) C11—C10—C9 121.44 (17)
C9—O3—V1 118.32 (12) O4—C11—C12 118.07 (19)
C11—O4—H4B 109.5 O4—C11—C10 122.61 (19)
C16—O6—V1 140.40 (14) C12—C11—C10 119.3 (2)
C8—N1—N2 115.75 (15) C13—C12—C11 120.8 (2)
C8—N1—V1 128.45 (12) C13—C12—H12A 119.6
N2—N1—V1 115.61 (11) C11—C12—H12A 119.6
C9—N2—N1 109.18 (14) C12—C13—C14 120.3 (2)
O1—C1—C2 121.40 (17) C12—C13—H13A 119.8
O1—C1—C6 119.24 (17) C14—C13—H13A 119.8
C2—C1—C6 119.32 (17) C15—C14—C13 119.7 (2)
C1—C2—C3 119.96 (18) C15—C14—H14A 120.1
C1—C2—C8 121.00 (17) C13—C14—H14A 120.1
C3—C2—C8 119.03 (17) C14—C15—C10 121.2 (2)
C4—C3—C2 119.83 (19) C14—C15—H15A 119.4
C4—C3—H3A 120.1 C10—C15—H15A 119.4
C2—C3—H3A 120.1 O6—C16—C17 115.4 (2)
C3—C4—C5 120.60 (19) O6—C16—H16A 108.4
C3—C4—H4A 119.7 C17—C16—H16A 108.4
C5—C4—H4A 119.7 O6—C16—H16B 108.4
C6—C5—C4 120.9 (2) C17—C16—H16B 108.4
C6—C5—H5A 119.6 H16A—C16—H16B 107.5
C4—C5—H5A 119.6 C16—C17—H17A 109.5
O2—C6—C5 125.51 (18) C16—C17—H17B 109.5
O2—C6—C1 115.07 (17) H17A—C17—H17B 109.5
C5—C6—C1 119.41 (18) C16—C17—H17C 109.5
O2—C7—H7A 109.5 H17A—C17—H17C 109.5
O2—C7—H7B 109.5 H17B—C17—H17C 109.5
H7A—C7—H7B 109.5
O5—V1—O1—C1 68.39 (19) C7—O2—C6—C5 −1.0 (3)
O6—V1—O1—C1 −178.79 (18) C7—O2—C6—C1 −179.65 (19)
O3—V1—O1—C1 −76.1 (2) C4—C5—C6—O2 −179.3 (2)
N1—V1—O1—C1 −31.50 (18) C4—C5—C6—C1 −0.7 (3)
O5—V1—O3—C9 −89.56 (14) O1—C1—C6—O2 2.8 (3)
O6—V1—O3—C9 161.46 (13) C2—C1—C6—O2 −179.60 (17)
O1—V1—O3—C9 55.77 (18) O1—C1—C6—C5 −175.88 (18)
N1—V1—O3—C9 9.46 (12) C2—C1—C6—C5 1.7 (3)
O5—V1—O6—C16 −37.9 (3) N2—N1—C8—C2 178.23 (17)
O1—V1—O6—C16 −148.3 (3) V1—N1—C8—C2 −6.9 (3)
O3—V1—O6—C16 63.0 (3) C1—C2—C8—N1 −5.5 (3)
N1—V1—O6—C16 120.4 (3) C3—C2—C8—N1 175.82 (19)
O5—V1—N1—C8 −85.71 (17) V1—O3—C9—N2 −9.5 (2)
O6—V1—N1—C8 115.25 (17) V1—O3—C9—C10 171.59 (12)
O1—V1—N1—C8 19.13 (16) N1—N2—C9—O3 1.2 (2)
O3—V1—N1—C8 176.30 (17) N1—N2—C9—C10 −179.87 (15)
O5—V1—N1—N2 89.16 (14) O3—C9—C10—C15 −3.2 (3)
O6—V1—N1—N2 −69.88 (17) N2—C9—C10—C15 177.87 (17)
O1—V1—N1—N2 −166.00 (13) O3—C9—C10—C11 177.21 (17)
O3—V1—N1—N2 −8.83 (11) N2—C9—C10—C11 −1.8 (3)
C8—N1—N2—C9 −177.68 (16) C15—C10—C11—O4 −178.9 (2)
V1—N1—N2—C9 6.78 (18) C9—C10—C11—O4 0.7 (3)
V1—O1—C1—C2 29.7 (3) C15—C10—C11—C12 1.9 (3)
V1—O1—C1—C6 −152.82 (15) C9—C10—C11—C12 −178.46 (19)
O1—C1—C2—C3 175.72 (18) O4—C11—C12—C13 178.7 (2)
C6—C1—C2—C3 −1.8 (3) C10—C11—C12—C13 −2.0 (4)
O1—C1—C2—C8 −3.0 (3) C11—C12—C13—C14 0.6 (4)
C6—C1—C2—C8 179.54 (17) C12—C13—C14—C15 0.9 (3)
C1—C2—C3—C4 0.9 (3) C13—C14—C15—C10 −0.9 (3)
C8—C2—C3—C4 179.6 (2) C11—C10—C15—C14 −0.5 (3)
C2—C3—C4—C5 0.1 (3) C9—C10—C15—C14 179.89 (18)
C3—C4—C5—C6 −0.2 (4) V1—O6—C16—C17 14.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4B···N2 0.82 1.86 2.581 (2) 147
C8—H8A···O4i 0.93 2.31 3.236 (2) 177

Symmetry code: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5587).

References

  1. Chen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881–m1882.
  2. Deng, Z.-P., Gao, S., Zhao, H. & Huo, L.-H. (2007). Chin. J. Inorg. Chem. 23, 173–176.
  3. Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.
  4. Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). Inorg. Chim. Acta, 360, 1753–1761.
  5. Huang, S.-M., Jiang, F.-F., Chen, X.-H. & Wu, Q.-J. (2010). Acta Cryst. E66, m456. [DOI] [PMC free article] [PubMed]
  6. Liu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). Chin. J. Inorg. Chem. 22, 1028–1032.
  7. McArdle, P. (1995). J. Appl. Cryst. 28, 65. [DOI] [PMC free article] [PubMed]
  8. Molecular Structure Corporation (1999). TEXRAY and TEXSAN MSC, The Woodlands, Texas, USA.
  9. Monfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). Polyhedron, 30, 1375–1384.
  10. Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). Polyhedron, 27, 1455–462.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5161. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812032229/xu5587sup1.cif

e-68-m1101-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812032229/xu5587Isup2.hkl

e-68-m1101-Isup2.hkl (194.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES