Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 25;68(Pt 8):m1109–m1110. doi: 10.1107/S1600536812029856

Aqua­[2,2′-(propane-1,3-di­yl)bis­(5-car­boxy-1H-imidazole-4-carboxyl­ato)-κ4 N 3,O 4:N 3′,O 4′](pyridine-κN)cobalt(II)–4,4′-bipyridine (1/1)

Wei Liu a,*, Xia Li a
PMCID: PMC3414156  PMID: 22904763

Abstract

In the title compound, [Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2, the asymmetric unit comprises half a CoII complex located on a mirror plane and half a cocrystallized mol­ecule of 4,4′-bipyridine located on an inversion center. The CoII ion is six coordinate, with distorted octa­hedral geometry, ligated by two N atoms and two O atoms from a 2,2′-(propane-1,3-di­yl)bis­(5-carboxy-1H-imidazole-4-carboxyl­ate) dianion, one N atom from a pyridine mol­ecule and one coordinating water mol­ecule. The Co—O bond lengths range from 2.076 (2) to 2.1441 (15) Å, while the Co—N bond lengths are 2.138 (3) and 2.1515 (17) Å. A two-dimensional network of N—H⋯O and O—H⋯N hydrogen bonds stabilizes the crystal packing. There are π–π inter­actions between the bipyridine and imidazole rings [centroid–centroid distance = 3.7694 (4) Å]. The propane-1,3-diyl group is disordered over two conformations, with refined occupancies of 0.755 (8) and 0.245 (8).

Related literature  

For complexes based on substituted 4,5-imidazole­dicarb­oxy­lic acids, see: Zhu et al. (2010, 2011); Lu et al. (2010); Song et al. (2010); Zhang et al. (2010); Wang et al. (2008); Feng et al. (2010); Liu et al. (2010); Zheng et al. (2011); Li et al. (2009, 2010).graphic file with name e-68-m1109-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2

  • M r = 661.47

  • Monoclinic, Inline graphic

  • a = 7.9733 (10) Å

  • b = 20.738 (3) Å

  • c = 8.2987 (11) Å

  • β = 91.350 (2)°

  • V = 1371.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.11 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.862, T max = 0.927

  • 11480 measured reflections

  • 3443 independent reflections

  • 2633 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.105

  • S = 1.05

  • 3443 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029856/pk2422sup1.cif

e-68-m1109-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029856/pk2422Isup2.hkl

e-68-m1109-Isup2.hkl (168.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.65 2.473 (2) 177
O5—H1W⋯N4i 0.82 1.95 2.727 (3) 157
N2—H2⋯O4ii 0.86 1.93 2.763 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the Foundation of Henan Key Science and Technology Research (grant Nos. 122102210414 and 122102210415), the Foundation of Henan Educational Committee (grant Nos. 2010A150003 and 2011B150001), and the Foundation of Henan University of Urban Construction (grant Nos. 2010JYB007 and 2010JYB008).

supplementary crystallographic information

Comment

It is well known that aromatic polycarboxylates, especially the N-heterocyclic carboxylates, are excellent candidates for preparing novel MOFs, because of their versatile coordination modes and potential hydrogen-bonding donors and acceptors. Recently, 4,5-imidazoledicarboxylic acid (Zhu et al., 2010; Lu et al., 2010) and its 2-position substituent derivatives, such as 2-methyl-1H-imidazole-4,5-dicarboxylic acid (Song et al., 2010), 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (Zhang et al., 2010; Wang et al., 2008), 2-propyl-1H-imidazole-4,5-dicarboxylic acid (Feng et al., 2010; Liu et al., 2010), 2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylic acid (Zheng et al., 2011), 2-phenyl-1H-imidazole-4,5-dicarboxylic acid (Zhu et al., 2011) and 2-pyridyl-1H-imidazole-4,5-dicarboxylic acid (Li et al., 2009; Li et al., 2010) have attracted great attention in the field of coordination chemistry. Now, our group has strong interest in adopting another imidazole dicarboxylate ligand, 1,3-bis-(1H-imidazole-4,5-dicarboxylate acid) propane to prepare various coordination compounds.

As shown in Fig. 1, the molecule is a discrete neutral monomer, in which the asymmetric unit comprises half a CoII complex located on a mirror plane and half a co-crystallized molecule of 4,4'-bipyridine located on an inversion center. The CoII ion is six coordinate and has a distorted octahedral geometry. It is ligated by two nitrogen atoms and two oxygen atoms from a 1,3-bis-(1H-imidazole-4,5-dicarboxylate) propane dianion, one nitrogen atom from a pyridine molecule and one oxygen atom from a coordinated water molecule. The Co—O distances range from 2.076 (2) to 2.1441 (15) Å, while Co—N distances are 2.138 (3) and 2.1515 (17) Å, respectively. A two-dimensional network of N—H···O and O—H···N hydrogen bonds help to stabilize the crystal packing. Aromatic π-π interactions between bipyridine rings and imidazole rings [centroid—centroid distance = 3.7694 (4) Å] are also observed.

Experimental

A mixture of cobalt chloride hexahydrate (0.0238 g, 0.1 mmol), 1,3-bis-(1H-imidazole-4,5-dicarboxylate acid) propane (0.0352 g, 0.1 mmol), 4,4'-bipyridine (0.0198 g, 0.1 mmol), pyridine (0.8 ml) and H2O (10 ml) was sealed in a Teflon-lined stainless autoclave and heated at 413 K for 3 days. The bomb was allowed to cool to room temperature gradually and red prismatic crystals were obtained.

Refinement

H atoms attached to N and O atoms were located in a difference Fourier maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O, N). Other H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operations (x, -y+1/2, z for CoII complex; 1-x, 1-y, 1-z for 4,4-bipy).

Crystal data

[Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2 F(000) = 680
Mr = 661.47 Dx = 1.601 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 2701 reflections
a = 7.9733 (10) Å θ = 2.6–28.3°
b = 20.738 (3) Å µ = 0.70 mm1
c = 8.2987 (11) Å T = 296 K
β = 91.350 (2)° Prismatic, red
V = 1371.8 (3) Å3 0.22 × 0.18 × 0.11 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3443 independent reflections
Radiation source: fine-focus sealed tube 2633 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −10→10
Tmin = 0.862, Tmax = 0.927 k = −27→27
11480 measured reflections l = −11→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.5516P] where P = (Fo2 + 2Fc2)/3
3443 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.43 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 1.06603 (5) 0.2500 0.45178 (5) 0.03122 (13)
O1 1.1510 (2) 0.32701 (7) 0.60553 (18) 0.0383 (4)
O2 1.2252 (2) 0.43073 (8) 0.6011 (2) 0.0522 (5)
O3 1.2037 (3) 0.52310 (8) 0.4133 (2) 0.0529 (5)
H3 1.2128 0.4918 0.4734 0.079*
O4 1.1130 (3) 0.54174 (8) 0.1645 (2) 0.0529 (5)
O5 1.3034 (3) 0.2500 0.3543 (3) 0.0427 (6)
H1W 1.3294 0.2130 0.3301 0.064* 0.50
N1 1.0110 (2) 0.33325 (8) 0.3051 (2) 0.0333 (4)
N2 0.9918 (2) 0.41425 (8) 0.1356 (2) 0.0376 (4)
H2 0.9680 0.4358 0.0494 0.045*
N3 0.8291 (3) 0.2500 0.5671 (3) 0.0362 (6)
N4 0.5482 (3) 0.64535 (11) 0.7813 (3) 0.0581 (6)
C1 1.0812 (3) 0.38718 (10) 0.3751 (3) 0.0323 (5)
C2 1.0707 (3) 0.43808 (10) 0.2707 (3) 0.0339 (5)
C3 0.9574 (3) 0.35140 (10) 0.1597 (3) 0.0391 (5)
C4 1.1577 (3) 0.38108 (10) 0.5396 (3) 0.0352 (5)
C5 1.1307 (3) 0.50565 (11) 0.2790 (3) 0.0389 (5)
C6 0.8845 (10) 0.3117 (3) 0.0277 (8) 0.077 (2) 0.755 (8)
H6A 0.9736 0.2990 −0.0432 0.092* 0.755 (8)
H6B 0.8060 0.3380 −0.0347 0.092* 0.755 (8)
C7 0.7919 (6) 0.2500 0.0846 (6) 0.0417 (13) 0.755 (8)
H7A 0.6779 0.2500 0.0411 0.050* 0.755 (8)
H7B 0.7867 0.2500 0.2012 0.050* 0.755 (8)
C8 0.7494 (3) 0.30506 (12) 0.6012 (3) 0.0432 (6)
H8 0.8032 0.3439 0.5807 0.052*
C9 0.5915 (3) 0.30676 (14) 0.6651 (3) 0.0531 (7)
H9 0.5404 0.3460 0.6869 0.064*
C10 0.5108 (5) 0.2500 0.6959 (5) 0.0564 (10)
H10 0.4033 0.2500 0.7371 0.068*
C11 0.6117 (4) 0.63819 (13) 0.9295 (4) 0.0565 (7)
H11 0.6701 0.6727 0.9751 0.068*
C12 0.5967 (3) 0.58259 (12) 1.0209 (3) 0.0467 (6)
H12 0.6442 0.5802 1.1241 0.056*
C13 0.5101 (3) 0.53088 (11) 0.9558 (3) 0.0378 (5)
C14 0.4429 (4) 0.53878 (13) 0.8010 (4) 0.0604 (8)
H14 0.3829 0.5054 0.7520 0.072*
C15 0.4649 (4) 0.59541 (15) 0.7211 (4) 0.0681 (9)
H15 0.4183 0.5992 0.6177 0.082*
C7' 0.9726 (4) 0.25000 (15) −0.0032 (4) 0.048 (4)* 0.245 (8)
H7'1 0.9962 0.2500 −0.1173 0.057* 0.245 (8)
H7'2 1.0762 0.2500 0.0604 0.057* 0.245 (8)
C6' 0.841 (2) 0.3086 (7) 0.049 (2) 0.034 (3)* 0.245 (8)
H6'1 0.8001 0.3323 −0.0446 0.041* 0.245 (8)
H6'2 0.7470 0.2917 0.1074 0.041* 0.245 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0391 (2) 0.0229 (2) 0.0313 (2) 0.000 −0.00719 (16) 0.000
O1 0.0514 (10) 0.0286 (8) 0.0344 (9) −0.0005 (7) −0.0105 (7) −0.0007 (7)
O2 0.0784 (13) 0.0338 (9) 0.0434 (10) −0.0142 (8) −0.0229 (9) −0.0026 (7)
O3 0.0842 (14) 0.0277 (9) 0.0458 (11) −0.0100 (8) −0.0171 (9) −0.0005 (7)
O4 0.0819 (13) 0.0294 (9) 0.0466 (11) −0.0079 (8) −0.0133 (9) 0.0070 (8)
O5 0.0451 (13) 0.0284 (11) 0.0549 (15) 0.000 0.0038 (11) 0.000
N1 0.0417 (10) 0.0235 (8) 0.0342 (10) −0.0004 (7) −0.0091 (8) −0.0011 (7)
N2 0.0518 (11) 0.0257 (9) 0.0349 (10) −0.0025 (8) −0.0109 (8) 0.0041 (8)
N3 0.0409 (15) 0.0319 (14) 0.0356 (15) 0.000 −0.0052 (11) 0.000
N4 0.0629 (15) 0.0422 (13) 0.0696 (17) 0.0037 (11) 0.0090 (12) 0.0145 (11)
C1 0.0381 (11) 0.0237 (10) 0.0349 (12) 0.0008 (9) −0.0056 (9) −0.0030 (8)
C2 0.0414 (12) 0.0268 (10) 0.0333 (12) 0.0016 (9) −0.0040 (9) −0.0017 (9)
C3 0.0533 (14) 0.0280 (11) 0.0354 (13) −0.0024 (10) −0.0111 (10) 0.0007 (9)
C4 0.0427 (12) 0.0288 (11) 0.0336 (12) 0.0000 (9) −0.0074 (9) −0.0031 (9)
C5 0.0497 (14) 0.0275 (11) 0.0394 (13) −0.0007 (10) −0.0042 (10) −0.0029 (10)
C6 0.127 (6) 0.053 (3) 0.049 (3) −0.053 (3) −0.024 (4) 0.005 (2)
C7 0.049 (3) 0.033 (2) 0.042 (3) 0.000 −0.020 (2) 0.000
C8 0.0486 (14) 0.0405 (13) 0.0402 (14) 0.0048 (11) −0.0044 (10) 0.0007 (11)
C9 0.0528 (16) 0.0609 (18) 0.0456 (15) 0.0178 (13) −0.0006 (12) 0.0010 (13)
C10 0.043 (2) 0.084 (3) 0.042 (2) 0.000 −0.0003 (16) 0.000
C11 0.0655 (18) 0.0355 (14) 0.069 (2) −0.0091 (12) 0.0129 (15) −0.0069 (13)
C12 0.0578 (16) 0.0388 (13) 0.0433 (14) −0.0068 (11) 0.0000 (11) −0.0039 (11)
C13 0.0384 (12) 0.0330 (12) 0.0419 (13) −0.0018 (9) −0.0019 (10) 0.0015 (10)
C14 0.076 (2) 0.0456 (15) 0.0580 (18) −0.0175 (14) −0.0252 (15) 0.0147 (13)
C15 0.083 (2) 0.0592 (19) 0.061 (2) −0.0065 (16) −0.0203 (16) 0.0207 (16)

Geometric parameters (Å, º)

Co1—O5 2.076 (2) C6—H6A 0.9700
Co1—N3 2.138 (3) C6—H6B 0.9700
Co1—O1 2.1441 (15) C7—C6i 1.557 (6)
Co1—O1i 2.1441 (15) C7—H7A 0.9700
Co1—N1i 2.1515 (17) C7—H7B 0.9700
Co1—N1 2.1515 (17) C8—C9 1.378 (4)
O1—C4 1.249 (3) C8—H8 0.9300
O2—C4 1.264 (3) C9—C10 1.369 (3)
O3—C5 1.297 (3) C9—H9 0.9300
O3—H3 0.8200 C10—C9i 1.369 (3)
O4—C5 1.215 (3) C10—H10 0.9300
O5—H1W 0.8200 C11—C12 1.387 (4)
N1—C3 1.326 (3) C11—H11 0.9300
N1—C1 1.374 (3) C12—C13 1.378 (3)
N2—C3 1.348 (3) C12—H12 0.9300
N2—C2 1.366 (3) C13—C14 1.390 (3)
N2—H2 0.8600 C13—C13ii 1.486 (4)
N3—C8 1.340 (3) C14—C15 1.362 (4)
N3—C8i 1.340 (3) C14—H14 0.9300
N4—C15 1.322 (4) C15—H15 0.9300
N4—C11 1.327 (4) C7'—C6'i 1.667 (13)
C1—C2 1.367 (3) C7'—C6' 1.667 (13)
C1—C4 1.487 (3) C7'—H7'1 0.9700
C2—C5 1.482 (3) C7'—H7'2 0.9700
C3—C6 1.478 (6) C6'—H6'1 0.9700
C3—C6' 1.565 (19) C6'—H6'2 0.9700
C6—C7 1.557 (6)
O5—Co1—N3 176.35 (10) C3—C6—H6A 108.6
O5—Co1—O1 87.35 (7) C7—C6—H6A 108.6
N3—Co1—O1 90.22 (7) C3—C6—H6B 108.6
O5—Co1—O1i 87.35 (7) C7—C6—H6B 108.6
N3—Co1—O1i 90.22 (7) H6A—C6—H6B 107.6
O1—Co1—O1i 96.30 (8) C6—C7—C6i 110.7 (7)
O5—Co1—N1i 87.43 (7) C6—C7—H7A 109.5
N3—Co1—N1i 94.74 (7) C6i—C7—H7A 109.5
O1—Co1—N1i 172.62 (6) C6—C7—H7B 109.5
O1i—Co1—N1i 78.25 (6) C6i—C7—H7B 109.5
O5—Co1—N1 87.43 (7) H7A—C7—H7B 108.1
N3—Co1—N1 94.74 (7) N3—C8—C9 123.0 (2)
O1—Co1—N1 78.25 (6) N3—C8—H8 118.5
O1i—Co1—N1 172.62 (6) C9—C8—H8 118.5
N1i—Co1—N1 106.72 (9) C10—C9—C8 119.2 (3)
C4—O1—Co1 115.09 (14) C10—C9—H9 120.4
C5—O3—H3 109.5 C8—C9—H9 120.4
Co1—O5—H1W 109.5 C9—C10—C9i 118.7 (4)
C3—N1—C1 105.87 (18) C9—C10—H10 120.7
C3—N1—Co1 143.14 (15) C9i—C10—H10 120.7
C1—N1—Co1 109.78 (13) N4—C11—C12 124.3 (3)
C3—N2—C2 108.63 (18) N4—C11—H11 117.8
C3—N2—H2 125.7 C12—C11—H11 117.8
C2—N2—H2 125.7 C13—C12—C11 118.8 (3)
C8—N3—C8i 116.9 (3) C13—C12—H12 120.6
C8—N3—Co1 121.51 (15) C11—C12—H12 120.6
C8i—N3—Co1 121.51 (15) C12—C13—C14 116.7 (2)
C15—N4—C11 116.1 (2) C12—C13—C13ii 122.5 (3)
C2—C1—N1 110.02 (19) C14—C13—C13ii 120.9 (3)
C2—C1—C4 131.70 (19) C15—C14—C13 120.0 (3)
N1—C1—C4 118.24 (18) C15—C14—H14 120.0
N2—C2—C1 105.15 (18) C13—C14—H14 120.0
N2—C2—C5 121.5 (2) N4—C15—C14 124.1 (3)
C1—C2—C5 133.3 (2) N4—C15—H15 118.0
N1—C3—N2 110.33 (19) C14—C15—H15 118.0
N1—C3—C6 129.0 (3) C6'i—C7'—C6' 93.5 (12)
N2—C3—C6 120.4 (3) C6'i—C7'—H7'1 113.0
N1—C3—C6' 123.2 (7) C6'—C7'—H7'1 113.0
N2—C3—C6' 125.5 (6) C6'i—C7'—H7'2 113.0
C6—C3—C6' 14.6 (7) C6'—C7'—H7'2 113.0
O1—C4—O2 125.2 (2) H7'1—C7'—H7'2 110.4
O1—C4—C1 117.23 (18) C3—C6'—C7' 101.5 (9)
O2—C4—C1 117.59 (19) C3—C6'—H6'1 111.5
O4—C5—O3 122.8 (2) C7'—C6'—H6'1 111.5
O4—C5—C2 121.0 (2) C3—C6'—H6'2 111.5
O3—C5—C2 116.2 (2) C7'—C6'—H6'2 111.5
C3—C6—C7 114.5 (5) H6'1—C6'—H6'2 109.3
O5—Co1—O1—C4 77.25 (17) C1—N1—C3—C6 174.5 (5)
N3—Co1—O1—C4 −105.47 (17) Co1—N1—C3—C6 9.5 (6)
O1i—Co1—O1—C4 164.28 (13) C1—N1—C3—C6' −169.0 (6)
N1i—Co1—O1—C4 122.3 (5) Co1—N1—C3—C6' 26.1 (7)
N1—Co1—O1—C4 −10.68 (16) C2—N2—C3—N1 −0.1 (3)
O5—Co1—N1—C3 86.0 (3) C2—N2—C3—C6 −174.9 (4)
N3—Co1—N1—C3 −96.9 (3) C2—N2—C3—C6' 168.9 (7)
O1—Co1—N1—C3 173.8 (3) Co1—O1—C4—O2 −169.8 (2)
O1i—Co1—N1—C3 131.0 (5) Co1—O1—C4—C1 9.7 (3)
N1i—Co1—N1—C3 −0.5 (3) C2—C1—C4—O1 −178.4 (2)
O5—Co1—N1—C1 −78.58 (15) N1—C1—C4—O1 −1.1 (3)
N3—Co1—N1—C1 98.49 (15) C2—C1—C4—O2 1.1 (4)
O1—Co1—N1—C1 9.25 (14) N1—C1—C4—O2 178.5 (2)
O1i—Co1—N1—C1 −33.6 (6) N2—C2—C5—O4 −0.9 (4)
N1i—Co1—N1—C1 −165.12 (11) C1—C2—C5—O4 176.1 (2)
O5—Co1—N3—C8 91.7 (2) N2—C2—C5—O3 180.0 (2)
O1—Co1—N3—C8 43.6 (2) C1—C2—C5—O3 −3.1 (4)
O1i—Co1—N3—C8 139.9 (2) N1—C3—C6—C7 27.9 (8)
N1i—Co1—N3—C8 −141.9 (2) N2—C3—C6—C7 −158.5 (4)
N1—Co1—N3—C8 −34.6 (2) C6'—C3—C6—C7 −44 (3)
O5—Co1—N3—C8i −91.7 (2) C3—C6—C7—C6i −114.7 (5)
O1—Co1—N3—C8i −139.9 (2) C8i—N3—C8—C9 −1.4 (5)
O1i—Co1—N3—C8i −43.6 (2) Co1—N3—C8—C9 175.34 (19)
N1i—Co1—N3—C8i 34.6 (2) N3—C8—C9—C10 0.1 (4)
N1—Co1—N3—C8i 141.9 (2) C8—C9—C10—C9i 1.3 (5)
C3—N1—C1—C2 −0.4 (3) C15—N4—C11—C12 0.6 (4)
Co1—N1—C1—C2 170.09 (15) N4—C11—C12—C13 −0.2 (4)
C3—N1—C1—C4 −178.2 (2) C11—C12—C13—C14 −0.2 (4)
Co1—N1—C1—C4 −7.8 (2) C11—C12—C13—C13ii 179.1 (3)
C3—N2—C2—C1 −0.1 (3) C12—C13—C14—C15 0.3 (4)
C3—N2—C2—C5 177.6 (2) C13ii—C13—C14—C15 −179.0 (3)
N1—C1—C2—N2 0.3 (2) C11—N4—C15—C14 −0.4 (5)
C4—C1—C2—N2 177.8 (2) C13—C14—C15—N4 0.0 (5)
N1—C1—C2—C5 −177.0 (2) N1—C3—C6'—C7' −70.7 (10)
C4—C1—C2—C5 0.5 (4) N2—C3—C6'—C7' 121.7 (6)
C1—N1—C3—N2 0.3 (3) C6—C3—C6'—C7' 48 (2)
Co1—N1—C3—N2 −164.64 (19) C6'i—C7'—C6'—C3 129.0 (6)

Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.82 1.65 2.473 (2) 177
O5—H1W···N4iii 0.82 1.95 2.727 (3) 157
N2—H2···O4iv 0.86 1.93 2.763 (3) 162

Symmetry codes: (iii) −x+2, y−1/2, −z+1; (iv) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2422).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Feng, X., Zhao, J. S., Liu, B., Wang, L. Y., Ng, S., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399–1408.
  3. Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423–3431.
  4. Li, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y., Niu, Y. Y. & Hou, H. W. (2010). Inorg. Chem. 49, 2600–2613. [DOI] [PubMed]
  5. Liu, X. F., Wang, L. Y., Ma, L. F. & Li, R. F. (2010). Chin. J. Struct. Chem. 29, 280–284.
  6. Lu, W. G., Jiang, L. & Lu, T. B. (2010). Cryst. Growth Des. 10, 4310–4318.
  7. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Song, J. F., Zhou, R. S., Hu, T. P., Zhuo, C. & Wang, B. B. (2010). J. Coord. Chem. 63, 4201–4214.
  10. Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662–1666.
  11. Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776–3788. [DOI] [PubMed]
  12. Zheng, S. R., Cai, S. L., Pan, M., Fan, J., Xiao, T. T. & Zhang, W. G. (2011). CrystEngComm, 13, 883–888.
  13. Zhu, Y., Wang, W. Y., Guo, M. W., Li, G. & Lu, H. J. (2011). Inorg. Chem. Commun. 14, 1432–1435.
  14. Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029856/pk2422sup1.cif

e-68-m1109-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029856/pk2422Isup2.hkl

e-68-m1109-Isup2.hkl (168.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES