Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 28;68(Pt 8):m1122–m1123. doi: 10.1107/S1600536812029583

Diaquadi-μ-formato-bis­{μ-2,2′-[propane-1,3-diylbis(nitrilo­methanylyl­idene)]diphenolato}cadmium(II)dinickel(II) dihydrate

Jian-Feng Zhang a, Bo Wan a, Wen Liu a, Qian Shi a,*
PMCID: PMC3414165  PMID: 22904772

Abstract

In the centrosymmetric title compound, [CdNi2(C17H16N2O2)2(HCOO)2(H2O)2]·2H2O, The NiII cation is chelated by a 2,2′-[propane-1,3-diylbis(nitrilo­methanylyl­idene)]diphen­olate (salpn) anion, and further coordinated by a formate anion and a water mol­ecule in a distorted NiN2O4 octa­hedral geometry. The CdII cation, located on an inversion center, is coordinated by four deprotonated hy­droxy groups from two salpn anions and two carboxyl­ate O atoms from formate anions in a distorted octa­hedral geometry. Both formate and salpn anions bridge the Cd and Ni cations, forming a trinuclear complex. Within the salpn anion, the benzene rings are twisted to each other at a dihedral angle of 61.46 (18)°. Inter­molecular O—H⋯O hydrogen bonding is present in the crystal structure. The lattice water mol­ecule is disorder over two positions with an occupancy ratio of 0.75:0.25.

Related literature  

For background and applications of metal complexes with Schiff base ligands, see: Niederhoffer et al. (1984); Tisato et al. (1994); Yamada (1999). For the decomposition reaction of solvent DMF, see: Wang et al. (2004); Zhang et al. (2007).graphic file with name e-68-m1122-scheme1.jpg

Experimental  

Crystal data  

  • [CdNi2(C17H16N2O2)2(HCO2)2(H2O)2]·2H2O

  • M r = 952.56

  • Triclinic, Inline graphic

  • a = 9.6769 (9) Å

  • b = 10.6596 (10) Å

  • c = 10.7996 (10) Å

  • α = 72.851 (1)°

  • β = 63.551 (1)°

  • γ = 81.478 (1)°

  • V = 952.87 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.26 × 0.20 × 0.19 mm

Data collection  

  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.681, T max = 0.751

  • 4842 measured reflections

  • 3423 independent reflections

  • 2910 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.074

  • S = 1.06

  • 3423 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029583/xu5190sup1.cif

e-68-m1122-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029583/xu5190Isup2.hkl

e-68-m1122-Isup2.hkl (167.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—O1 2.2809 (18)
Cd1—O2 2.2799 (18)
Cd1—O4 2.300 (2)
Ni1—O1 2.0098 (19)
Ni1—O2 2.0313 (19)
Ni1—O3 2.080 (2)
Ni1—O5 2.205 (2)
Ni1—N1 2.035 (2)
Ni1—N2 2.026 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6′i 0.85 2.04 2.662 (12) 130
O5—H5B⋯O6i 0.85 2.29 2.812 (4) 120
O6—H6B⋯O4ii 0.85 1.98 2.737 (4) 147
O6′—H6′B⋯O4ii 0.85 2.19 2.769 (12) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support by the National Natural Science Foundation of China (grant No. 20971101).

supplementary crystallographic information

Comment

The molecular design and synthesis of Ni(II) complexes with the salen type Schiff-base ligands have attracted much attention in the past few years (Niederhoffer et al., 1984; Tisato et al., 1994; Yamada, 1999). Hererin we reported the structure of the title complex containing the Schiff base compound, N,N'-bis(salicylidene)-1,3-propanediaminato (salpn). In the compound, the formate anion may be generated from the decomposition of DMF solvents in solvothermal conditions, it has been reported by Wang et al. (2004) and by Zhang et al. (2007) previously.

In the title compound, the Cd(II) ion is situated on an inversion centre and two terminal Ni(II) ions are located on the symmetrical sides, forming a linear Ni—Cd—Ni trinuclear complex (Fig. 1). The Cd(II) ion has a distorted octahedral coordination environment, formed by four O atoms from two salpn ligands in the equatorial plane and two O atoms from two formate ligands at the axial positions. The coordination bond lengths and angles around the Cd(II) ion range between 2.2799 (18)–2.300 (2) Å, and 73.23 (7)–106.77 (7)°, respectively. The terminal Ni(II) ions have slightly distorted octahedral coordination environments formed by two O atoms and two N atoms from salpn ligands in the equatorial plane and two O atoms from formate ligand and auqa at the axial positions. In the Ni coordination sphere bond lengths and angles range between 2.0098 (2)–2.205 (2) Å, and 84.62 (8) - 177.57 (8)°, respectively. Each pair of metal ions is triply bridged via O atoms from salpn ligands and formate ligands. The crystal structure is stabilized by weak O—H···O hydrogen bonds.

Experimental

A mixture of Cd(NO3)2.4H2O (0.125 mmol, 0.0418 g), Ni(NO3)2.6H2O (0.125 mmol, 0.0347 g), 1,3-diaminopropane (0.125 mmol, 0.0102 g), salicyladehyde (0.300 mmol, 0.0366 g), DMF (5 ml), CH3OH (5 ml) and ditilled water in a 30 ml Telfon-lined reactor was heated at 373 K for two days. After cooling to room temperature, green crystals are obtained for X-ray analysis.

Refinement

All H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.97 Å (methylene) and O—H = 0.85 Å, and allowed to ride in their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The lattice water molecule is disorder over two sites, occupancies were fixed as 0.75 and 0.25 for two components.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing displacement ellipsoids at 30% probability level [symmetry code: (i) -x, 1-y, 2-z].

Crystal data

[CdNi2(C17H16N2O2)2(HCO2)2(H2O)2]·2H2O Z = 1
Mr = 952.56 F(000) = 486
Triclinic, P1 Dx = 1.660 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6769 (9) Å Cell parameters from 2961 reflections
b = 10.6596 (10) Å θ = 2.4–27.5°
c = 10.7996 (10) Å µ = 1.60 mm1
α = 72.851 (1)° T = 298 K
β = 63.551 (1)° Block, green
γ = 81.478 (1)° 0.26 × 0.20 × 0.19 mm
V = 952.87 (15) Å3

Data collection

Bruker SMART 1000 diffractometer 3423 independent reflections
Radiation source: fine-focus sealed tube 2910 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
φ and ω scan θmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −11→11
Tmin = 0.681, Tmax = 0.751 k = −12→12
4842 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.035P)2 + 0.566P] where P = (Fo2 + 2Fc2)/3
3423 reflections (Δ/σ)max < 0.001
259 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.0000 0.5000 1.0000 0.03673 (10)
Ni1 0.14492 (4) 0.34996 (3) 0.74567 (3) 0.03560 (11)
N1 0.3127 (3) 0.3988 (3) 0.5419 (3) 0.0436 (6)
N2 0.1331 (3) 0.1589 (2) 0.7553 (3) 0.0422 (6)
C18 0.3150 (4) 0.3266 (3) 0.9271 (3) 0.0505 (8)
H18 0.4012 0.2946 0.9443 0.061*
C1 0.1565 (3) 0.6410 (3) 0.6481 (3) 0.0400 (6)
C2 0.0920 (4) 0.7624 (3) 0.6718 (3) 0.0513 (8)
H2A 0.0320 0.7688 0.7651 0.062*
C3 0.1151 (4) 0.8742 (3) 0.5589 (4) 0.0612 (9)
H3A 0.0695 0.9538 0.5774 0.073*
C4 0.2056 (5) 0.8674 (4) 0.4197 (4) 0.0648 (10)
H4A 0.2214 0.9421 0.3441 0.078*
C5 0.2714 (4) 0.7498 (4) 0.3942 (3) 0.0564 (9)
H5 0.3332 0.7463 0.3002 0.068*
C6 0.2496 (3) 0.6343 (3) 0.5041 (3) 0.0414 (7)
C7 0.3309 (3) 0.5174 (3) 0.4631 (3) 0.0464 (7)
H7A 0.4049 0.5294 0.3690 0.056*
C8 0.4152 (4) 0.2974 (4) 0.4767 (4) 0.0570 (9)
H8A 0.4948 0.2743 0.5114 0.068*
H8B 0.4655 0.3332 0.3738 0.068*
C9 0.3312 (4) 0.1736 (3) 0.5090 (3) 0.0560 (8)
H9A 0.2448 0.1979 0.4835 0.067*
H9B 0.4010 0.1178 0.4496 0.067*
C10 0.2717 (4) 0.0959 (3) 0.6650 (3) 0.0538 (8)
H10A 0.2475 0.0077 0.6736 0.065*
H10B 0.3515 0.0891 0.6979 0.065*
C11 0.0120 (4) 0.0914 (3) 0.8338 (3) 0.0456 (7)
H11A 0.0181 0.0056 0.8270 0.055*
C12 −0.1348 (3) 0.1337 (3) 0.9328 (3) 0.0413 (6)
C13 −0.2637 (4) 0.0565 (3) 0.9825 (3) 0.0548 (8)
H13A −0.2512 −0.0186 0.9512 0.066*
C14 −0.4076 (4) 0.0884 (4) 1.0757 (4) 0.0604 (9)
H14A −0.4920 0.0372 1.1051 0.072*
C15 −0.4247 (4) 0.1982 (4) 1.1251 (3) 0.0561 (8)
H15A −0.5218 0.2211 1.1879 0.067*
C16 −0.3002 (4) 0.2741 (3) 1.0828 (3) 0.0481 (7)
H16A −0.3143 0.3455 1.1204 0.058*
C17 −0.1523 (3) 0.2462 (3) 0.9842 (3) 0.0381 (6)
O1 0.1331 (2) 0.53609 (19) 0.75777 (19) 0.0421 (5)
O2 −0.0344 (2) 0.32089 (19) 0.9431 (2) 0.0417 (5)
O3 0.3110 (2) 0.2997 (2) 0.8257 (2) 0.0511 (5)
O4 0.2196 (3) 0.3909 (2) 1.0107 (2) 0.0526 (5)
O5 −0.0232 (2) 0.4059 (2) 0.6516 (2) 0.0500 (5)
H5A −0.0308 0.4888 0.6383 0.075*
H5B −0.1151 0.3808 0.7073 0.075*
O6 0.7024 (5) 0.5266 (5) 0.8119 (5) 0.0835 (12) 0.75
H6A 0.6220 0.4853 0.8354 0.125* 0.75
H6B 0.7155 0.5206 0.8862 0.125* 0.75
O6' 0.7860 (15) 0.6031 (14) 0.7325 (14) 0.080 (3) 0.25
H6'A 0.8187 0.6774 0.6749 0.120* 0.25
H6'B 0.7223 0.6136 0.8141 0.120* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.04646 (18) 0.03992 (17) 0.02905 (16) −0.00391 (12) −0.01648 (13) −0.01410 (12)
Ni1 0.0396 (2) 0.0408 (2) 0.0300 (2) −0.00399 (15) −0.01343 (16) −0.01492 (15)
N1 0.0385 (13) 0.0612 (17) 0.0360 (13) −0.0067 (11) −0.0126 (11) −0.0221 (12)
N2 0.0485 (14) 0.0436 (14) 0.0400 (13) 0.0036 (11) −0.0197 (12) −0.0190 (11)
C18 0.0474 (17) 0.063 (2) 0.0515 (19) 0.0053 (15) −0.0289 (15) −0.0198 (16)
C1 0.0450 (16) 0.0472 (17) 0.0335 (14) −0.0146 (13) −0.0195 (13) −0.0074 (12)
C2 0.067 (2) 0.0481 (18) 0.0425 (17) −0.0047 (15) −0.0257 (16) −0.0108 (14)
C3 0.081 (2) 0.050 (2) 0.059 (2) −0.0018 (17) −0.039 (2) −0.0084 (16)
C4 0.084 (3) 0.057 (2) 0.050 (2) −0.0139 (19) −0.0354 (19) 0.0084 (17)
C5 0.056 (2) 0.076 (2) 0.0336 (16) −0.0190 (17) −0.0180 (15) −0.0025 (16)
C6 0.0412 (15) 0.0542 (18) 0.0317 (14) −0.0138 (13) −0.0167 (12) −0.0069 (13)
C7 0.0400 (16) 0.070 (2) 0.0305 (14) −0.0145 (15) −0.0100 (13) −0.0168 (15)
C8 0.0408 (17) 0.080 (2) 0.053 (2) −0.0002 (16) −0.0107 (15) −0.0364 (18)
C9 0.057 (2) 0.067 (2) 0.0493 (19) 0.0056 (16) −0.0175 (16) −0.0351 (17)
C10 0.0561 (19) 0.056 (2) 0.057 (2) 0.0106 (15) −0.0255 (16) −0.0295 (16)
C11 0.066 (2) 0.0333 (15) 0.0457 (17) −0.0001 (14) −0.0289 (16) −0.0145 (13)
C12 0.0546 (17) 0.0387 (15) 0.0327 (14) −0.0104 (13) −0.0201 (13) −0.0052 (12)
C13 0.074 (2) 0.0514 (19) 0.0453 (18) −0.0232 (16) −0.0268 (17) −0.0083 (15)
C14 0.060 (2) 0.073 (2) 0.0476 (19) −0.0314 (18) −0.0198 (17) −0.0063 (17)
C15 0.0500 (18) 0.074 (2) 0.0412 (17) −0.0136 (16) −0.0160 (15) −0.0095 (16)
C16 0.0530 (18) 0.0515 (18) 0.0388 (16) −0.0081 (14) −0.0161 (14) −0.0124 (14)
C17 0.0480 (16) 0.0388 (15) 0.0277 (13) −0.0096 (12) −0.0166 (12) −0.0036 (11)
O1 0.0574 (12) 0.0413 (11) 0.0281 (10) −0.0093 (9) −0.0155 (9) −0.0099 (8)
O2 0.0470 (11) 0.0442 (11) 0.0349 (10) −0.0105 (9) −0.0110 (9) −0.0173 (9)
O3 0.0514 (12) 0.0668 (14) 0.0488 (12) 0.0087 (10) −0.0282 (11) −0.0278 (11)
O4 0.0573 (13) 0.0668 (14) 0.0501 (13) 0.0111 (11) −0.0320 (11) −0.0294 (11)
O5 0.0472 (12) 0.0574 (13) 0.0495 (12) −0.0086 (10) −0.0220 (10) −0.0135 (10)
O6 0.088 (3) 0.119 (4) 0.084 (3) 0.033 (3) −0.061 (3) −0.060 (3)
O6' 0.083 (9) 0.096 (10) 0.081 (9) 0.016 (7) −0.052 (7) −0.032 (7)

Geometric parameters (Å, º)

Cd1—O1 2.2809 (18) C6—C7 1.446 (4)
Cd1—O1i 2.2809 (18) C7—H7A 0.9300
Cd1—O2 2.2799 (18) C8—C9 1.522 (5)
Cd1—O2i 2.2799 (18) C8—H8A 0.9700
Cd1—O4i 2.300 (2) C8—H8B 0.9700
Cd1—O4 2.300 (2) C9—C10 1.520 (5)
Ni1—O1 2.0098 (19) C9—H9A 0.9700
Ni1—O2 2.0313 (19) C9—H9B 0.9700
Ni1—O3 2.080 (2) C10—H10A 0.9700
Ni1—O5 2.205 (2) C10—H10B 0.9700
Ni1—N1 2.035 (2) C11—C12 1.451 (4)
Ni1—N2 2.026 (2) C11—H11A 0.9300
N1—C7 1.285 (4) C12—C13 1.403 (4)
N1—C8 1.469 (4) C12—C17 1.423 (4)
N2—C11 1.271 (4) C13—C14 1.371 (5)
N2—C10 1.469 (4) C13—H13A 0.9300
C18—O3 1.228 (4) C14—C15 1.384 (5)
C18—O4 1.254 (4) C14—H14A 0.9300
C18—H18 0.9300 C15—C16 1.377 (4)
C1—O1 1.326 (3) C15—H15A 0.9300
C1—C2 1.394 (4) C16—C17 1.404 (4)
C1—C6 1.426 (4) C16—H16A 0.9300
C2—C3 1.391 (4) C17—O2 1.320 (3)
C2—H2A 0.9300 O5—H5A 0.8500
C3—C4 1.381 (5) O5—H5B 0.8500
C3—H3A 0.9300 O6—H6A 0.8501
C4—C5 1.365 (5) O6—H6B 0.8499
C4—H4A 0.9300 O6—H6'B 0.9835
C5—C6 1.401 (4) O6'—H6'A 0.8500
C5—H5 0.9300 O6'—H6'B 0.8500
O2—Cd1—O2i 180.0 N1—C7—C6 127.5 (3)
O2—Cd1—O1 73.23 (7) N1—C7—H7A 116.3
O2i—Cd1—O1 106.77 (7) C6—C7—H7A 116.3
O2—Cd1—O1i 106.77 (7) N1—C8—C9 113.2 (3)
O2i—Cd1—O1i 73.23 (7) N1—C8—H8A 108.9
O1—Cd1—O1i 180.0 C9—C8—H8A 108.9
O2—Cd1—O4i 94.86 (7) N1—C8—H8B 108.9
O2i—Cd1—O4i 85.14 (7) C9—C8—H8B 108.9
O1—Cd1—O4i 94.24 (7) H8A—C8—H8B 107.7
O1i—Cd1—O4i 85.76 (7) C10—C9—C8 113.5 (3)
O2—Cd1—O4 85.14 (7) C10—C9—H9A 108.9
O2i—Cd1—O4 94.86 (7) C8—C9—H9A 108.9
O1—Cd1—O4 85.76 (7) C10—C9—H9B 108.9
O1i—Cd1—O4 94.24 (7) C8—C9—H9B 108.9
O4i—Cd1—O4 180.0 H9A—C9—H9B 107.7
O1—Ni1—N2 173.13 (9) N2—C10—C9 111.2 (3)
O1—Ni1—O2 84.62 (8) N2—C10—H10A 109.4
N2—Ni1—O2 88.57 (9) C9—C10—H10A 109.4
O1—Ni1—N1 90.47 (9) N2—C10—H10B 109.4
N2—Ni1—N1 96.25 (10) C9—C10—H10B 109.4
O2—Ni1—N1 173.51 (9) H10A—C10—H10B 108.0
O1—Ni1—O3 91.60 (8) N2—C11—C12 127.0 (3)
N2—Ni1—O3 89.79 (9) N2—C11—H11A 116.5
O2—Ni1—O3 93.73 (8) C12—C11—H11A 116.5
N1—Ni1—O3 90.65 (9) C13—C12—C17 119.2 (3)
O1—Ni1—O5 88.29 (8) C13—C12—C11 117.6 (3)
N2—Ni1—O5 90.61 (9) C17—C12—C11 123.2 (3)
O2—Ni1—O5 88.68 (8) C14—C13—C12 122.1 (3)
N1—Ni1—O5 86.92 (9) C14—C13—H13A 119.0
O3—Ni1—O5 177.57 (8) C12—C13—H13A 119.0
C7—N1—C8 117.0 (3) C13—C14—C15 118.7 (3)
C7—N1—Ni1 122.2 (2) C13—C14—H14A 120.6
C8—N1—Ni1 120.7 (2) C15—C14—H14A 120.6
C11—N2—C10 118.3 (3) C16—C15—C14 121.0 (3)
C11—N2—Ni1 123.6 (2) C16—C15—H15A 119.5
C10—N2—Ni1 118.0 (2) C14—C15—H15A 119.5
O3—C18—O4 129.4 (3) C15—C16—C17 121.5 (3)
O3—C18—H18 115.3 C15—C16—H16A 119.2
O4—C18—H18 115.3 C17—C16—H16A 119.2
O1—C1—C2 120.2 (3) O2—C17—C16 120.9 (3)
O1—C1—C6 121.7 (3) O2—C17—C12 121.7 (3)
C2—C1—C6 118.1 (3) C16—C17—C12 117.4 (3)
C3—C2—C1 121.5 (3) C1—O1—Ni1 124.49 (17)
C3—C2—H2A 119.2 C1—O1—Cd1 134.11 (18)
C1—C2—H2A 119.2 Ni1—O1—Cd1 98.29 (8)
C4—C3—C2 120.2 (3) C17—O2—Ni1 123.09 (16)
C4—C3—H3A 119.9 C17—O2—Cd1 135.04 (17)
C2—C3—H3A 119.9 Ni1—O2—Cd1 97.69 (7)
C5—C4—C3 119.2 (3) C18—O3—Ni1 129.3 (2)
C5—C4—H4A 120.4 C18—O4—Cd1 127.57 (19)
C3—C4—H4A 120.4 Ni1—O5—H5A 103.0
C4—C5—C6 122.6 (3) Ni1—O5—H5B 115.7
C4—C5—H5 118.7 H5A—O5—H5B 103.2
C6—C5—H5 118.7 H6A—O6—H6B 109.5
C5—C6—C1 118.3 (3) H6A—O6—H6'B 135.0
C5—C6—C7 117.0 (3) H6B—O6—H6'B 69.8
C1—C6—C7 124.5 (3) H6'A—O6'—H6'B 109.5

Symmetry code: (i) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O6′ii 0.85 2.04 2.662 (12) 130
O5—H5B···O6ii 0.85 2.29 2.812 (4) 120
O6—H6B···O4iii 0.85 1.98 2.737 (4) 147
O6′—H6′B···O4iii 0.85 2.19 2.769 (12) 125

Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5190).

References

  1. Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  2. Niederhoffer, E. C., Timmons, J. H. & Martell, A. E. (1984). Chem. Rev. 84, 137–203.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Tisato, J., Refosco, F. & Bandoli, F. (1994). Coord. Chem. Rev. 135, 325–397.
  5. Wang, X.-Y., Gan, L., Zhang, S.-W. & Gao, S. (2004). Inorg. Chem. 43, 4615–4625. [DOI] [PubMed]
  6. Yamada, S. (1999). Coord. Chem. Rev. 192, 537–557.
  7. Zhang, J., Chen, S. M., Valle, H., Wong, M., Austria, C., Cruz, M. & Bu, X. (2007). J. Am. Chem. Soc. 129, 14168–14169. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029583/xu5190sup1.cif

e-68-m1122-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029583/xu5190Isup2.hkl

e-68-m1122-Isup2.hkl (167.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES