Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 4;68(Pt 8):o2310–o2311. doi: 10.1107/S1600536812029340

3,5-Diphenyl-1-(quinolin-2-yl)-4,5-dihydro-1H-pyrazol-5-ol

Muhd Hidayat bin Najib a, Ai Ling Tan a, David J Young a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3414180  PMID: 22904787

Abstract

In the title compound, C24H19N3O, the pyrazole ring is close to being planar (r.m.s. deviation of the five fitted atoms = 0.062 Å), and each of the N-bound quinoline ring [dihedral angle = 9.90 (7)°] and the C-bound phenyl ring in the 3-position is close to being coplanar [dihedral angle = 8.87 (9)°]. However, the phenyl ring in the 5-position forms a dihedral angle of 72.31 (9)°. The hy­droxy group forms an intra­molecular hydrogen bond to the quinoline N atom. In the crystal, mol­ecules are connected into supra­molecular layers two mol­ecules thick in the bc plane by C—H⋯O and C—H⋯π inter­actions.

Related literature  

For applications of coordination complexes of hydrazones as organic light emitting diodes and supra­molecular magnetic clusters, see: Zhang et al. (2011, 2012). For the synthesis of hydrazones, see: Gupta et al. (2007). For background to and the synthesis of the target mol­ecules, see: Najib et al. (2012a ,b ,c )graphic file with name e-68-o2310-scheme1.jpg

Experimental  

Crystal data  

  • C24H19N3O

  • M r = 365.42

  • Monoclinic, Inline graphic

  • a = 30.505 (2) Å

  • b = 7.8881 (4) Å

  • c = 16.5191 (12) Å

  • β = 113.718 (9)°

  • V = 3639.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.784, T max = 1.000

  • 12177 measured reflections

  • 4209 independent reflections

  • 3419 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.130

  • S = 1.07

  • 4209 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029340/sj5251sup1.cif

e-68-o2310-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029340/sj5251Isup2.hkl

e-68-o2310-Isup2.hkl (206.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029340/sj5251Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.87 (1) 2.15 (2) 2.8149 (19) 133 (3)
C3—H3⋯O1i 0.95 2.50 3.298 (2) 142
C11—H11ACg1ii 0.99 2.92 3.8528 (18) 157
C17—H17⋯Cg2iii 0.95 2.58 3.4426 (18) 151
C24—H24⋯Cg2ii 0.95 2.97 3.6239 (18) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

We have previously prepared 3,5-dimethyl-1-(2'-quinolyl)-pyrazole (Najib et al., 2012c) and a related Cinchonine derived ligand (Zhang et al., 2011) for the synthesis of photoluminescent zinc (Najib et al., 2012a; Najib et al., 2012b) and iridium complexes (Zhang et al., 2012). These ligands are made by the condensation of the corresponding hydrazine (Najib et al., 2012a) with a β-diketone (Gupta et al., 2007). In our attempted synthesis of 3,5-diphenyl-1-(2'-quinolyl)-pyrazole using the same procedure, we were surprised to prepare the title compound, (I), presumably from initial condensation but only partial dehydration. The reluctance of this benzylic, tertiary alcohol to undergo dehydration may be due to the resulting unfavourable proximity of the phenyl and quinoline groups.

In (I), the pyrazolyl ring has an envelope configuration with the C10 atom being the flap atom. However, the distortion from planarity is relatively minor with the r.m.s. deviation = 0.062 Å and maximum deviations of 0.051 (1) Å for the N1 atom and -0.052 (2) Å for the C10 atom. The N2-bound quinolinyl ring (r.m.s. deviation = 0.009 Å) forms a dihedral angle of 9.90 (7)° with the pyrazolyl plane. The C12-bound phenyl ring is almost co-planar with the pyrazolyl plane [dihedral angle = 8.87 (9)°) whereas the C10-bound phenyl ring forms a dihedral angle of 72.31 (9)°. The latter projects to one side of the pyrazolyl plane and the hydroxy group to the other. The hydroxy group forms an intramolecular hydrogen bond to the quinolinyl-N1 atom, Table 1.

In the crystal packing, C—H···O interactions link molecules into centrosymmetric dimers via 18-membered {···HC3NCNCO}2 synthons, Table 1. These are connected into supramolecular layers two molecules thick in the bc plane via C—H···π interactions, Fig. 2 and Table 1. Layers stack along the a axis without specific interactions between them.

Experimental

Ethanol (25 ml) was added to a mixture of 2-hydrazinylquinoline (0.08 g) and dibenzoylmethane (0.23 g) and the resulting solution was refluxed for 48 h. The solvent was removed to obtain an orange residue that was recrystallized from toluene to yield 0.063 g of orange crystals. A second recrystallization from toluene produced 0.035 g (19.1%) of orange crystals. Melting point: 503 K. IR ν/cm-1: 3409, 3061, 3028, 1616, 1602, 1559, 1507, 1480, 1447, 1432, 1405, 1371, 1343, 1326, 1302, 1263, 1248, 1233, 1170, 1149, 1070, 1050, 856, 828, 756, 698, 692. 1H NMR 400 MHz (CDCl3) δ: 8.00 (1H, d), 7.80 (3H, m), 7.58 (3H, m), 7.42 (5H, m), 7.30 (1H, m), 7.21 (2H, m), 7.15(1H, m), 3.83 (1H, d), 3.50 (1H, d), 1.25 (1H, s).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The oxygen-bound H-atom was refined with O—H = 0.84±0.01 Å and free Uiso.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular array in the bc plane in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view of the unit-cell contents of (I) in projection down the b axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C24H19N3O F(000) = 1536
Mr = 365.42 Dx = 1.334 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4159 reflections
a = 30.505 (2) Å θ = 2.4–27.5°
b = 7.8881 (4) Å µ = 0.08 mm1
c = 16.5191 (12) Å T = 100 K
β = 113.718 (9)° Block, yellow
V = 3639.1 (4) Å3 0.35 × 0.30 × 0.25 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4209 independent reflections
Radiation source: fine-focus sealed tube 3419 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.033
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.5°
ω scan h = −30→39
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −9→10
Tmin = 0.784, Tmax = 1.000 l = −21→14
12177 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0534P)2 + 3.4025P] where P = (Fo2 + 2Fc2)/3
4209 reflections (Δ/σ)max < 0.001
257 parameters Δρmax = 0.30 e Å3
1 restraint Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43944 (4) 0.27304 (15) 0.51758 (8) 0.0265 (3)
H1o 0.4449 (11) 0.250 (4) 0.5723 (9) 0.087 (11)*
N1 0.40135 (5) 0.26810 (16) 0.64704 (9) 0.0201 (3)
N2 0.36017 (5) 0.33420 (17) 0.50098 (9) 0.0208 (3)
N3 0.32336 (5) 0.29868 (16) 0.42006 (9) 0.0210 (3)
C1 0.40233 (6) 0.20442 (18) 0.72467 (10) 0.0187 (3)
C2 0.44529 (6) 0.2169 (2) 0.80119 (11) 0.0225 (3)
H2 0.4724 0.2708 0.7980 0.027*
C3 0.44810 (6) 0.1519 (2) 0.88010 (11) 0.0241 (4)
H3 0.4772 0.1607 0.9311 0.029*
C4 0.40834 (6) 0.0723 (2) 0.88630 (11) 0.0246 (4)
H4 0.4107 0.0275 0.9413 0.030*
C5 0.36626 (6) 0.05912 (19) 0.81328 (11) 0.0232 (3)
H5 0.3395 0.0054 0.8179 0.028*
C6 0.36217 (6) 0.12429 (18) 0.73125 (10) 0.0195 (3)
C7 0.31958 (6) 0.1126 (2) 0.65227 (11) 0.0218 (3)
H7 0.2921 0.0580 0.6534 0.026*
C8 0.31823 (6) 0.17893 (19) 0.57593 (11) 0.0213 (3)
H8 0.2899 0.1730 0.5232 0.026*
C9 0.36047 (6) 0.25830 (19) 0.57660 (10) 0.0193 (3)
C10 0.40389 (6) 0.3997 (2) 0.49355 (11) 0.0215 (3)
C11 0.38509 (6) 0.4283 (2) 0.39280 (10) 0.0234 (4)
H11A 0.3836 0.5507 0.3786 0.028*
H11B 0.4056 0.3703 0.3677 0.028*
C12 0.33582 (5) 0.35170 (19) 0.35852 (10) 0.0196 (3)
C13 0.42182 (5) 0.56032 (19) 0.54739 (10) 0.0185 (3)
C14 0.47014 (6) 0.6033 (2) 0.57873 (11) 0.0228 (3)
H14 0.4921 0.5291 0.5690 0.027*
C15 0.48632 (6) 0.7545 (2) 0.62411 (12) 0.0275 (4)
H15 0.5192 0.7839 0.6449 0.033*
C16 0.45464 (6) 0.8621 (2) 0.63909 (11) 0.0273 (4)
H16 0.4658 0.9649 0.6706 0.033*
C17 0.40668 (6) 0.8200 (2) 0.60811 (12) 0.0283 (4)
H17 0.3848 0.8937 0.6184 0.034*
C18 0.39055 (6) 0.6704 (2) 0.56208 (11) 0.0245 (4)
H18 0.3575 0.6429 0.5402 0.029*
C19 0.30291 (5) 0.33954 (19) 0.26559 (10) 0.0194 (3)
C20 0.25909 (6) 0.2537 (2) 0.24096 (11) 0.0213 (3)
H20 0.2515 0.1979 0.2846 0.026*
C21 0.22711 (6) 0.2503 (2) 0.15352 (11) 0.0233 (3)
H21 0.1975 0.1919 0.1372 0.028*
C22 0.23785 (6) 0.3313 (2) 0.08928 (11) 0.0240 (3)
H22 0.2154 0.3305 0.0294 0.029*
C23 0.28120 (6) 0.4133 (2) 0.11249 (11) 0.0238 (4)
H23 0.2887 0.4674 0.0682 0.029*
C24 0.31400 (6) 0.4175 (2) 0.20006 (11) 0.0223 (3)
H24 0.3439 0.4731 0.2154 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0252 (6) 0.0256 (6) 0.0271 (7) 0.0021 (5) 0.0087 (5) −0.0023 (5)
N1 0.0211 (7) 0.0193 (6) 0.0190 (7) −0.0010 (5) 0.0071 (5) −0.0013 (5)
N2 0.0180 (6) 0.0245 (7) 0.0171 (6) −0.0051 (5) 0.0042 (5) −0.0010 (5)
N3 0.0198 (7) 0.0213 (7) 0.0175 (7) −0.0006 (5) 0.0031 (5) −0.0006 (5)
C1 0.0216 (8) 0.0162 (7) 0.0194 (8) 0.0011 (6) 0.0094 (6) −0.0018 (6)
C2 0.0209 (8) 0.0239 (8) 0.0231 (8) −0.0005 (6) 0.0094 (6) −0.0018 (6)
C3 0.0253 (8) 0.0263 (8) 0.0188 (8) 0.0043 (6) 0.0068 (6) −0.0015 (6)
C4 0.0344 (9) 0.0197 (8) 0.0218 (8) 0.0042 (6) 0.0134 (7) 0.0031 (6)
C5 0.0286 (8) 0.0165 (7) 0.0272 (8) −0.0003 (6) 0.0140 (7) 0.0001 (6)
C6 0.0229 (8) 0.0140 (7) 0.0232 (8) 0.0012 (6) 0.0108 (6) −0.0015 (6)
C7 0.0221 (8) 0.0187 (7) 0.0273 (8) −0.0026 (6) 0.0128 (7) −0.0016 (6)
C8 0.0189 (7) 0.0198 (7) 0.0233 (8) −0.0015 (6) 0.0066 (6) −0.0020 (6)
C9 0.0214 (8) 0.0170 (7) 0.0194 (8) 0.0003 (6) 0.0083 (6) −0.0009 (6)
C10 0.0210 (8) 0.0222 (8) 0.0217 (8) −0.0031 (6) 0.0088 (6) −0.0024 (6)
C11 0.0227 (8) 0.0258 (8) 0.0197 (8) −0.0047 (6) 0.0065 (6) −0.0027 (6)
C12 0.0205 (8) 0.0173 (7) 0.0202 (8) 0.0012 (6) 0.0074 (6) −0.0004 (6)
C13 0.0210 (7) 0.0196 (7) 0.0146 (7) −0.0023 (6) 0.0067 (6) 0.0003 (6)
C14 0.0199 (8) 0.0245 (8) 0.0239 (8) −0.0003 (6) 0.0085 (6) −0.0036 (6)
C15 0.0212 (8) 0.0278 (9) 0.0292 (9) −0.0051 (7) 0.0057 (7) −0.0041 (7)
C16 0.0335 (9) 0.0216 (8) 0.0233 (8) −0.0019 (7) 0.0077 (7) −0.0040 (6)
C17 0.0310 (9) 0.0256 (9) 0.0308 (9) 0.0052 (7) 0.0150 (7) −0.0023 (7)
C18 0.0200 (8) 0.0264 (8) 0.0273 (9) 0.0005 (6) 0.0096 (7) 0.0010 (7)
C19 0.0193 (7) 0.0180 (7) 0.0186 (7) 0.0039 (6) 0.0051 (6) −0.0017 (6)
C20 0.0214 (8) 0.0220 (8) 0.0202 (8) 0.0001 (6) 0.0081 (6) −0.0006 (6)
C21 0.0182 (8) 0.0256 (8) 0.0245 (8) −0.0021 (6) 0.0069 (6) −0.0015 (6)
C22 0.0229 (8) 0.0256 (8) 0.0198 (8) 0.0010 (6) 0.0048 (6) −0.0010 (6)
C23 0.0260 (8) 0.0249 (8) 0.0207 (8) −0.0015 (6) 0.0097 (7) 0.0012 (6)
C24 0.0201 (8) 0.0218 (8) 0.0246 (8) −0.0019 (6) 0.0086 (6) −0.0020 (6)

Geometric parameters (Å, º)

O1—C10 1.409 (2) C11—H11A 0.9900
O1—H1o 0.871 (10) C11—H11B 0.9900
N1—C9 1.3220 (19) C12—C19 1.461 (2)
N1—C1 1.366 (2) C13—C18 1.382 (2)
N2—C9 1.382 (2) C13—C14 1.393 (2)
N2—N3 1.3850 (17) C14—C15 1.389 (2)
N2—C10 1.481 (2) C14—H14 0.9500
N3—C12 1.290 (2) C15—C16 1.381 (2)
C1—C2 1.411 (2) C15—H15 0.9500
C1—C6 1.421 (2) C16—C17 1.382 (2)
C2—C3 1.371 (2) C16—H16 0.9500
C2—H2 0.9500 C17—C18 1.383 (2)
C3—C4 1.405 (2) C17—H17 0.9500
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.367 (2) C19—C24 1.400 (2)
C4—H4 0.9500 C19—C20 1.405 (2)
C5—C6 1.407 (2) C20—C21 1.380 (2)
C5—H5 0.9500 C20—H20 0.9500
C6—C7 1.426 (2) C21—C22 1.386 (2)
C7—C8 1.350 (2) C21—H21 0.9500
C7—H7 0.9500 C22—C23 1.381 (2)
C8—C9 1.429 (2) C22—H22 0.9500
C8—H8 0.9500 C23—C24 1.389 (2)
C10—C13 1.518 (2) C23—H23 0.9500
C10—C11 1.543 (2) C24—H24 0.9500
C11—C12 1.503 (2)
C10—O1—H1o 104 (2) C12—C11—H11B 111.1
C9—N1—C1 117.48 (13) C10—C11—H11B 111.1
C9—N2—N3 119.53 (12) H11A—C11—H11B 109.1
C9—N2—C10 123.18 (12) N3—C12—C19 120.74 (14)
N3—N2—C10 113.46 (12) N3—C12—C11 113.60 (14)
C12—N3—N2 108.27 (13) C19—C12—C11 125.63 (14)
N1—C1—C2 118.47 (14) C18—C13—C14 118.91 (14)
N1—C1—C6 122.77 (14) C18—C13—C10 121.07 (14)
C2—C1—C6 118.76 (14) C14—C13—C10 119.93 (14)
C3—C2—C1 120.37 (15) C15—C14—C13 120.18 (15)
C3—C2—H2 119.8 C15—C14—H14 119.9
C1—C2—H2 119.8 C13—C14—H14 119.9
C2—C3—C4 120.71 (15) C16—C15—C14 120.13 (16)
C2—C3—H3 119.6 C16—C15—H15 119.9
C4—C3—H3 119.6 C14—C15—H15 119.9
C5—C4—C3 120.08 (15) C15—C16—C17 119.90 (16)
C5—C4—H4 120.0 C15—C16—H16 120.1
C3—C4—H4 120.0 C17—C16—H16 120.1
C4—C5—C6 120.68 (16) C16—C17—C18 119.89 (16)
C4—C5—H5 119.7 C16—C17—H17 120.1
C6—C5—H5 119.7 C18—C17—H17 120.1
C5—C6—C1 119.40 (14) C13—C18—C17 120.99 (15)
C5—C6—C7 123.54 (15) C13—C18—H18 119.5
C1—C6—C7 117.06 (14) C17—C18—H18 119.5
C8—C7—C6 120.24 (15) C24—C19—C20 119.05 (14)
C8—C7—H7 119.9 C24—C19—C12 120.41 (14)
C6—C7—H7 119.9 C20—C19—C12 120.51 (15)
C7—C8—C9 118.28 (14) C21—C20—C19 120.14 (15)
C7—C8—H8 120.9 C21—C20—H20 119.9
C9—C8—H8 120.9 C19—C20—H20 119.9
N1—C9—N2 115.56 (14) C20—C21—C22 120.45 (15)
N1—C9—C8 124.12 (14) C20—C21—H21 119.8
N2—C9—C8 120.31 (14) C22—C21—H21 119.8
O1—C10—N2 110.25 (13) C23—C22—C21 119.90 (15)
O1—C10—C13 111.82 (12) C23—C22—H22 120.1
N2—C10—C13 111.52 (13) C21—C22—H22 120.1
O1—C10—C11 108.52 (13) C22—C23—C24 120.55 (16)
N2—C10—C11 100.60 (12) C22—C23—H23 119.7
C13—C10—C11 113.56 (13) C24—C23—H23 119.7
C12—C11—C10 103.23 (13) C23—C24—C19 119.88 (15)
C12—C11—H11A 111.1 C23—C24—H24 120.1
C10—C11—H11A 111.1 C19—C24—H24 120.1
C9—N2—N3—C12 −165.92 (14) N2—C10—C11—C12 −7.55 (15)
C10—N2—N3—C12 −7.26 (17) C13—C10—C11—C12 −126.82 (14)
C9—N1—C1—C2 −178.59 (14) N2—N3—C12—C19 −176.76 (13)
C9—N1—C1—C6 2.3 (2) N2—N3—C12—C11 1.48 (18)
N1—C1—C2—C3 −178.78 (14) C10—C11—C12—N3 4.29 (18)
C6—C1—C2—C3 0.4 (2) C10—C11—C12—C19 −177.58 (14)
C1—C2—C3—C4 −0.2 (2) O1—C10—C13—C18 −153.52 (15)
C2—C3—C4—C5 −0.1 (2) N2—C10—C13—C18 −29.6 (2)
C3—C4—C5—C6 0.2 (2) C11—C10—C13—C18 83.26 (19)
C4—C5—C6—C1 0.0 (2) O1—C10—C13—C14 30.0 (2)
C4—C5—C6—C7 179.05 (15) N2—C10—C13—C14 153.99 (14)
N1—C1—C6—C5 178.84 (14) C11—C10—C13—C14 −93.20 (18)
C2—C1—C6—C5 −0.3 (2) C18—C13—C14—C15 0.1 (2)
N1—C1—C6—C7 −0.3 (2) C10—C13—C14—C15 176.68 (15)
C2—C1—C6—C7 −179.38 (14) C13—C14—C15—C16 0.6 (3)
C5—C6—C7—C8 179.68 (15) C14—C15—C16—C17 −0.6 (3)
C1—C6—C7—C8 −1.3 (2) C15—C16—C17—C18 −0.1 (3)
C6—C7—C8—C9 0.7 (2) C14—C13—C18—C17 −0.9 (2)
C1—N1—C9—N2 175.86 (13) C10—C13—C18—C17 −177.38 (15)
C1—N1—C9—C8 −2.9 (2) C16—C17—C18—C13 0.9 (3)
N3—N2—C9—N1 165.54 (13) N3—C12—C19—C24 171.36 (14)
C10—N2—C9—N1 9.0 (2) C11—C12—C19—C24 −6.6 (2)
N3—N2—C9—C8 −15.6 (2) N3—C12—C19—C20 −6.8 (2)
C10—N2—C9—C8 −172.13 (14) C11—C12—C19—C20 175.19 (15)
C7—C8—C9—N1 1.5 (2) C24—C19—C20—C21 −1.5 (2)
C7—C8—C9—N2 −177.26 (14) C12—C19—C20—C21 176.65 (15)
C9—N2—C10—O1 52.69 (19) C19—C20—C21—C22 0.0 (2)
N3—N2—C10—O1 −105.08 (14) C20—C21—C22—C23 1.3 (3)
C9—N2—C10—C13 −72.15 (18) C21—C22—C23—C24 −0.9 (3)
N3—N2—C10—C13 130.07 (13) C22—C23—C24—C19 −0.7 (2)
C9—N2—C10—C11 167.12 (14) C20—C19—C24—C23 1.9 (2)
N3—N2—C10—C11 9.34 (16) C12—C19—C24—C23 −176.29 (14)
O1—C10—C11—C12 108.17 (14)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6–C9 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1o···N1 0.87 (1) 2.15 (2) 2.8149 (19) 133 (3)
C3—H3···O1i 0.95 2.50 3.298 (2) 142
C11—H11A···Cg1ii 0.99 2.92 3.8528 (18) 157
C17—H17···Cg2iii 0.95 2.58 3.4426 (18) 151
C24—H24···Cg2ii 0.95 2.97 3.6239 (18) 127

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y+3/2, −z−1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5251).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gupta, L. K., Bansal, U. & Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972–975. [DOI] [PubMed]
  5. Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, m571–m572. [DOI] [PMC free article] [PubMed]
  6. Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, m897–m898. [DOI] [PMC free article] [PubMed]
  7. Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012c). Acta Cryst. E68, o2138. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Zhang, W. H., Hu, J. J., Chi, Y., Young, D. J. & Hor, T. S. A. (2011). Organometallics, 30, 2137–2143.
  11. Zhang, W. H., Zhang, X. H., Tan, A. L., Yong, M. A., Young, D. J. & Hor, T. S. A. (2012). Organometallics, 31, 553–559.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029340/sj5251sup1.cif

e-68-o2310-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029340/sj5251Isup2.hkl

e-68-o2310-Isup2.hkl (206.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029340/sj5251Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES