Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 4;68(Pt 8):o2312–o2313. doi: 10.1107/S1600536812029327

N-(2-Fluoro­benz­yloxy)-1,3,5-trimethyl-2,6-diphenyl­piperidin-4-imine

Chennan Ramalingan a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3414181  PMID: 22904788

Abstract

In the title compound, C27H29FN2O, the piperidine ring has a twisted boat conformation and all ring substituents occupy equatorial positions. The dihedral angle formed between the phenyl rings is 66.71 (12)°, and the phenyl rings form dihedral angles of 46.60 (13) and 43.75 (13)° with the fluoro­benzene ring, which occupies a position coplanar to the meth­oxy(methyl­idene)amine residue [N—O—C—C torsion angle = −179.5 (2)°]. In the crystal, a complex network of C—H⋯π inter­actions connects the mol­ecules into a three-dimensional architecture.

Related literature  

For the biological activity of mol­ecules having a 2,6-diaryl­piperidine core, see: Ramachandran et al. (2011); Ramalingan et al. (2004). For the structures of related chloro and bromo derivatives, see: Ramalingan et al. (2012a ,b ). For the synthesis, see: Ramalingan et al. (2006).graphic file with name e-68-o2312-scheme1.jpg

Experimental  

Crystal data  

  • C27H29FN2O

  • M r = 416.52

  • Orthorhombic, Inline graphic

  • a = 7.4004 (3) Å

  • b = 22.4857 (9) Å

  • c = 13.4465 (5) Å

  • V = 2237.54 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.930, T max = 1.000

  • 14812 measured reflections

  • 2693 independent reflections

  • 2311 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.101

  • S = 1.03

  • 2693 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029327/pv2563sup1.cif

e-68-o2312-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029327/pv2563Isup2.hkl

e-68-o2312-Isup2.hkl (132.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029327/pv2563Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1–Cg3 are the centroids of the C1–C6, C16–C21 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.99 2.96 3.721 (3) 135
C13—H13ACg2ii 0.98 2.91 3.577 (3) 127
C18—H18⋯Cg3iii 0.95 2.90 3.700 (3) 143
C21—H21⋯Cg2iv 0.95 2.51 3.446 (3) 167
C25—H25⋯Cg3v 0.95 2.74 3.654 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors are grateful for facilities provided by the Chairman/Management of Kalasalingam University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In a program aimed towards synthesizing efficient biological agents, the title compound, (I), was generated (Ramalingan et al., 2006) as molecules with a 2,6-diarylpiperidine core are known to exhibit potent biological activities (Ramachandran et al., 2011; Ramalingan et al., 2004). Herein, the crystal and molecular structure of the title compound is described.

In the title molecule (Fig. 1), the piperidine ring adopts a twist-boat conformation and all ring-substituents occupy equatorial positions. In the chloro (Ramalingan et al., 2012b) and bromo (Ramalingan et al., 2012b) analogues of the title compound, which lack a C-bound methyl substituent and where the piperidine ring adopts a chair conformation, all C-bound substituents are found in equatorial positions and the N-bound methyl group is in a bisectional position (Ramalingan et al., 2012a, 2012b). The dihedral angle formed between the C15–C20 and C21–C26 benzene rings in the title compound is 66.71 (12)°, and each forms a dihedral angle of 46.60 (13) and 43.75 (13)°, respectively, with the fluorobenzene ring, which occupies a position co-planar to the methoxy(methylidene)amine residue, as seen in the N1—O1—C7—C6 torsion angle of -179.5 (2)°. In the aforementioned chloro and bromo derivatives, orthogonal and co-planar orientations were observed in this region of the respective molecule, respectively. The conformation about the imine C8═N1 bond [1.278 (3) Å] is E.

A complex network of C—H···π interactions connects the molecules into a three-dimensional architecture (Table 1 and Fig. 2).

Experimental

For full details of the synthesis, refer to Ramalingan et al. (2006). Re-crystallization was performed by slow evaporation of an ethanolic solution of (I) which afforded colourless crystals. M.pt: 378–379 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. In the absence of significant anomalous scattering effects, 2345 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents for the title compound, the C—H···π interactions are shown as purple dashed lines.

Crystal data

C27H29FN2O F(000) = 888
Mr = 416.52 Dx = 1.236 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4254 reflections
a = 7.4004 (3) Å θ = 2.4–27.5°
b = 22.4857 (9) Å µ = 0.08 mm1
c = 13.4465 (5) Å T = 100 K
V = 2237.54 (15) Å3 Prism, colourless
Z = 4 0.30 × 0.20 × 0.15 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2693 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2311 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.058
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.9°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −21→29
Tmin = 0.930, Tmax = 1.000 l = −17→16
14812 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.573P] where P = (Fo2 + 2Fc2)/3
2693 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 0.21 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.1682 (3) 0.76313 (8) −0.25008 (12) 0.0369 (5)
O1 0.1493 (2) 0.83790 (8) 0.03234 (14) 0.0210 (4)
N1 0.1480 (3) 0.90124 (9) 0.03729 (17) 0.0177 (5)
N2 −0.1331 (3) 0.95190 (9) 0.25393 (16) 0.0142 (4)
C1 0.1633 (4) 0.72749 (12) −0.1681 (2) 0.0222 (6)
C2 0.1639 (4) 0.66675 (13) −0.1813 (2) 0.0282 (6)
H2 0.1681 0.6499 −0.2461 0.034*
C3 0.1585 (4) 0.63103 (13) −0.0983 (2) 0.0295 (7)
H3 0.1583 0.5890 −0.1054 0.035*
C4 0.1533 (4) 0.65620 (14) −0.0041 (2) 0.0329 (7)
H4 0.1498 0.6315 0.0531 0.040*
C5 0.1534 (4) 0.71756 (12) 0.0062 (2) 0.0259 (6)
H5 0.1503 0.7345 0.0709 0.031*
C6 0.1578 (4) 0.75462 (12) −0.0761 (2) 0.0191 (5)
C7 0.1582 (4) 0.82144 (11) −0.06990 (19) 0.0209 (6)
H7A 0.2699 0.8375 −0.1003 0.025*
H7B 0.0531 0.8378 −0.1063 0.025*
C8 0.1264 (3) 0.91809 (11) 0.12724 (19) 0.0154 (5)
C9 0.1013 (3) 0.87766 (11) 0.21545 (18) 0.0156 (5)
H9 0.0246 0.8435 0.1933 0.019*
C10 −0.0016 (3) 0.90997 (10) 0.29954 (19) 0.0153 (5)
H10 0.0868 0.9332 0.3402 0.018*
C11 −0.0404 (3) 1.00355 (11) 0.20744 (18) 0.0147 (5)
H11 0.0010 1.0308 0.2616 0.018*
C12 0.1286 (3) 0.98411 (11) 0.14558 (18) 0.0149 (5)
H12 0.1226 1.0046 0.0796 0.018*
C13 0.3042 (3) 1.00342 (12) 0.1971 (2) 0.0207 (6)
H13A 0.4080 0.9908 0.1571 0.031*
H13B 0.3112 0.9850 0.2631 0.031*
H13C 0.3055 1.0468 0.2042 0.031*
C14 0.2820 (4) 0.85183 (12) 0.2516 (2) 0.0227 (6)
H14A 0.3420 0.8313 0.1965 0.034*
H14B 0.2596 0.8236 0.3058 0.034*
H14C 0.3594 0.8841 0.2756 0.034*
C15 −0.2592 (4) 0.97521 (12) 0.3285 (2) 0.0212 (5)
H15A −0.3437 1.0028 0.2966 0.032*
H15B −0.1915 0.9962 0.3804 0.032*
H15C −0.3267 0.9422 0.3583 0.032*
C16 −0.0951 (3) 0.86507 (11) 0.36609 (19) 0.0146 (5)
C17 −0.2307 (3) 0.82735 (11) 0.3303 (2) 0.0173 (5)
H17 −0.2665 0.8297 0.2626 0.021*
C18 −0.3132 (4) 0.78652 (11) 0.3928 (2) 0.0200 (6)
H18 −0.4060 0.7614 0.3678 0.024*
C19 −0.2608 (4) 0.78218 (12) 0.4915 (2) 0.0222 (6)
H19 −0.3162 0.7537 0.5338 0.027*
C20 −0.1280 (3) 0.81934 (11) 0.5284 (2) 0.0202 (6)
H20 −0.0924 0.8167 0.5961 0.024*
C21 −0.0465 (3) 0.86073 (11) 0.46574 (19) 0.0169 (5)
H21 0.0439 0.8865 0.4915 0.020*
C22 −0.1760 (3) 1.03673 (11) 0.14343 (18) 0.0149 (5)
C23 −0.2317 (4) 1.09396 (11) 0.16686 (19) 0.0178 (5)
H23 −0.1837 1.1133 0.2239 0.021*
C24 −0.3578 (4) 1.12344 (12) 0.1073 (2) 0.0197 (6)
H24 −0.3947 1.1627 0.1239 0.024*
C25 −0.4290 (4) 1.09576 (11) 0.0244 (2) 0.0210 (6)
H25 −0.5152 1.1157 −0.0160 0.025*
C26 −0.3732 (3) 1.03838 (12) 0.0005 (2) 0.0193 (5)
H26 −0.4219 1.0191 −0.0564 0.023*
C27 −0.2472 (3) 1.00917 (11) 0.05908 (18) 0.0163 (5)
H27 −0.2090 0.9702 0.0417 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0700 (14) 0.0239 (9) 0.0167 (8) 0.0023 (9) 0.0004 (8) −0.0001 (7)
O1 0.0322 (10) 0.0142 (9) 0.0167 (9) 0.0021 (7) 0.0041 (8) −0.0017 (8)
N1 0.0206 (11) 0.0131 (10) 0.0193 (11) 0.0022 (8) 0.0011 (9) −0.0004 (9)
N2 0.0139 (10) 0.0147 (10) 0.0140 (10) 0.0006 (8) 0.0016 (8) 0.0014 (8)
C1 0.0282 (14) 0.0208 (14) 0.0178 (13) 0.0010 (11) 0.0016 (12) 0.0011 (11)
C2 0.0357 (16) 0.0258 (15) 0.0232 (15) 0.0015 (12) −0.0042 (13) −0.0069 (12)
C3 0.0397 (18) 0.0186 (14) 0.0301 (16) 0.0014 (12) −0.0004 (14) −0.0046 (12)
C4 0.0461 (18) 0.0248 (16) 0.0279 (16) 0.0032 (14) 0.0007 (14) 0.0069 (13)
C5 0.0372 (17) 0.0217 (14) 0.0189 (14) 0.0021 (12) 0.0022 (12) −0.0044 (11)
C6 0.0182 (13) 0.0200 (13) 0.0192 (12) 0.0039 (10) 0.0001 (10) −0.0017 (11)
C7 0.0320 (15) 0.0170 (13) 0.0137 (12) 0.0016 (11) 0.0044 (11) −0.0012 (11)
C8 0.0104 (11) 0.0172 (13) 0.0186 (12) 0.0018 (9) −0.0002 (10) −0.0008 (10)
C9 0.0159 (12) 0.0149 (12) 0.0160 (12) 0.0006 (9) 0.0029 (10) 0.0008 (10)
C10 0.0146 (12) 0.0159 (12) 0.0152 (11) 0.0000 (9) −0.0006 (9) 0.0005 (10)
C11 0.0169 (12) 0.0136 (12) 0.0136 (11) −0.0004 (9) −0.0008 (10) −0.0014 (10)
C12 0.0166 (12) 0.0135 (12) 0.0146 (12) 0.0008 (10) 0.0004 (10) 0.0026 (10)
C13 0.0172 (12) 0.0217 (14) 0.0233 (14) −0.0043 (10) 0.0018 (12) −0.0005 (12)
C14 0.0210 (13) 0.0249 (14) 0.0220 (13) 0.0073 (11) 0.0010 (11) 0.0037 (12)
C15 0.0219 (13) 0.0211 (13) 0.0206 (13) 0.0044 (11) 0.0074 (11) 0.0033 (11)
C16 0.0146 (12) 0.0132 (12) 0.0161 (12) 0.0022 (9) 0.0025 (10) 0.0009 (10)
C17 0.0186 (12) 0.0172 (12) 0.0161 (11) 0.0014 (10) −0.0001 (10) −0.0010 (10)
C18 0.0153 (12) 0.0168 (13) 0.0278 (14) −0.0022 (10) 0.0014 (11) −0.0007 (11)
C19 0.0219 (14) 0.0174 (13) 0.0271 (15) 0.0019 (11) 0.0072 (12) 0.0063 (11)
C20 0.0220 (13) 0.0225 (13) 0.0162 (12) 0.0050 (10) 0.0017 (11) 0.0014 (11)
C21 0.0163 (12) 0.0170 (13) 0.0173 (12) 0.0003 (10) −0.0001 (10) −0.0001 (10)
C22 0.0160 (12) 0.0153 (12) 0.0135 (12) −0.0015 (9) 0.0050 (10) 0.0017 (10)
C23 0.0206 (13) 0.0168 (13) 0.0160 (12) −0.0027 (10) 0.0029 (10) 0.0004 (10)
C24 0.0234 (14) 0.0135 (13) 0.0223 (14) 0.0037 (10) 0.0064 (11) 0.0029 (11)
C25 0.0180 (13) 0.0249 (14) 0.0200 (13) 0.0048 (11) 0.0025 (11) 0.0056 (11)
C26 0.0189 (13) 0.0228 (13) 0.0162 (12) 0.0001 (10) −0.0035 (11) 0.0006 (11)
C27 0.0177 (12) 0.0148 (12) 0.0164 (12) −0.0020 (10) 0.0013 (10) 0.0011 (10)

Geometric parameters (Å, º)

F1—C1 1.363 (3) C13—H13A 0.9800
O1—C7 1.425 (3) C13—H13B 0.9800
O1—N1 1.426 (3) C13—H13C 0.9800
N1—C8 1.278 (3) C14—H14A 0.9800
N2—C15 1.467 (3) C14—H14B 0.9800
N2—C11 1.487 (3) C14—H14C 0.9800
N2—C10 1.487 (3) C15—H15A 0.9800
C1—C2 1.377 (4) C15—H15B 0.9800
C1—C6 1.381 (4) C15—H15C 0.9800
C2—C3 1.376 (4) C16—C21 1.391 (3)
C2—H2 0.9500 C16—C17 1.399 (4)
C3—C4 1.388 (4) C17—C18 1.386 (4)
C3—H3 0.9500 C17—H17 0.9500
C4—C5 1.387 (4) C18—C19 1.387 (4)
C4—H4 0.9500 C18—H18 0.9500
C5—C6 1.386 (4) C19—C20 1.382 (4)
C5—H5 0.9500 C19—H19 0.9500
C6—C7 1.505 (4) C20—C21 1.392 (4)
C7—H7A 0.9900 C20—H20 0.9500
C7—H7B 0.9900 C21—H21 0.9500
C8—C9 1.506 (4) C22—C23 1.388 (3)
C8—C12 1.505 (3) C22—C27 1.396 (4)
C9—C14 1.536 (4) C23—C24 1.397 (4)
C9—C10 1.545 (3) C23—H23 0.9500
C9—H9 1.0000 C24—C25 1.381 (4)
C10—C16 1.516 (3) C24—H24 0.9500
C10—H10 1.0000 C25—C26 1.392 (4)
C11—C22 1.518 (3) C25—H25 0.9500
C11—C12 1.564 (3) C26—C27 1.386 (4)
C11—H11 1.0000 C26—H26 0.9500
C12—C13 1.536 (3) C27—H27 0.9500
C12—H12 1.0000
C7—O1—N1 107.75 (18) C11—C12—H12 107.9
C8—N1—O1 110.0 (2) C12—C13—H13A 109.5
C15—N2—C11 107.57 (18) C12—C13—H13B 109.5
C15—N2—C10 111.1 (2) H13A—C13—H13B 109.5
C11—N2—C10 111.54 (18) C12—C13—H13C 109.5
F1—C1—C2 118.6 (2) H13A—C13—H13C 109.5
F1—C1—C6 117.8 (2) H13B—C13—H13C 109.5
C2—C1—C6 123.6 (3) C9—C14—H14A 109.5
C3—C2—C1 118.3 (3) C9—C14—H14B 109.5
C3—C2—H2 120.9 H14A—C14—H14B 109.5
C1—C2—H2 120.9 C9—C14—H14C 109.5
C2—C3—C4 120.2 (3) H14A—C14—H14C 109.5
C2—C3—H3 119.9 H14B—C14—H14C 109.5
C4—C3—H3 119.9 N2—C15—H15A 109.5
C5—C4—C3 119.8 (3) N2—C15—H15B 109.5
C5—C4—H4 120.1 H15A—C15—H15B 109.5
C3—C4—H4 120.1 N2—C15—H15C 109.5
C6—C5—C4 121.2 (3) H15A—C15—H15C 109.5
C6—C5—H5 119.4 H15B—C15—H15C 109.5
C4—C5—H5 119.4 C21—C16—C17 118.3 (2)
C1—C6—C5 116.8 (2) C21—C16—C10 119.8 (2)
C1—C6—C7 119.4 (2) C17—C16—C10 121.9 (2)
C5—C6—C7 123.8 (2) C18—C17—C16 120.6 (2)
O1—C7—C6 108.2 (2) C18—C17—H17 119.7
O1—C7—H7A 110.1 C16—C17—H17 119.7
C6—C7—H7A 110.1 C19—C18—C17 120.2 (3)
O1—C7—H7B 110.1 C19—C18—H18 119.9
C6—C7—H7B 110.1 C17—C18—H18 119.9
H7A—C7—H7B 108.4 C20—C19—C18 120.0 (2)
N1—C8—C9 125.6 (2) C20—C19—H19 120.0
N1—C8—C12 116.5 (2) C18—C19—H19 120.0
C9—C8—C12 117.9 (2) C19—C20—C21 119.7 (3)
C8—C9—C14 111.7 (2) C19—C20—H20 120.2
C8—C9—C10 110.7 (2) C21—C20—H20 120.2
C14—C9—C10 112.0 (2) C16—C21—C20 121.2 (2)
C8—C9—H9 107.4 C16—C21—H21 119.4
C14—C9—H9 107.4 C20—C21—H21 119.4
C10—C9—H9 107.4 C23—C22—C27 119.0 (2)
N2—C10—C16 111.5 (2) C23—C22—C11 121.6 (2)
N2—C10—C9 108.59 (19) C27—C22—C11 119.5 (2)
C16—C10—C9 110.12 (19) C22—C23—C24 120.6 (2)
N2—C10—H10 108.8 C22—C23—H23 119.7
C16—C10—H10 108.8 C24—C23—H23 119.7
C9—C10—H10 108.8 C25—C24—C23 120.2 (2)
N2—C11—C22 108.50 (19) C25—C24—H24 119.9
N2—C11—C12 111.97 (18) C23—C24—H24 119.9
C22—C11—C12 111.37 (19) C24—C25—C26 119.4 (2)
N2—C11—H11 108.3 C24—C25—H25 120.3
C22—C11—H11 108.3 C26—C25—H25 120.3
C12—C11—H11 108.3 C27—C26—C25 120.5 (2)
C8—C12—C13 111.2 (2) C27—C26—H26 119.7
C8—C12—C11 110.75 (19) C25—C26—H26 119.7
C13—C12—C11 110.9 (2) C26—C27—C22 120.4 (2)
C8—C12—H12 107.9 C26—C27—H27 119.8
C13—C12—H12 107.9 C22—C27—H27 119.8
C7—O1—N1—C8 175.2 (2) N1—C8—C12—C13 −107.0 (3)
F1—C1—C2—C3 −179.8 (3) C9—C8—C12—C13 72.4 (3)
C6—C1—C2—C3 0.2 (4) N1—C8—C12—C11 129.2 (2)
C1—C2—C3—C4 −0.3 (4) C9—C8—C12—C11 −51.5 (3)
C2—C3—C4—C5 0.1 (5) N2—C11—C12—C8 14.6 (3)
C3—C4—C5—C6 0.2 (5) C22—C11—C12—C8 −107.1 (2)
F1—C1—C6—C5 −179.8 (3) N2—C11—C12—C13 −109.4 (2)
C2—C1—C6—C5 0.2 (4) C22—C11—C12—C13 128.9 (2)
F1—C1—C6—C7 −0.2 (4) N2—C10—C16—C21 −122.1 (2)
C2—C1—C6—C7 179.8 (3) C9—C10—C16—C21 117.3 (2)
C4—C5—C6—C1 −0.4 (4) N2—C10—C16—C17 57.9 (3)
C4—C5—C6—C7 −180.0 (3) C9—C10—C16—C17 −62.8 (3)
N1—O1—C7—C6 −179.5 (2) C21—C16—C17—C18 −0.4 (4)
C1—C6—C7—O1 179.1 (2) C10—C16—C17—C18 179.7 (2)
C5—C6—C7—O1 −1.3 (4) C16—C17—C18—C19 −0.7 (4)
O1—N1—C8—C9 −1.4 (3) C17—C18—C19—C20 1.1 (4)
O1—N1—C8—C12 177.92 (18) C18—C19—C20—C21 −0.4 (4)
N1—C8—C9—C14 79.6 (3) C17—C16—C21—C20 1.0 (4)
C12—C8—C9—C14 −99.7 (3) C10—C16—C21—C20 −179.0 (2)
N1—C8—C9—C10 −154.8 (2) C19—C20—C21—C16 −0.6 (4)
C12—C8—C9—C10 25.9 (3) N2—C11—C22—C23 113.8 (2)
C15—N2—C10—C16 47.3 (3) C12—C11—C22—C23 −122.5 (2)
C11—N2—C10—C16 167.3 (2) N2—C11—C22—C27 −66.0 (3)
C15—N2—C10—C9 168.8 (2) C12—C11—C22—C27 57.7 (3)
C11—N2—C10—C9 −71.1 (2) C27—C22—C23—C24 0.3 (4)
C8—C9—C10—N2 33.5 (3) C11—C22—C23—C24 −179.5 (2)
C14—C9—C10—N2 158.9 (2) C22—C23—C24—C25 0.2 (4)
C8—C9—C10—C16 155.9 (2) C23—C24—C25—C26 −0.3 (4)
C14—C9—C10—C16 −78.7 (3) C24—C25—C26—C27 −0.1 (4)
C15—N2—C11—C22 −70.3 (2) C25—C26—C27—C22 0.7 (4)
C10—N2—C11—C22 167.55 (19) C23—C22—C27—C26 −0.8 (4)
C15—N2—C11—C12 166.4 (2) C11—C22—C27—C26 179.0 (2)
C10—N2—C11—C12 44.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1–Cg3 are the centroids of the C1–C6, C16–C21 and C22–C27 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C7—H7A···Cg1i 0.99 2.96 3.721 (3) 135
C13—H13A···Cg2ii 0.98 2.91 3.577 (3) 127
C18—H18···Cg3iii 0.95 2.90 3.700 (3) 143
C21—H21···Cg2iv 0.95 2.51 3.446 (3) 167
C25—H25···Cg3v 0.95 2.74 3.654 (3) 160

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x+1, y, z; (iii) x−1/2, −y+3/2, z; (iv) −x, −y+2, z+1/2; (v) −x−1, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2563).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934. [DOI] [PubMed]
  5. Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533. [DOI] [PubMed]
  6. Ramalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2267. [DOI] [PMC free article] [PubMed]
  7. Ramalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o2268. [DOI] [PMC free article] [PubMed]
  8. Ramalingan, C., Park, Y.-T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683–696. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029327/pv2563sup1.cif

e-68-o2312-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029327/pv2563Isup2.hkl

e-68-o2312-Isup2.hkl (132.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029327/pv2563Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES