Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 4;68(Pt 8):o2321–o2322. doi: 10.1107/S1600536812026633

(E)-4-Amino-N′-(2-hy­droxy-5-meth­oxy­benzyl­idene)benzohydrazide monohydrate

Hadi Kargar a, Reza Kia b,*,, Muhammad Nawaz Tahir c,*
PMCID: PMC3414187  PMID: 22904794

Abstract

In the title compound, C15H15N3O3·H2O, the hydazide Schiff base mol­ecule shows an E conformation around the C=N bond. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. The dihedral angle between the substituted phenyl rings is 23.40 (11)°. The water mol­ecule mediates linking of neighbouring mol­ecules through O—H⋯(O,O) hydrogen bonds into infinite chains along the a axis, which are further connected together through N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). C—H⋯O inter­actions aso occur.

Related literature  

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-amino­benzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002); Kargar et al. (2012a,b ). graphic file with name e-68-o2321-scheme1.jpg

Experimental  

Crystal data  

  • C15H15N3O3·H2O

  • M r = 303.32

  • Monoclinic, Inline graphic

  • a = 4.7376 (5) Å

  • b = 13.270 (2) Å

  • c = 11.7265 (16) Å

  • β = 98.459 (4)°

  • V = 729.18 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.28 × 0.20 × 0.18 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.972, T max = 0.982

  • 6511 measured reflections

  • 1679 independent reflections

  • 1433 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.085

  • S = 1.03

  • 1679 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008)’; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026633/bq2366sup1.cif

e-68-o2321-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026633/bq2366Isup2.hkl

e-68-o2321-Isup2.hkl (82.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026633/bq2366Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.92 2.00 2.926 (3) 174
O2—H2⋯N3 0.93 1.85 2.650 (3) 143
O1W—H2W1⋯O1ii 0.83 1.95 2.787 (3) 176
N2—H2N⋯O1W 0.95 2.15 3.084 (3) 167
N1—H1N1⋯O3iii 0.93 2.25 3.043 (3) 143
N1—H2N1⋯O2i 0.99 2.17 3.141 (3) 169
C2—H2A⋯O1W 0.93 2.45 3.351 (3) 163
C8—H8A⋯O1W 0.93 2.56 3.368 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

supplementary crystallographic information

Comment

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Kargar et al., 2012a,b; Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). In order to explore the structure of the new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The asymmetric unit of the title compound, Fig. 1, comprises a molecule of the title hydazide Schiff base and a water molecule of crystallization. It shows E conformation around C═N bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Kargar et al., 2012a,b; Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). Intramolecular O—H···N hydrogen bond makes S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the substituted phenyl rings is 23.40 (11)Å. The water molecule mediates linking of the neighboring molecules through O—H···(O, O) hydrogen bondings into infinite chains along the a axis which are further connected together through N—H···O hydrogen bonds, forming two-dimensional network parallel to (0 0 1) [Fig. 2].

Experimental

The title compound was synthesized by adding 1 mmol of methyl 4-aminobenzoate to a solution of 5-methoxysalicylaldehyde (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 50 min and after cooling to room temperature a light-yellow precipitate was filtered and washed with diethylether and dried in air. white prismatic crystals of the title compound, suitable for X-ray structure analysis, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

The N- and O-bound H-atoms were located in a difference Fourier map and constrained to refine to the parent atoms with Uiso (H) = 1.2 or 1.5 Ueq(N, O), respectively, see Table 1. The rest of the H atoms were positioned by riding model approximation with C—H = 0.93 and Uiso (H) = k × Ueq(C) with k = 1.2 for CH and 1.5 for CH3. In the absence of sufficient anomalous scattering 1437 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines shows the intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

A view along the a axis of crystal packing of the title compound, showing linking of molecules through the intermolecular N—H···O and O—H···O interactions (dashed lines), forming two-dimensional networks. Only the H atoms involved in the interactions are shown.

Crystal data

C15H15N3O3·H2O F(000) = 320
Mr = 303.32 Dx = 1.381 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 873 reflections
a = 4.7376 (5) Å θ = 2.5–28.5°
b = 13.270 (2) Å µ = 0.10 mm1
c = 11.7265 (16) Å T = 291 K
β = 98.459 (4)° Prism, white
V = 729.18 (17) Å3 0.28 × 0.20 × 0.18 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 1679 independent reflections
Radiation source: fine-focus sealed tube 1433 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −5→6
Tmin = 0.972, Tmax = 0.982 k = −17→17
6511 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.0579P] where P = (Fo2 + 2Fc2)/3
1679 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2636 (4) 0.77661 (14) −0.05541 (17) 0.0508 (5)
O2 −0.2127 (4) 0.80740 (14) 0.21112 (17) 0.0525 (5)
H2 −0.1070 0.7823 0.1570 0.079*
O3 −0.7483 (4) 0.51216 (16) 0.43124 (16) 0.0576 (6)
O1W 0.2220 (4) 0.39655 (14) 0.06445 (17) 0.0554 (5)
H1W1 0.3915 0.3618 0.0655 0.083*
H2W1 0.0724 0.3628 0.0602 0.083*
N1 0.9460 (5) 0.49031 (19) −0.3593 (2) 0.0563 (6)
H1N1 1.0085 0.5262 −0.4186 0.084*
H2N1 1.0325 0.4284 −0.3229 0.084*
N2 0.1583 (4) 0.62403 (16) 0.01294 (17) 0.0385 (5)
H2N 0.1776 0.5530 0.0164 0.046*
N3 −0.0003 (4) 0.66404 (16) 0.09130 (17) 0.0380 (5)
C1 0.4541 (4) 0.6311 (2) −0.1357 (2) 0.0343 (5)
C2 0.5460 (5) 0.53219 (18) −0.1196 (2) 0.0389 (6)
H2A 0.4945 0.4956 −0.0582 0.047*
C3 0.7107 (5) 0.48700 (19) −0.1917 (2) 0.0424 (6)
H3A 0.7718 0.4209 −0.1778 0.051*
C4 0.7876 (5) 0.5391 (2) −0.2859 (2) 0.0409 (6)
C5 0.6937 (6) 0.6372 (2) −0.3037 (2) 0.0470 (6)
H5A 0.7407 0.6732 −0.3664 0.056*
C6 0.5309 (5) 0.6824 (2) −0.2298 (2) 0.0439 (6)
H6A 0.4714 0.7487 −0.2432 0.053*
C7 0.2861 (5) 0.68406 (19) −0.0575 (2) 0.0359 (5)
C8 −0.1204 (5) 0.59925 (19) 0.1497 (2) 0.0388 (6)
H8A −0.0947 0.5309 0.1370 0.047*
C9 −0.2965 (5) 0.6304 (2) 0.2356 (2) 0.0357 (5)
C10 −0.3358 (5) 0.7308 (2) 0.2623 (2) 0.0386 (5)
C11 −0.5064 (5) 0.7548 (2) 0.3461 (2) 0.0462 (7)
H11A −0.5315 0.8219 0.3651 0.055*
C12 −0.6366 (6) 0.6808 (2) 0.4005 (2) 0.0459 (7)
H12A −0.7489 0.6981 0.4562 0.055*
C13 −0.6028 (5) 0.5804 (2) 0.3732 (2) 0.0421 (6)
C14 −0.4317 (5) 0.5551 (2) 0.2919 (2) 0.0404 (6)
H14A −0.4058 0.4877 0.2743 0.049*
C15 −0.7400 (8) 0.4101 (3) 0.3976 (3) 0.0687 (9)
H15A −0.8667 0.3713 0.4372 0.103*
H15B −0.5491 0.3848 0.4169 0.103*
H15C −0.7986 0.4047 0.3159 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0495 (10) 0.0383 (11) 0.0708 (13) 0.0017 (8) 0.0294 (9) −0.0014 (9)
O2 0.0604 (11) 0.0439 (11) 0.0593 (12) −0.0043 (9) 0.0290 (10) −0.0038 (9)
O3 0.0680 (13) 0.0610 (13) 0.0512 (12) −0.0032 (10) 0.0335 (10) 0.0064 (9)
O1W 0.0532 (11) 0.0398 (10) 0.0783 (14) −0.0022 (9) 0.0271 (10) 0.0019 (9)
N1 0.0682 (15) 0.0580 (15) 0.0502 (13) 0.0072 (13) 0.0343 (12) −0.0005 (12)
N2 0.0362 (10) 0.0410 (11) 0.0421 (11) 0.0000 (10) 0.0183 (9) −0.0052 (10)
N3 0.0316 (10) 0.0471 (12) 0.0378 (11) 0.0012 (9) 0.0138 (8) −0.0056 (9)
C1 0.0305 (11) 0.0378 (13) 0.0363 (12) −0.0033 (10) 0.0101 (9) −0.0029 (10)
C2 0.0437 (13) 0.0367 (13) 0.0406 (13) −0.0007 (11) 0.0199 (11) 0.0026 (10)
C3 0.0483 (14) 0.0364 (14) 0.0460 (14) 0.0041 (11) 0.0182 (12) 0.0000 (11)
C4 0.0390 (13) 0.0484 (15) 0.0385 (13) −0.0013 (11) 0.0161 (11) −0.0050 (11)
C5 0.0570 (15) 0.0480 (16) 0.0407 (14) −0.0011 (13) 0.0227 (12) 0.0104 (12)
C6 0.0526 (15) 0.0372 (14) 0.0452 (14) 0.0025 (12) 0.0184 (12) 0.0028 (11)
C7 0.0282 (11) 0.0386 (14) 0.0421 (14) −0.0011 (10) 0.0093 (10) −0.0026 (11)
C8 0.0372 (12) 0.0430 (14) 0.0386 (13) 0.0039 (10) 0.0135 (10) −0.0034 (10)
C9 0.0293 (11) 0.0459 (14) 0.0331 (12) 0.0025 (11) 0.0084 (9) −0.0032 (11)
C10 0.0365 (13) 0.0452 (14) 0.0356 (12) 0.0012 (11) 0.0103 (10) −0.0003 (11)
C11 0.0495 (15) 0.0501 (17) 0.0412 (14) 0.0055 (12) 0.0143 (12) −0.0084 (12)
C12 0.0466 (14) 0.0589 (18) 0.0353 (13) 0.0068 (13) 0.0166 (11) −0.0042 (13)
C13 0.0413 (14) 0.0544 (16) 0.0326 (13) 0.0031 (12) 0.0118 (11) 0.0027 (12)
C14 0.0422 (13) 0.0427 (14) 0.0391 (13) 0.0072 (11) 0.0148 (11) −0.0014 (11)
C15 0.091 (2) 0.0530 (19) 0.070 (2) −0.0032 (17) 0.0381 (19) 0.0106 (16)

Geometric parameters (Å, º)

O1—C7 1.233 (3) C3—H3A 0.9300
O2—C10 1.355 (3) C4—C5 1.383 (4)
O2—H2 0.9261 C5—C6 1.379 (3)
O3—C13 1.377 (3) C5—H5A 0.9300
O3—C15 1.413 (4) C6—H6A 0.9300
O1W—H1W1 0.9247 C8—C9 1.459 (3)
O1W—H2W1 0.8339 C8—H8A 0.9300
N1—C4 1.383 (3) C9—C10 1.387 (4)
N1—H1N1 0.9272 C9—C14 1.403 (4)
N1—H2N1 0.9864 C10—C11 1.398 (3)
N2—C7 1.353 (3) C11—C12 1.366 (4)
N2—N3 1.376 (3) C11—H11A 0.9300
N2—H2N 0.9473 C12—C13 1.386 (4)
N3—C8 1.284 (3) C12—H12A 0.9300
C1—C2 1.387 (3) C13—C14 1.381 (3)
C1—C6 1.390 (3) C14—H14A 0.9300
C1—C7 1.478 (3) C15—H15A 0.9600
C2—C3 1.370 (3) C15—H15B 0.9600
C2—H2A 0.9300 C15—H15C 0.9600
C3—C4 1.396 (3)
C10—O2—H2 110.2 O1—C7—C1 122.8 (2)
C13—O3—C15 117.1 (2) N2—C7—C1 115.4 (2)
H1W1—O1W—H2W1 117.5 N3—C8—C9 121.5 (2)
C4—N1—H1N1 119.3 N3—C8—H8A 119.3
C4—N1—H2N1 110.4 C9—C8—H8A 119.3
H1N1—N1—H2N1 126.4 C10—C9—C14 119.5 (2)
C7—N2—N3 121.2 (2) C10—C9—C8 122.5 (2)
C7—N2—H2N 124.2 C14—C9—C8 118.0 (2)
N3—N2—H2N 114.5 O2—C10—C9 122.7 (2)
C8—N3—N2 115.2 (2) O2—C10—C11 118.1 (2)
C2—C1—C6 117.3 (2) C9—C10—C11 119.2 (2)
C2—C1—C7 123.5 (2) C12—C11—C10 120.8 (3)
C6—C1—C7 119.2 (2) C12—C11—H11A 119.6
C3—C2—C1 121.7 (2) C10—C11—H11A 119.6
C3—C2—H2A 119.1 C11—C12—C13 120.6 (2)
C1—C2—H2A 119.1 C11—C12—H12A 119.7
C2—C3—C4 120.7 (2) C13—C12—H12A 119.7
C2—C3—H3A 119.7 O3—C13—C14 124.7 (3)
C4—C3—H3A 119.7 O3—C13—C12 115.8 (2)
C5—C4—N1 122.6 (2) C14—C13—C12 119.5 (2)
C5—C4—C3 118.1 (2) C13—C14—C9 120.5 (2)
N1—C4—C3 119.3 (2) C13—C14—H14A 119.8
C6—C5—C4 120.8 (2) C9—C14—H14A 119.8
C6—C5—H5A 119.6 O3—C15—H15A 109.5
C4—C5—H5A 119.6 O3—C15—H15B 109.5
C5—C6—C1 121.5 (2) H15A—C15—H15B 109.5
C5—C6—H6A 119.3 O3—C15—H15C 109.5
C1—C6—H6A 119.3 H15A—C15—H15C 109.5
O1—C7—N2 121.8 (2) H15B—C15—H15C 109.5
C7—N2—N3—C8 177.2 (2) N3—C8—C9—C10 −2.5 (3)
C6—C1—C2—C3 1.3 (3) N3—C8—C9—C14 177.0 (2)
C7—C1—C2—C3 −177.5 (2) C14—C9—C10—O2 −179.8 (2)
C1—C2—C3—C4 −1.2 (4) C8—C9—C10—O2 −0.3 (4)
C2—C3—C4—C5 0.2 (4) C14—C9—C10—C11 0.9 (3)
C2—C3—C4—N1 −177.9 (2) C8—C9—C10—C11 −179.6 (2)
N1—C4—C5—C6 178.6 (3) O2—C10—C11—C12 179.8 (2)
C3—C4—C5—C6 0.6 (4) C9—C10—C11—C12 −0.8 (4)
C4—C5—C6—C1 −0.5 (4) C10—C11—C12—C13 −0.2 (4)
C2—C1—C6—C5 −0.4 (4) C15—O3—C13—C14 −5.6 (4)
C7—C1—C6—C5 178.4 (2) C15—O3—C13—C12 174.2 (3)
N3—N2—C7—O1 −0.8 (4) C11—C12—C13—O3 −178.6 (2)
N3—N2—C7—C1 178.87 (19) C11—C12—C13—C14 1.2 (4)
C2—C1—C7—O1 162.1 (2) O3—C13—C14—C9 178.7 (2)
C6—C1—C7—O1 −16.6 (4) C12—C13—C14—C9 −1.1 (4)
C2—C1—C7—N2 −17.6 (3) C10—C9—C14—C13 0.0 (3)
C6—C1—C7—N2 163.7 (2) C8—C9—C14—C13 −179.4 (2)
N2—N3—C8—C9 −179.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O1i 0.92 2.00 2.926 (3) 174
O2—H2···N3 0.93 1.85 2.650 (3) 143
O1W—H2W1···O1ii 0.83 1.95 2.787 (3) 176
N2—H2N···O1W 0.95 2.15 3.084 (3) 167
N1—H1N1···O3iii 0.93 2.25 3.043 (3) 143
N1—H2N1···O2i 0.99 2.17 3.141 (3) 169
C2—H2A···O1W 0.93 2.45 3.351 (3) 163
C8—H8A···O1W 0.93 2.56 3.368 (3) 146

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) −x, y−1/2, −z; (iii) x+2, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2366).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bakir, M. & Green, O. (2002). Acta Cryst. C58, o263–o265. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Kargar, H., Kia, R. & Tahir, M. N. (2012a). Acta Cryst. E68, o2118–o2119. [DOI] [PMC free article] [PubMed]
  6. Kargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, o2120. [DOI] [PMC free article] [PubMed]
  7. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. [DOI] [PubMed]
  8. Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546–o1547. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Xu, S.-Q. (2012). Acta Cryst. E68, o1320. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812026633/bq2366sup1.cif

e-68-o2321-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812026633/bq2366Isup2.hkl

e-68-o2321-Isup2.hkl (82.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812026633/bq2366Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES