Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 4;68(Pt 8):o2332–o2333. doi: 10.1107/S1600536812029704

6-Hy­droxy-7,8-dimethyl­chroman-2-one

Shailesh K Goswami a, Lyall R Hanton a, C John McAdam a, Stephen C Moratti a, Jim Simpson a,*
PMCID: PMC3414271  PMID: 22904804

Abstract

The title compound, C11H12O3, is essentially planar, with an r.m.s. deviation of 0.179 Å from the mean plane through the 14 non-H atoms in the mol­ecule. The benzene ring and the pyranone mean plane are inclined at 13.12 (6)° to one another and the pyran­one ring adopts a flattened chair conformation. In the crystal, O—H⋯O hydrogen bonds and C—H⋯O contacts form R 1 2(6) rings and link mol­ecules into chains along b. Additional C—H⋯O contacts generate inversion dimers, with R 2 2(8) ring motifs, and form sheets parallel to (-102) which are linked by C—H⋯π interactions.

Related literature  

For the synthesis, see: Lecea et al. (2010). For details of the Cambridge Structural Database, see: Allen (2002) and for related structures, see: Cameron et al. (2011); Goswami et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2332-scheme1.jpg

Experimental  

Crystal data  

  • C11H12O3

  • M r = 192.21

  • Triclinic, Inline graphic

  • a = 6.2808 (14) Å

  • b = 8.630 (2) Å

  • c = 9.389 (2) Å

  • α = 88.603 (6)°

  • β = 83.638 (5)°

  • γ = 69.088 (5)°

  • V = 472.40 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 92 K

  • 0.34 × 0.32 × 0.12 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011) T min = 0.656, T max = 0.747

  • 9073 measured reflections

  • 3963 independent reflections

  • 3368 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.188

  • S = 1.11

  • 3963 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011) and SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029704/lh5497sup1.cif

e-68-o2332-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029704/lh5497Isup2.hkl

e-68-o2332-Isup2.hkl (194.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029704/lh5497Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8O⋯O1i 0.89 (2) 1.89 (2) 2.7788 (15) 175 (2)
C9—H9⋯O1i 0.95 2.63 3.3371 (16) 132
C2—H2A⋯O1ii 0.99 2.52 3.4626 (16) 159
C3—H3BCg iii 0.99 2.54 3.4771 (15) 157
C61—H61CCg iv 0.98 2.79 3.6956 (16) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Our current research is focused on the preparation of quinone/hydroquinone based monomers for utilization in redox-active polymer gels. Synthesis of such systems is a multi-step process and often passes through a hydropyranone intermediate (Lecea et al., 2010; Cameron et al., 2011; Goswami et al., 2011). The title compound illustrates one such intermediate and was isolated during the synthesis of a trifluoromethyl substituted hydroquinone.

The title compound (I), Fig 1, is almost planar with an r.m.s. deviation of 0.179 Å from the best fit plane through the 14 non-hydrogen atoms in the molecule. The maximum deviation from this plane is 0.5437 (11) Å for C2. This is in keeping with the fact that the pyranone ring adopts a flattened chair conformation with the C2 atom displaced by 0.6004 (17) Å from the plane through C1/O2/C5/C4/C3 which, in turn, has an r.m.s. deviation of 0.076 Å. This is in contrast to the closely related 5,6-dimethyl-1,2,9,10- tetrahydropyrano[3,2-f]chromene-3,8-dione (Goswami et al., 2012), where both the C2 and O2 atoms of the pyranone rings were displaced significantly from the molecular plane in opposite directions. A search of the Cambridge Structural Database (Allen, 2002) revealed only two additional tetrahydropyrano derivatives (Goswami et al., 2011, Cameron et al., 2011). However, removing the restraint on substitution at the 3 and 4 positions of the pyranone ring, reveals the structures of more than 190 chromanone derivatives. The bond distances (Allen et al., 1987) and angles in the molecule are normal and, despite the variation in the pyranone ring conformations, similar to those found in related structures (Goswami et al., 2011, 2012; Cameron et al., 2011).

In the crystal structure, O8—H8O···O1 hydrogen bonds, augmented by non-classical C9—H9···O1 contacts, form R21(6) rings (Bernstein et al., 1995) and link molecules into rows along b, Fig 2. C2—H2A···O1 hydrogen bonds form inversion dimers generating R22(8) rings, Fig 3, which further connect the molecules into sheets approximately parallel to the (-1, 0, 2) plane, Fig 4. C—H···π contacts are also present linking adjacent molecules above and below the plane of the C4···C9 benzene ring and forming columns approximately orthogonal to the (-1, 0, 2) plane and resulting in a series of stacked layers, Fig 5.

Experimental

The title compound was prepared according to the literature (Lecea et al., 2010) by a Friedel-Crafts type reaction of 2,3-dimethylhydroquinone with acrylic acid. X-ray quality crystals of (I) were grown from CDCl3.

Refinement

Crystals of this material were not of good quality and the results presented here represent the best of several data collections. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq (C) for methylene and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The H8O hydrogen atom was located in a difference Fourier synthesis and its coordinates refined with Uiso = 1.5Ueq (O).

Figures

Fig. 1.

Fig. 1.

The structure of (I) with ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Rows of molecules along b linked by O—H···O and C—H···O hydrogen bonds drawn as dashed lines.

Fig. 3.

Fig. 3.

Inversion dimers formed by C—H···O hydrogen bonds drawn as dashed lines.

Fig. 4.

Fig. 4.

Sheets of molecules in the (-1,0,2) plane. Hydrogen bonds are drawn as dashed lines.

Fig. 5.

Fig. 5.

Overall packing of (I) showing representative C–H···π contacts as dotted lines. The red spheres represent the centroids of the C4···C9 benzene rings and hydrogen bonds are drawn as dashed lines.

Crystal data

C11H12O3 Z = 2
Mr = 192.21 F(000) = 204
Triclinic, P1 Dx = 1.351 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.2808 (14) Å Cell parameters from 4269 reflections
b = 8.630 (2) Å θ = 2.5–35.1°
c = 9.389 (2) Å µ = 0.10 mm1
α = 88.603 (6)° T = 92 K
β = 83.638 (5)° Triangular plate, yellow
γ = 69.088 (5)° 0.34 × 0.32 × 0.12 mm
V = 472.40 (19) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 3963 independent reflections
Radiation source: fine-focus sealed tube 3368 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
φ and ω scans θmax = 35.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2011) h = −9→9
Tmin = 0.656, Tmax = 0.747 k = −13→12
9073 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0874P)2 + 0.1584P] where P = (Fo2 + 2Fc2)/3
3963 reflections (Δ/σ)max < 0.001
132 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26085 (18) 1.00639 (11) 0.13645 (11) 0.0271 (2)
C1 0.2601 (2) 0.86709 (14) 0.15707 (13) 0.0195 (2)
O2 0.44911 (14) 0.75378 (10) 0.20340 (9) 0.01890 (18)
C2 0.0627 (2) 0.81355 (14) 0.13980 (13) 0.0198 (2)
H2A −0.0395 0.8915 0.0761 0.024*
H2B −0.0265 0.8178 0.2344 0.024*
C3 0.14248 (19) 0.63811 (13) 0.07686 (12) 0.0175 (2)
H3A 0.0114 0.5993 0.0819 0.021*
H3B 0.2033 0.6378 −0.0251 0.021*
C4 0.32642 (18) 0.52366 (13) 0.15984 (11) 0.01564 (19)
C5 0.46469 (18) 0.58834 (13) 0.22549 (11) 0.01568 (19)
C6 0.63239 (18) 0.49425 (14) 0.31075 (11) 0.0165 (2)
C61 0.7683 (2) 0.57324 (16) 0.38576 (13) 0.0213 (2)
H61A 0.7096 0.6933 0.3707 0.032*
H61B 0.9300 0.5266 0.3468 0.032*
H61C 0.7538 0.5514 0.4886 0.032*
C7 0.66848 (19) 0.32489 (14) 0.32618 (12) 0.0179 (2)
C71 0.8441 (2) 0.21682 (16) 0.41777 (14) 0.0247 (2)
H71A 0.9982 0.1949 0.3685 0.037*
H71B 0.8197 0.1116 0.4349 0.037*
H71C 0.8290 0.2735 0.5096 0.037*
C8 0.53406 (19) 0.25683 (13) 0.25696 (12) 0.0181 (2)
O8 0.57401 (17) 0.09172 (11) 0.27400 (11) 0.0255 (2)
H8O 0.472 (4) 0.070 (3) 0.226 (2) 0.038*
C9 0.36335 (19) 0.35568 (13) 0.17644 (12) 0.0175 (2)
H9 0.2715 0.3080 0.1326 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0341 (5) 0.0165 (4) 0.0344 (5) −0.0117 (3) −0.0113 (4) 0.0055 (3)
C1 0.0231 (5) 0.0153 (4) 0.0197 (5) −0.0058 (4) −0.0048 (4) 0.0014 (3)
O2 0.0213 (4) 0.0159 (4) 0.0221 (4) −0.0087 (3) −0.0064 (3) 0.0024 (3)
C2 0.0190 (5) 0.0157 (4) 0.0241 (5) −0.0046 (4) −0.0059 (4) 0.0015 (4)
C3 0.0189 (5) 0.0166 (4) 0.0176 (4) −0.0060 (4) −0.0059 (4) 0.0012 (3)
C4 0.0162 (4) 0.0146 (4) 0.0159 (4) −0.0048 (3) −0.0028 (3) −0.0008 (3)
C5 0.0172 (4) 0.0147 (4) 0.0154 (4) −0.0058 (3) −0.0028 (3) 0.0008 (3)
C6 0.0148 (4) 0.0193 (5) 0.0147 (4) −0.0052 (3) −0.0021 (3) −0.0003 (3)
C61 0.0191 (5) 0.0271 (6) 0.0200 (5) −0.0102 (4) −0.0050 (4) 0.0002 (4)
C7 0.0165 (4) 0.0189 (5) 0.0162 (4) −0.0036 (4) −0.0034 (3) 0.0020 (3)
C71 0.0237 (5) 0.0241 (5) 0.0228 (5) −0.0027 (4) −0.0087 (4) 0.0046 (4)
C8 0.0191 (5) 0.0145 (4) 0.0194 (5) −0.0041 (3) −0.0026 (4) 0.0011 (3)
O8 0.0281 (5) 0.0139 (4) 0.0342 (5) −0.0052 (3) −0.0101 (4) 0.0039 (3)
C9 0.0177 (5) 0.0146 (4) 0.0197 (5) −0.0048 (3) −0.0038 (4) −0.0001 (3)

Geometric parameters (Å, º)

O1—C1 1.2145 (14) C6—C61 1.5039 (16)
C1—O2 1.3489 (14) C61—H61A 0.9800
C1—C2 1.4948 (17) C61—H61B 0.9800
O2—C5 1.4076 (13) C61—H61C 0.9800
C2—C3 1.5261 (16) C7—C8 1.4051 (16)
C2—H2A 0.9900 C7—C71 1.5044 (16)
C2—H2B 0.9900 C71—H71A 0.9800
C3—C4 1.5049 (15) C71—H71B 0.9800
C3—H3A 0.9900 C71—H71C 0.9800
C3—H3B 0.9900 C8—O8 1.3644 (14)
C4—C5 1.3882 (15) C8—C9 1.3943 (15)
C4—C9 1.3916 (15) O8—O1i 2.7788 (15)
C5—C6 1.3979 (15) O8—H8O 0.89 (2)
C6—C7 1.4032 (16) C9—H9 0.9500
O1—C1—O2 117.42 (11) C7—C6—C61 120.86 (10)
O1—C1—C2 124.89 (11) C6—C61—H61A 109.5
O2—C1—C2 117.65 (10) C6—C61—H61B 109.5
C1—O2—C5 120.91 (9) H61A—C61—H61B 109.5
C1—C2—C3 111.78 (9) C6—C61—H61C 109.5
C1—C2—H2A 109.3 H61A—C61—H61C 109.5
C3—C2—H2A 109.3 H61B—C61—H61C 109.5
C1—C2—H2B 109.3 C6—C7—C8 119.04 (10)
C3—C2—H2B 109.3 C6—C7—C71 121.15 (10)
H2A—C2—H2B 107.9 C8—C7—C71 119.79 (10)
C4—C3—C2 109.49 (9) C7—C71—H71A 109.5
C4—C3—H3A 109.8 C7—C71—H71B 109.5
C2—C3—H3A 109.8 H71A—C71—H71B 109.5
C4—C3—H3B 109.8 C7—C71—H71C 109.5
C2—C3—H3B 109.8 H71A—C71—H71C 109.5
H3A—C3—H3B 108.2 H71B—C71—H71C 109.5
C5—C4—C9 117.89 (10) O8—C8—C9 121.51 (10)
C5—C4—C3 118.78 (9) O8—C8—C7 117.50 (10)
C9—C4—C3 123.32 (10) C9—C8—C7 120.98 (10)
C4—C5—C6 123.13 (10) C8—O8—H8O 105.9 (13)
C4—C5—O2 120.75 (9) C4—C9—C8 120.53 (10)
C6—C5—O2 116.05 (9) C4—C9—H9 119.7
C5—C6—C7 118.36 (10) C8—C9—H9 119.7
C5—C6—C61 120.77 (10)

Symmetry code: (i) x, y−1, z.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C4–C9 benzene ring.

D—H···A D—H H···A D···A D—H···A
O8—H8O···O1i 0.89 (2) 1.89 (2) 2.7788 (15) 175 (2)
C9—H9···O1i 0.95 2.63 3.3371 (16) 132
C2—H2A···O1ii 0.99 2.52 3.4626 (16) 159
C3—H3B···Cgiii 0.99 2.54 3.4771 (15) 157
C61—H61C···Cgiv 0.98 2.79 3.6956 (16) 153

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+2, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5497).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2011). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cameron, S. A., Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o2141–o2142. [DOI] [PMC free article] [PubMed]
  7. Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566–o1567. [DOI] [PMC free article] [PubMed]
  8. Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2012). Acta Cryst. E68, o2216. [DOI] [PMC free article] [PubMed]
  9. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  10. Lecea, M., Hernández-Torres, G., Urbano, A., Carreño, M. C. & Colobert, F. (2010). Org. Lett. 12, 580–583. [DOI] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812029704/lh5497sup1.cif

e-68-o2332-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029704/lh5497Isup2.hkl

e-68-o2332-Isup2.hkl (194.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029704/lh5497Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES