Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2345. doi: 10.1107/S1600536812029479

16α,17α-Ep­oxy-17β-(1H-imidazol-1-yl)androst-4-en-3-one monohydrate

A G Anitha a, R Hema a,*, Ranju Bansal b, Sridhar Thota b, S Rizwana Begum a
PMCID: PMC3414280  PMID: 22904813

Abstract

In the title compound, C22H28N2O2·H2O, rings B and C adopt chair conformations. Ring A adopts an envelope conformation, with the non-fused C atom adjacent to the fused C atom bearing a methyl group as the flap atom. Ring D also adopts an envelope conformation, with the fused C atom not bearing a methyl group as the flap atom. The water mol­ecule links the mol­ecules via O—H⋯O and O—H⋯N hydrogen bonds, forming zigzag chains which run parallel to the c axis. Weak C—H⋯O inter­actions also occur.

Related literature  

For background information on steroid activity, see: Duax & Norton (1975). For conformational analysis, see: Altona et al. (1968); Cremer & Pople (1975). For details of the determination of the absolute configuration, see: Bansal et al. (2012).graphic file with name e-68-o2345-scheme1.jpg

Experimental  

Crystal data  

  • C22H28N2O2·H2O

  • M r = 370.48

  • Orthorhombic, Inline graphic

  • a = 9.7813 (2) Å

  • b = 13.5885 (3) Å

  • c = 14.2698 (3) Å

  • V = 1896.64 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.975, T max = 0.983

  • 10371 measured reflections

  • 3331 independent reflections

  • 2807 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.083

  • S = 1.06

  • 3331 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029479/go2059sup1.cif

e-68-o2345-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029479/go2059Isup2.hkl

e-68-o2345-Isup2.hkl (94.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N2 0.90 1.99 2.890 (3) 174
O3—H32⋯O1i 0.90 2.33 3.202 (3) 163
C20—H20⋯O3ii 0.93 2.43 3.208 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargese, Regional Instrumentation Analytical Centre, IIT, Madras, India, for the data collection.

supplementary crystallographic information

Comment

It is well known that minor changes in the basic composition of steroids significantly alter their biological activities (Duax and Norton, 1975).

The structure determination of C22H28N2O2.H2O , (I), was undertaken to investigate the conformation of the fused ring system. The puckering parameters in (I), ring-B: Q = 0.534 (2) Å, θ = 3.9 (2)°, ring-C: Q = 0.589 (2) Å, θ = 6.19 (19)°; (Cremer and Pople, 1975) show that rings B and C adopt chair confomation. The C4—C5-(Csp2-Csp2) distance of 1.336 (3) Å confirms the localization of a double bond at this position. Due to this double bond the environment of atom C5 is planar, and hence ring A is slightly distorted towards an envelope conformation with puckering parameters, Q = 0.435 (3) Å, θ = 56.4 (4)°, φ = 18.7 (4)°, with C1 being the flap. The five-membered ring-D exhibits an envelope conformation, with C14 being the flap, with pseudorotation parameter (P =14.7 (3)° and τ =38.7 (1)°), (Altona et al., 1968). The dihedral angle between the plane of imidazole moiety and the mean plane of rings A, B, C and D is 11.83 (9)°. The substitution of O2 between C17 and C16 does not affect the normal value of exocyclic angle of C16—C17—N1(121.8 (2)°). The water molecule links the molecules, via O3—H31···N2(within the asymmetric unit) and O3—H32···O1(3/2-x,2-y,-1/2+z hydrogen bonds, to form a zig-zag chains which run parallel to the c-axis. molecules. The molecular packing is also stabilized by weak C20—H20···O3( 1-x,-1/2+y,-1/2-z)) intermolecular interactions. Details of the determination of the absolute configuration can be found in (Bansal, et al. 2012).

Experimental

A mixture of imidazole(1 g, 2.75 mmol) and anhydrous potassium carbonate(1 g) was stirred and refluxed in ethyl methyl ketone(50) ml for one hour. 16α/β-bromo-4-androstene-3, 17-dione(0.4 g, 1.09 mmol) was added to the reaction mixture and further refluxed for 3 h with continous stirring. The completion of reaction was monitored by TLC. The slurry was cooled, filtered and excess of solvent was removed under reduced pressure to obtain an oily residue. Iced water was added to the oily residue and it was allowed to stand overnight. The solid obtained was filtered, washed with water, dried and crystallized from acetone and hexane to afford the title compound(0.25 g, 64.78%), mp 419–420K.

Refinement

All H atoms attached to C atoms were refined as riding atoms. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) with Uiso(H) = 1.2Ueq(C). The water H atoms, which were initially located on a difference Fourier map. The O–H distance was then restrained to a distancet of 0.900 (2)Å and then, in the final stages of the refinement, refined as riding atoms with Uiso(H) = 1.5Ueq(O). These positions were checked in a final difference Fourier and found to be satisfactory.

Friedel Pairs were merged.

Figures

Fig. 1.

Fig. 1.

View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii.

Fig. 2.

Fig. 2.

View of the zig-zag hydrogen bonded chain running parallel to the c-axis.

Crystal data

C22H28N2O2·H2O F(000) = 800
Mr = 370.48 Dx = 1.297 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3481 reflections
a = 9.7813 (2) Å θ = 4.0–29.1°
b = 13.5885 (3) Å µ = 0.09 mm1
c = 14.2698 (3) Å T = 293 K
V = 1896.64 (7) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3331 independent reflections
Radiation source: fine-focus sealed tube 2807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scan θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→11
Tmin = 0.975, Tmax = 0.983 k = −13→16
10371 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.2407P] where P = (Fo2 + 2Fc2)/3
3331 reflections (Δ/σ)max < 0.001
246 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6588 (2) −0.04599 (13) 0.64733 (14) 0.0679 (6)
O2 0.76907 (16) 0.62764 (13) 0.47612 (12) 0.0530 (5)
N1 0.5710 (2) 0.71088 (13) 0.41686 (14) 0.0414 (5)
N2 0.5333 (2) 0.85703 (17) 0.35422 (18) 0.0605 (6)
C1 0.5023 (3) 0.15748 (17) 0.52622 (17) 0.0468 (6)
H11 0.4263 0.1669 0.4835 0.056*
H12 0.5860 0.1664 0.4907 0.056*
C2 0.4982 (3) 0.05208 (19) 0.56319 (19) 0.0543 (7)
H21 0.4093 0.0393 0.5907 0.065*
H22 0.5110 0.0066 0.5115 0.065*
C3 0.6069 (3) 0.03508 (18) 0.63520 (18) 0.0494 (6)
C4 0.6411 (3) 0.11847 (18) 0.69325 (16) 0.0447 (6)
H4 0.7049 0.1090 0.7407 0.054*
C5 0.5874 (2) 0.20829 (17) 0.68355 (15) 0.0367 (5)
C6 0.6152 (3) 0.28656 (17) 0.75530 (15) 0.0450 (6)
H61 0.6823 0.2624 0.7998 0.054*
H62 0.5317 0.3006 0.7895 0.054*
C7 0.6676 (3) 0.38044 (17) 0.71115 (15) 0.0423 (6)
H71 0.7580 0.3690 0.6855 0.051*
H72 0.6752 0.4309 0.7589 0.051*
C8 0.5733 (2) 0.41648 (16) 0.63353 (15) 0.0348 (5)
H8 0.4852 0.4358 0.6606 0.042*
C9 0.5502 (2) 0.33505 (16) 0.56073 (14) 0.0332 (5)
H9 0.6410 0.3197 0.5357 0.040*
C10 0.4955 (2) 0.23647 (17) 0.60221 (14) 0.0363 (5)
C11 0.4670 (3) 0.37260 (18) 0.47661 (15) 0.0454 (6)
H111 0.4626 0.3210 0.4297 0.054*
H112 0.3743 0.3860 0.4971 0.054*
C12 0.5255 (3) 0.46578 (17) 0.43116 (15) 0.0426 (6)
H121 0.6131 0.4510 0.4027 0.051*
H122 0.4641 0.4884 0.3823 0.051*
C13 0.5433 (2) 0.54667 (17) 0.50467 (14) 0.0337 (5)
C14 0.6352 (2) 0.50357 (15) 0.58250 (15) 0.0346 (5)
H14 0.7154 0.4772 0.5499 0.042*
C15 0.6875 (3) 0.59235 (17) 0.63698 (17) 0.0461 (6)
H151 0.6211 0.6144 0.6829 0.055*
H152 0.7731 0.5778 0.6684 0.055*
C16 0.7067 (3) 0.66715 (19) 0.56080 (18) 0.0493 (6)
H16 0.7186 0.7368 0.5768 0.059*
C17 0.6241 (2) 0.63942 (16) 0.48021 (16) 0.0384 (5)
C18 0.4045 (3) 0.58323 (18) 0.53973 (17) 0.0448 (6)
H181 0.3533 0.6095 0.4881 0.067*
H182 0.4181 0.6337 0.5859 0.067*
H183 0.3551 0.5294 0.5672 0.067*
C19 0.3478 (2) 0.24693 (19) 0.63881 (17) 0.0480 (6)
H191 0.3179 0.1852 0.6643 0.072*
H192 0.2887 0.2656 0.5881 0.072*
H193 0.3450 0.2965 0.6867 0.072*
C20 0.5241 (3) 0.6948 (2) 0.32764 (17) 0.0504 (7)
H20 0.5108 0.6345 0.2983 0.060*
C21 0.5013 (3) 0.7846 (2) 0.29144 (19) 0.0590 (7)
H211 0.4680 0.7961 0.2314 0.071*
C22 0.5740 (3) 0.80970 (18) 0.4289 (2) 0.0517 (7)
H221 0.6019 0.8403 0.4840 0.062*
O3 0.6304 (3) 1.05448 (17) 0.31888 (16) 0.0989 (9)
H31 0.5947 0.9940 0.3274 0.148*
H32 0.6767 1.0425 0.2655 0.148*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0795 (14) 0.0405 (10) 0.0838 (13) 0.0127 (10) 0.0054 (12) 0.0068 (10)
O2 0.0378 (9) 0.0550 (11) 0.0663 (11) −0.0018 (8) 0.0074 (8) 0.0142 (10)
N1 0.0427 (11) 0.0342 (11) 0.0474 (11) −0.0017 (9) 0.0037 (10) 0.0052 (9)
N2 0.0583 (14) 0.0456 (13) 0.0776 (16) 0.0053 (12) 0.0054 (13) 0.0170 (13)
C1 0.0590 (16) 0.0353 (13) 0.0461 (13) −0.0051 (12) −0.0052 (13) −0.0019 (11)
C2 0.0671 (18) 0.0346 (13) 0.0613 (16) −0.0060 (13) −0.0025 (15) −0.0037 (12)
C3 0.0546 (16) 0.0367 (14) 0.0568 (15) 0.0027 (12) 0.0117 (14) 0.0077 (12)
C4 0.0430 (13) 0.0444 (14) 0.0467 (13) 0.0047 (12) −0.0028 (12) 0.0068 (12)
C5 0.0323 (11) 0.0395 (13) 0.0384 (12) −0.0044 (10) 0.0018 (10) 0.0075 (10)
C6 0.0550 (15) 0.0439 (14) 0.0360 (11) −0.0014 (12) −0.0084 (11) 0.0059 (11)
C7 0.0499 (15) 0.0389 (13) 0.0381 (12) −0.0059 (12) −0.0113 (11) 0.0005 (11)
C8 0.0375 (12) 0.0358 (12) 0.0310 (11) −0.0012 (10) 0.0000 (10) −0.0001 (9)
C9 0.0376 (12) 0.0312 (11) 0.0310 (11) −0.0010 (10) 0.0008 (10) −0.0001 (9)
C10 0.0390 (12) 0.0344 (12) 0.0353 (11) −0.0025 (11) −0.0037 (10) 0.0013 (9)
C11 0.0654 (15) 0.0370 (13) 0.0339 (11) −0.0078 (12) −0.0110 (12) −0.0001 (10)
C12 0.0571 (15) 0.0384 (13) 0.0322 (11) −0.0018 (12) −0.0055 (11) 0.0025 (10)
C13 0.0361 (12) 0.0311 (11) 0.0339 (11) −0.0009 (10) 0.0030 (10) 0.0020 (10)
C14 0.0344 (11) 0.0343 (12) 0.0352 (11) −0.0010 (10) −0.0001 (10) −0.0018 (10)
C15 0.0514 (15) 0.0392 (13) 0.0476 (13) −0.0080 (12) −0.0094 (12) 0.0002 (12)
C16 0.0494 (14) 0.0386 (14) 0.0599 (15) −0.0079 (12) −0.0053 (14) −0.0016 (12)
C17 0.0348 (12) 0.0339 (13) 0.0465 (13) 0.0028 (10) 0.0042 (11) 0.0020 (11)
C18 0.0400 (13) 0.0453 (14) 0.0492 (13) 0.0029 (11) 0.0070 (11) 0.0055 (11)
C19 0.0411 (13) 0.0515 (15) 0.0513 (14) −0.0043 (12) −0.0016 (12) 0.0103 (13)
C20 0.0555 (16) 0.0520 (16) 0.0438 (13) −0.0005 (13) 0.0051 (12) 0.0039 (12)
C21 0.0570 (17) 0.0672 (19) 0.0527 (14) 0.0087 (15) 0.0071 (14) 0.0224 (15)
C22 0.0521 (15) 0.0351 (14) 0.0680 (17) 0.0009 (12) 0.0010 (15) 0.0048 (13)
O3 0.142 (2) 0.0577 (13) 0.0970 (16) 0.0040 (16) 0.0123 (17) 0.0052 (13)

Geometric parameters (Å, º)

O1—C3 1.226 (3) C9—H9 0.9800
O2—C17 1.428 (3) C10—C19 1.542 (3)
O2—C16 1.456 (3) C11—C12 1.533 (3)
N1—C22 1.354 (3) C11—H111 0.9700
N1—C20 1.371 (3) C11—H112 0.9700
N1—C17 1.425 (3) C12—C13 1.529 (3)
N2—C22 1.307 (3) C12—H121 0.9700
N2—C21 1.367 (4) C12—H122 0.9700
C1—C2 1.527 (3) C13—C17 1.528 (3)
C1—C10 1.527 (3) C13—C18 1.530 (3)
C1—H11 0.9700 C13—C14 1.544 (3)
C1—H12 0.9700 C14—C15 1.524 (3)
C2—C3 1.496 (4) C14—H14 0.9800
C2—H21 0.9700 C15—C16 1.500 (3)
C2—H22 0.9700 C15—H151 0.9700
C3—C4 1.443 (4) C15—H152 0.9700
C4—C5 1.336 (3) C16—C17 1.455 (3)
C4—H4 0.9300 C16—H16 0.9800
C5—C6 1.501 (3) C18—H181 0.9600
C5—C10 1.517 (3) C18—H182 0.9600
C6—C7 1.512 (3) C18—H183 0.9600
C6—H61 0.9700 C19—H191 0.9600
C6—H62 0.9700 C19—H192 0.9600
C7—C8 1.522 (3) C19—H193 0.9600
C7—H71 0.9700 C20—C21 1.344 (4)
C7—H72 0.9700 C20—H20 0.9300
C8—C14 1.516 (3) C21—H211 0.9300
C8—C9 1.534 (3) C22—H221 0.9300
C8—H8 0.9800 O3—H31 0.90
C9—C11 1.538 (3) O3—H32 0.90
C9—C10 1.559 (3)
C17—O2—C16 60.59 (15) C9—C11—H112 108.8
C22—N1—C20 106.5 (2) H111—C11—H112 107.6
C22—N1—C17 125.9 (2) C13—C12—C11 110.25 (17)
C20—N1—C17 127.1 (2) C13—C12—H121 109.6
C22—N2—C21 104.5 (2) C11—C12—H121 109.6
C2—C1—C10 114.4 (2) C13—C12—H122 109.6
C2—C1—H11 108.7 C11—C12—H122 109.6
C10—C1—H11 108.7 H121—C12—H122 108.1
C2—C1—H12 108.7 C17—C13—C12 119.69 (18)
C10—C1—H12 108.7 C17—C13—C18 105.42 (18)
H11—C1—H12 107.6 C12—C13—C18 110.9 (2)
C3—C2—C1 111.3 (2) C17—C13—C14 100.14 (17)
C3—C2—H21 109.4 C12—C13—C14 106.69 (18)
C1—C2—H21 109.4 C18—C13—C14 113.86 (18)
C3—C2—H22 109.4 C8—C14—C15 120.47 (18)
C1—C2—H22 109.4 C8—C14—C13 114.14 (18)
H21—C2—H22 108.0 C15—C14—C13 105.19 (17)
O1—C3—C4 121.9 (2) C8—C14—H14 105.2
O1—C3—C2 122.0 (2) C15—C14—H14 105.2
C4—C3—C2 116.0 (2) C13—C14—H14 105.2
C5—C4—C3 124.5 (2) C16—C15—C14 102.05 (18)
C5—C4—H4 117.7 C16—C15—H151 111.4
C3—C4—H4 117.7 C14—C15—H151 111.4
C4—C5—C6 120.3 (2) C16—C15—H152 111.4
C4—C5—C10 122.9 (2) C14—C15—H152 111.4
C6—C5—C10 116.77 (19) H151—C15—H152 109.2
C5—C6—C7 112.03 (18) C17—C16—O2 58.74 (14)
C5—C6—H61 109.2 C17—C16—C15 109.1 (2)
C7—C6—H61 109.2 O2—C16—C15 113.8 (2)
C5—C6—H62 109.2 C17—C16—H16 120.0
C7—C6—H62 109.2 O2—C16—H16 120.0
H61—C6—H62 107.9 C15—C16—H16 120.0
C6—C7—C8 111.68 (19) N1—C17—O2 114.38 (19)
C6—C7—H71 109.3 N1—C17—C16 121.8 (2)
C8—C7—H71 109.3 O2—C17—C16 60.66 (16)
C6—C7—H72 109.3 N1—C17—C13 121.21 (19)
C8—C7—H72 109.3 O2—C17—C13 115.49 (19)
H71—C7—H72 107.9 C16—C17—C13 108.68 (19)
C14—C8—C7 111.01 (18) C13—C18—H181 109.5
C14—C8—C9 107.25 (16) C13—C18—H182 109.5
C7—C8—C9 110.48 (18) H181—C18—H182 109.5
C14—C8—H8 109.4 C13—C18—H183 109.5
C7—C8—H8 109.4 H181—C18—H183 109.5
C9—C8—H8 109.4 H182—C18—H183 109.5
C8—C9—C11 111.55 (18) C10—C19—H191 109.5
C8—C9—C10 114.40 (16) C10—C19—H192 109.5
C11—C9—C10 113.57 (18) H191—C19—H192 109.5
C8—C9—H9 105.5 C10—C19—H193 109.5
C11—C9—H9 105.5 H191—C19—H193 109.5
C10—C9—H9 105.5 H192—C19—H193 109.5
C5—C10—C1 109.87 (19) C21—C20—N1 105.5 (2)
C5—C10—C19 108.59 (17) C21—C20—H20 127.2
C1—C10—C19 110.26 (19) N1—C20—H20 127.2
C5—C10—C9 107.71 (17) C20—C21—N2 111.3 (2)
C1—C10—C9 108.62 (17) C20—C21—H211 124.3
C19—C10—C9 111.75 (19) N2—C21—H211 124.3
C12—C11—C9 113.99 (19) N2—C22—N1 112.2 (3)
C12—C11—H111 108.8 N2—C22—H221 123.9
C9—C11—H111 108.8 N1—C22—H221 123.9
C12—C11—H112 108.8 H31—O3—H32 98.3
C10—C1—C2—C3 −54.1 (3) C17—C13—C14—C8 171.47 (17)
C1—C2—C3—O1 −150.6 (3) C12—C13—C14—C8 −63.2 (2)
C1—C2—C3—C4 32.9 (3) C18—C13—C14—C8 59.5 (2)
O1—C3—C4—C5 −179.7 (3) C17—C13—C14—C15 37.2 (2)
C2—C3—C4—C5 −3.2 (4) C12—C13—C14—C15 162.61 (19)
C3—C4—C5—C6 171.7 (2) C18—C13—C14—C15 −74.7 (2)
C3—C4—C5—C10 −7.5 (4) C8—C14—C15—C16 −167.0 (2)
C4—C5—C6—C7 127.9 (2) C13—C14—C15—C16 −36.4 (2)
C10—C5—C6—C7 −52.8 (3) C17—O2—C16—C15 98.7 (2)
C5—C6—C7—C8 53.1 (3) C14—C15—C16—C17 20.9 (3)
C6—C7—C8—C14 −173.36 (19) C14—C15—C16—O2 −42.5 (3)
C6—C7—C8—C9 −54.5 (2) C22—N1—C17—O2 −78.4 (3)
C14—C8—C9—C11 −53.3 (2) C20—N1—C17—O2 92.2 (3)
C7—C8—C9—C11 −174.37 (19) C22—N1—C17—C16 −9.0 (4)
C14—C8—C9—C10 176.12 (18) C20—N1—C17—C16 161.6 (2)
C7—C8—C9—C10 55.0 (3) C22—N1—C17—C13 135.8 (3)
C4—C5—C10—C1 −12.8 (3) C20—N1—C17—C13 −53.6 (3)
C6—C5—C10—C1 167.93 (19) C16—O2—C17—N1 114.2 (2)
C4—C5—C10—C19 107.9 (3) C16—O2—C17—C13 −98.0 (2)
C6—C5—C10—C19 −71.4 (2) O2—C16—C17—N1 −102.0 (2)
C4—C5—C10—C9 −130.9 (2) C15—C16—C17—N1 151.1 (2)
C6—C5—C10—C9 49.8 (2) C15—C16—C17—O2 −106.8 (2)
C2—C1—C10—C5 43.1 (3) O2—C16—C17—C13 109.3 (2)
C2—C1—C10—C19 −76.6 (3) C15—C16—C17—C13 2.5 (3)
C2—C1—C10—C9 160.7 (2) C12—C13—C17—N1 70.9 (3)
C8—C9—C10—C5 −50.8 (2) C18—C13—C17—N1 −54.8 (3)
C11—C9—C10—C5 179.61 (18) C14—C13—C17—N1 −173.19 (19)
C8—C9—C10—C1 −169.70 (19) C12—C13—C17—O2 −74.6 (3)
C11—C9—C10—C1 60.7 (2) C18—C13—C17—O2 159.76 (19)
C8—C9—C10—C19 68.4 (2) C14—C13—C17—O2 41.4 (2)
C11—C9—C10—C19 −61.2 (2) C12—C13—C17—C16 −140.3 (2)
C8—C9—C11—C12 52.8 (3) C18—C13—C17—C16 94.1 (2)
C10—C9—C11—C12 −176.12 (19) C14—C13—C17—C16 −24.3 (2)
C9—C11—C12—C13 −54.5 (3) C22—N1—C20—C21 −0.2 (3)
C11—C12—C13—C17 168.7 (2) C17—N1—C20—C21 −172.3 (2)
C11—C12—C13—C18 −68.3 (3) N1—C20—C21—N2 0.6 (3)
C11—C12—C13—C14 56.2 (2) C22—N2—C21—C20 −0.7 (3)
C7—C8—C14—C15 −51.4 (3) C21—N2—C22—N1 0.6 (3)
C9—C8—C14—C15 −172.2 (2) C20—N1—C22—N2 −0.3 (3)
C7—C8—C14—C13 −178.06 (18) C17—N1—C22—N2 171.9 (2)
C9—C8—C14—C13 61.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H31···N2 0.90 1.99 2.890 (3) 174
O3—H32···O1i 0.90 2.33 3.202 (3) 163
C20—H20···O3ii 0.93 2.43 3.208 (4) 142

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2059).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32. [DOI] [PubMed]
  3. Bansal, R., Guleria, S., Thota, S., Bodhankar, S. L., Patwardhan, M. R., Zimmer, C., Hartmann, R. W. & Harvey, A. L. (2012). Steroids, 77, 621–629. [DOI] [PubMed]
  4. Bruker (2004). SAINT, XPREP, SADABS and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures New York: Plenum.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029479/go2059sup1.cif

e-68-o2345-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029479/go2059Isup2.hkl

e-68-o2345-Isup2.hkl (94.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES