Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2353. doi: 10.1107/S1600536812030176

3-Acetyl-1-(2,3-dichloro­phen­yl)thio­urea

B Thimme Gowda a,*, Sabine Foro b, Sharatha Kumar a
PMCID: PMC3414287  PMID: 22904820

Abstract

In the crystal structure of the title compound, C9H8Cl2N2OS, there are two mol­ecules in the asymmetric unit which are connected by a pair of N—H⋯S hydrogen bonds. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation of each molecule.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2001); Kumar et al. (2012); Shahwar et al. (2012). For N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007). For N-chloro­aryl­sulfonamides, see: Gowda & Ramachandra (1989), Shetty & Gowda (2004).graphic file with name e-68-o2353-scheme1.jpg

Experimental  

Crystal data  

  • C9H8Cl2N2OS

  • M r = 263.13

  • Triclinic, Inline graphic

  • a = 7.8475 (6) Å

  • b = 9.5987 (7) Å

  • c = 15.141 (1) Å

  • α = 90.044 (6)°

  • β = 91.099 (6)°

  • γ = 100.208 (6)°

  • V = 1122.24 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.46 × 0.44 × 0.36 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.728, T max = 0.777

  • 7971 measured reflections

  • 4578 independent reflections

  • 3885 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.04

  • 4578 reflections

  • 285 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030176/bt5964sup1.cif

e-68-o2353-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030176/bt5964Isup2.hkl

e-68-o2353-Isup2.hkl (224.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030176/bt5964Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.85 (2) 1.91 (2) 2.625 (3) 141 (3)
N2—H2N⋯S2 0.84 (2) 2.56 (2) 3.393 (2) 171 (2)
N3—H3N⋯O2 0.81 (2) 1.93 (2) 2.619 (3) 143 (3)
N4—H4N⋯S1 0.84 (2) 2.59 (2) 3.418 (2) 170 (2)

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC-BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As part of studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2001; Kumar et al., 2012: Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylsulfonamides (Gowda & Ramachandra, 1989; Shetty & Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(2,3-dichlorophenyl)thiourea has been determined (Fig. 1).

The asymmetric unit of the structure contains two molecules. The conformation of the two N—H bonds are anti to each other. Furthermore, the conformations of the amide C═S and the C═O are also anti to each other and both the bonds are anti to the adjacent N—H bonds, similar to the anti conformation observed in 3-acetyl-1-(2,3-dimethylphenyl)thiourea (I)(Kumar et al., 2012). The N—H bond adjacent to the 2,3-dichlorophenyl ring is syn to the ortho- and meta-Cl atoms in one of the molecules and anti in the other molecule, compared to the anti conformation observed with respect to the ortho- and meta-methyl groups in the 2,3-dimethylphenyl ring of (I).

The side chains are oriented themselves with respect to the 2,3-dichlorophenyl rings with the torsion angles, C2—C1—N1—C7 = 116.47 (26)° and C6—C1—N1—C7 = -65.77 (33)° in molecule 1 and C11—C10—N3—C16 = 129.96 (25)° and C15—C10—N3—C16 = -53.71 (35)° in molecule 2 of the title compound, compared to the torsion angles of C2—C1—N1—C7 = 83.59 (47)° and C6—C1—N1—C7 = -99.89 (44)° for in (I). The dihedral angles between the phenyl rings and the side chains are 62.5 (1)° and 51.3 (1)°, in the two molecules, compared to the value of 81.33 (10)° in (I).

The hydrogen atoms of the NH attached to the phenyl rings and the amide O atoms are involved in the intramolecular hydrogen bonding. In the crystal, the molecules form inversion dimers through pairs of N—H···S intermolecular hydrogen bonds (Table 1, Fig.2).

Experimental

3-Acetyl-1-(2,3-dichlorophenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 ml) dropwise to a suspension of ammonium thiocyanate (0.10 mol) in acetone (30 ml). The reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 2,3-dichloroaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h. The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum.

Prism like light yellow single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

Refinement

The coordinates of the amino H atoms were refined with the N—H distances restrained to 0.86 (2) Å. H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. All H atoms were refined with their isotropic displacement parameter set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C9H8Cl2N2OS Z = 4
Mr = 263.13 F(000) = 536
Triclinic, P1 Dx = 1.557 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8475 (6) Å Cell parameters from 4895 reflections
b = 9.5987 (7) Å θ = 2.5–27.7°
c = 15.141 (1) Å µ = 0.74 mm1
α = 90.044 (6)° T = 293 K
β = 91.099 (6)° Prism, light yellow
γ = 100.208 (6)° 0.46 × 0.44 × 0.36 mm
V = 1122.24 (14) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 4578 independent reflections
Radiation source: fine-focus sealed tube 3885 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.011
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→8
Tmin = 0.728, Tmax = 0.777 k = −11→10
7971 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.8845P] where P = (Fo2 + 2Fc2)/3
4578 reflections (Δ/σ)max = 0.002
285 parameters Δρmax = 0.67 e Å3
4 restraints Δρmin = −0.72 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.39378 (10) 0.64301 (8) −0.04620 (5) 0.0675 (2)
Cl2 0.51017 (13) 0.81095 (13) −0.21801 (5) 0.0956 (3)
S1 0.86892 (8) 0.69266 (7) 0.15722 (5) 0.05361 (18)
O1 0.3014 (2) 0.6735 (2) 0.21951 (13) 0.0687 (6)
N1 0.5647 (3) 0.7665 (2) 0.11819 (13) 0.0457 (5)
H1N 0.458 (2) 0.754 (3) 0.1305 (18) 0.055*
N2 0.5747 (2) 0.6306 (2) 0.24233 (12) 0.0397 (4)
H2N 0.639 (3) 0.591 (3) 0.2760 (15) 0.048*
C1 0.6232 (3) 0.8420 (2) 0.04055 (15) 0.0412 (5)
C2 0.5487 (3) 0.7949 (3) −0.04025 (16) 0.0441 (5)
C3 0.5999 (3) 0.8705 (3) −0.11636 (17) 0.0526 (6)
C4 0.7246 (3) 0.9910 (3) −0.11191 (19) 0.0561 (7)
H4 0.7589 1.0412 −0.1630 0.067*
C5 0.7983 (3) 1.0369 (3) −0.0314 (2) 0.0564 (7)
H5 0.8827 1.1182 −0.0283 0.068*
C6 0.7479 (3) 0.9632 (3) 0.04515 (18) 0.0512 (6)
H6 0.7977 0.9951 0.0993 0.061*
C7 0.6603 (3) 0.6990 (2) 0.17092 (14) 0.0374 (5)
C8 0.4039 (3) 0.6220 (3) 0.26475 (16) 0.0451 (5)
C9 0.3545 (3) 0.5463 (3) 0.34875 (18) 0.0607 (7)
H9A 0.2336 0.5439 0.3587 0.073*
H9B 0.4214 0.5949 0.3969 0.073*
H9C 0.3768 0.4513 0.3449 0.073*
Cl3 0.68592 (11) −0.06753 (7) 0.35412 (5) 0.0693 (2)
Cl4 0.60530 (13) −0.20874 (9) 0.53971 (7) 0.0884 (3)
S2 0.78757 (8) 0.45828 (6) 0.39216 (4) 0.04733 (16)
O2 1.0172 (3) 0.1780 (2) 0.20337 (14) 0.0772 (6)
N3 0.9002 (3) 0.2163 (2) 0.36075 (13) 0.0453 (5)
H3N 0.932 (3) 0.169 (3) 0.3223 (15) 0.054*
N4 0.9362 (3) 0.3818 (2) 0.24969 (13) 0.0432 (4)
H4N 0.924 (3) 0.463 (2) 0.2336 (17) 0.052*
C10 0.8602 (3) 0.1564 (2) 0.44498 (15) 0.0405 (5)
C11 0.7626 (3) 0.0208 (2) 0.44964 (16) 0.0440 (5)
C12 0.7286 (3) −0.0417 (3) 0.53190 (18) 0.0531 (6)
C13 0.7920 (4) 0.0296 (3) 0.60792 (18) 0.0591 (7)
H13 0.7690 −0.0126 0.6627 0.071*
C14 0.8890 (4) 0.1627 (3) 0.60259 (17) 0.0570 (7)
H14 0.9317 0.2107 0.6540 0.068*
C15 0.9241 (3) 0.2264 (3) 0.52160 (16) 0.0494 (6)
H15 0.9908 0.3166 0.5187 0.059*
C16 0.8777 (3) 0.3440 (2) 0.33372 (14) 0.0378 (5)
C17 1.0071 (3) 0.3013 (3) 0.18971 (17) 0.0509 (6)
C18 1.0707 (4) 0.3771 (3) 0.10721 (18) 0.0633 (7)
H18A 1.0801 0.3093 0.0618 0.076*
H18B 1.1822 0.4344 0.1187 0.076*
H18C 0.9906 0.4364 0.0882 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0655 (4) 0.0654 (4) 0.0644 (4) −0.0075 (3) −0.0080 (3) 0.0111 (3)
Cl2 0.0922 (6) 0.1402 (9) 0.0462 (4) −0.0007 (6) −0.0098 (4) 0.0234 (5)
S1 0.0414 (3) 0.0606 (4) 0.0619 (4) 0.0158 (3) 0.0148 (3) 0.0243 (3)
O1 0.0413 (10) 0.1009 (16) 0.0665 (12) 0.0190 (10) 0.0075 (9) 0.0325 (11)
N1 0.0369 (10) 0.0585 (12) 0.0425 (11) 0.0101 (9) 0.0053 (8) 0.0153 (9)
N2 0.0370 (10) 0.0457 (10) 0.0369 (10) 0.0085 (8) 0.0031 (8) 0.0084 (8)
C1 0.0373 (11) 0.0450 (12) 0.0440 (12) 0.0140 (9) 0.0063 (9) 0.0114 (10)
C2 0.0390 (12) 0.0481 (13) 0.0469 (13) 0.0124 (10) 0.0013 (10) 0.0109 (10)
C3 0.0494 (14) 0.0666 (16) 0.0448 (13) 0.0184 (12) 0.0053 (11) 0.0165 (12)
C4 0.0547 (15) 0.0618 (16) 0.0570 (16) 0.0228 (13) 0.0183 (12) 0.0259 (13)
C5 0.0490 (14) 0.0439 (13) 0.0766 (19) 0.0075 (11) 0.0175 (13) 0.0136 (12)
C6 0.0496 (14) 0.0492 (14) 0.0549 (15) 0.0084 (11) 0.0046 (11) 0.0040 (11)
C7 0.0406 (11) 0.0359 (11) 0.0352 (11) 0.0054 (9) 0.0019 (9) −0.0002 (8)
C8 0.0404 (12) 0.0504 (13) 0.0435 (13) 0.0054 (10) 0.0047 (10) 0.0039 (10)
C9 0.0482 (14) 0.0785 (19) 0.0559 (16) 0.0111 (13) 0.0135 (12) 0.0228 (14)
Cl3 0.0901 (5) 0.0490 (4) 0.0630 (4) −0.0018 (3) −0.0183 (4) −0.0066 (3)
Cl4 0.1007 (6) 0.0566 (4) 0.0989 (7) −0.0115 (4) 0.0078 (5) 0.0281 (4)
S2 0.0601 (4) 0.0442 (3) 0.0409 (3) 0.0175 (3) 0.0060 (3) 0.0027 (2)
O2 0.1154 (18) 0.0608 (13) 0.0642 (13) 0.0367 (12) 0.0298 (12) 0.0009 (10)
N3 0.0624 (13) 0.0365 (10) 0.0384 (10) 0.0122 (9) 0.0063 (9) −0.0002 (8)
N4 0.0492 (11) 0.0402 (10) 0.0407 (10) 0.0088 (9) 0.0072 (8) 0.0048 (8)
C10 0.0456 (12) 0.0361 (11) 0.0413 (12) 0.0115 (9) 0.0024 (9) 0.0030 (9)
C11 0.0471 (13) 0.0383 (12) 0.0470 (13) 0.0096 (10) −0.0026 (10) 0.0009 (10)
C12 0.0540 (14) 0.0435 (13) 0.0625 (16) 0.0096 (11) 0.0084 (12) 0.0135 (11)
C13 0.0730 (18) 0.0640 (17) 0.0450 (14) 0.0233 (14) 0.0111 (13) 0.0147 (12)
C14 0.0720 (18) 0.0622 (16) 0.0406 (13) 0.0232 (14) −0.0027 (12) −0.0037 (11)
C15 0.0575 (15) 0.0424 (13) 0.0480 (14) 0.0082 (11) −0.0027 (11) −0.0019 (10)
C16 0.0360 (11) 0.0369 (11) 0.0385 (11) 0.0015 (9) −0.0010 (9) 0.0004 (9)
C17 0.0534 (14) 0.0553 (15) 0.0454 (13) 0.0127 (12) 0.0066 (11) −0.0024 (11)
C18 0.0667 (17) 0.078 (2) 0.0479 (15) 0.0187 (15) 0.0160 (13) 0.0028 (13)

Geometric parameters (Å, º)

Cl1—C2 1.726 (2) Cl3—C11 1.719 (2)
Cl2—C3 1.734 (3) Cl4—C12 1.725 (3)
S1—C7 1.666 (2) S2—C16 1.669 (2)
O1—C8 1.217 (3) O2—C17 1.218 (3)
N1—C7 1.330 (3) N3—C16 1.332 (3)
N1—C1 1.422 (3) N3—C10 1.417 (3)
N1—H1N 0.846 (17) N3—H3N 0.808 (17)
N2—C8 1.378 (3) N4—C17 1.379 (3)
N2—C7 1.387 (3) N4—C16 1.388 (3)
N2—H2N 0.843 (16) N4—H4N 0.836 (16)
C1—C6 1.382 (3) C10—C15 1.381 (3)
C1—C2 1.386 (3) C10—C11 1.391 (3)
C2—C3 1.390 (3) C11—C12 1.392 (3)
C3—C4 1.378 (4) C12—C13 1.377 (4)
C4—C5 1.377 (4) C13—C14 1.370 (4)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.385 (4) C14—C15 1.381 (4)
C5—H5 0.9300 C14—H14 0.9300
C6—H6 0.9300 C15—H15 0.9300
C8—C9 1.489 (3) C17—C18 1.495 (4)
C9—H9A 0.9600 C18—H18A 0.9600
C9—H9B 0.9600 C18—H18B 0.9600
C9—H9C 0.9600 C18—H18C 0.9600
C7—N1—C1 125.50 (19) C16—N3—C10 126.43 (19)
C7—N1—H1N 114.5 (19) C16—N3—H3N 114 (2)
C1—N1—H1N 119.6 (19) C10—N3—H3N 120 (2)
C8—N2—C7 128.45 (19) C17—N4—C16 128.0 (2)
C8—N2—H2N 117.7 (18) C17—N4—H4N 116.8 (19)
C7—N2—H2N 113.8 (18) C16—N4—H4N 115.1 (19)
C6—C1—C2 120.1 (2) C15—C10—C11 119.8 (2)
C6—C1—N1 121.0 (2) C15—C10—N3 121.4 (2)
C2—C1—N1 118.9 (2) C11—C10—N3 118.8 (2)
C1—C2—C3 119.6 (2) C10—C11—C12 119.3 (2)
C1—C2—Cl1 120.12 (18) C10—C11—Cl3 119.74 (18)
C3—C2—Cl1 120.3 (2) C12—C11—Cl3 120.92 (19)
C4—C3—C2 120.4 (2) C13—C12—C11 120.4 (2)
C4—C3—Cl2 119.6 (2) C13—C12—Cl4 119.3 (2)
C2—C3—Cl2 120.0 (2) C11—C12—Cl4 120.3 (2)
C5—C4—C3 119.6 (2) C14—C13—C12 119.8 (2)
C5—C4—H4 120.2 C14—C13—H13 120.1
C3—C4—H4 120.2 C12—C13—H13 120.1
C4—C5—C6 120.6 (2) C13—C14—C15 120.7 (2)
C4—C5—H5 119.7 C13—C14—H14 119.7
C6—C5—H5 119.7 C15—C14—H14 119.7
C1—C6—C5 119.7 (3) C10—C15—C14 120.0 (2)
C1—C6—H6 120.2 C10—C15—H15 120.0
C5—C6—H6 120.2 C14—C15—H15 120.0
N1—C7—N2 115.39 (19) N3—C16—N4 115.5 (2)
N1—C7—S1 125.13 (17) N3—C16—S2 125.53 (17)
N2—C7—S1 119.48 (16) N4—C16—S2 118.93 (16)
O1—C8—N2 122.4 (2) O2—C17—N4 122.3 (2)
O1—C8—C9 122.6 (2) O2—C17—C18 122.8 (2)
N2—C8—C9 115.0 (2) N4—C17—C18 114.9 (2)
C8—C9—H9A 109.5 C17—C18—H18A 109.5
C8—C9—H9B 109.5 C17—C18—H18B 109.5
H9A—C9—H9B 109.5 H18A—C18—H18B 109.5
C8—C9—H9C 109.5 C17—C18—H18C 109.5
H9A—C9—H9C 109.5 H18A—C18—H18C 109.5
H9B—C9—H9C 109.5 H18B—C18—H18C 109.5
C7—N1—C1—C6 −65.8 (3) C16—N3—C10—C15 −53.7 (3)
C7—N1—C1—C2 116.5 (3) C16—N3—C10—C11 130.0 (2)
C6—C1—C2—C3 −0.1 (3) C15—C10—C11—C12 0.9 (3)
N1—C1—C2—C3 177.6 (2) N3—C10—C11—C12 177.3 (2)
C6—C1—C2—Cl1 179.65 (18) C15—C10—C11—Cl3 −178.97 (19)
N1—C1—C2—Cl1 −2.6 (3) N3—C10—C11—Cl3 −2.6 (3)
C1—C2—C3—C4 0.4 (4) C10—C11—C12—C13 −0.4 (4)
Cl1—C2—C3—C4 −179.44 (19) Cl3—C11—C12—C13 179.4 (2)
C1—C2—C3—Cl2 178.94 (18) C10—C11—C12—Cl4 179.07 (18)
Cl1—C2—C3—Cl2 −0.9 (3) Cl3—C11—C12—Cl4 −1.1 (3)
C2—C3—C4—C5 −0.2 (4) C11—C12—C13—C14 0.0 (4)
Cl2—C3—C4—C5 −178.8 (2) Cl4—C12—C13—C14 −179.5 (2)
C3—C4—C5—C6 −0.2 (4) C12—C13—C14—C15 0.0 (4)
C2—C1—C6—C5 −0.2 (4) C11—C10—C15—C14 −0.9 (4)
N1—C1—C6—C5 −177.9 (2) N3—C10—C15—C14 −177.2 (2)
C4—C5—C6—C1 0.4 (4) C13—C14—C15—C10 0.5 (4)
C1—N1—C7—N2 −179.0 (2) C10—N3—C16—N4 176.4 (2)
C1—N1—C7—S1 1.4 (4) C10—N3—C16—S2 −3.3 (4)
C8—N2—C7—N1 1.1 (3) C17—N4—C16—N3 3.3 (3)
C8—N2—C7—S1 −179.31 (19) C17—N4—C16—S2 −177.0 (2)
C7—N2—C8—O1 2.5 (4) C16—N4—C17—O2 4.5 (4)
C7—N2—C8—C9 −177.0 (2) C16—N4—C17—C18 −175.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1 0.85 (2) 1.91 (2) 2.625 (3) 141 (3)
N2—H2N···S2 0.84 (2) 2.56 (2) 3.393 (2) 171 (2)
N3—H3N···O2 0.81 (2) 1.93 (2) 2.619 (3) 143 (3)
N4—H4N···S1 0.84 (2) 2.59 (2) 3.418 (2) 170 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5964).

References

  1. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
  2. Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394.
  3. Gowda, B. T. & Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067–1071.
  4. Kumar, S., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2191. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812030176/bt5964sup1.cif

e-68-o2353-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812030176/bt5964Isup2.hkl

e-68-o2353-Isup2.hkl (224.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812030176/bt5964Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES