Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 7;68(Pt 8):o2360. doi: 10.1107/S1600536812029893

Ethyl 2-(3-phenyl­thio­ureido)-5,6-di­hydro-4H-cyclo­penta­[b]thio­phene-3-carboxyl­ate

Jaismary G B de Oliveira a, Francisco J B Mendonça Junior a, Maria do Carmo A de Lima b, Carlos A de Simone c,*, Javier A Ellena c
PMCID: PMC3414293  PMID: 22904826

Abstract

In the title compound, C17H18N2O2S2, the angle between the mean plane defined by the atoms of the 5,6-dihydro-4H-cyclo­penta­[b]thio­phene moiety (r.m.s. deviation = 0.19 Å) and the phenyl ring is 72.8°(2). The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O inter­action, which generates an S(6) ring motif. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules to form inversion dimers with an R 2 2(8) ring motif.

Related literature  

For background to 2-amino­thio­phene derivatives, see: Puterová et al. (2010). For the biological activity of 2-ureido- and 2-thio­ureido-thio­phene-3-carboxyl­ate derivatives, see: Arhin et al. (2006); Saeed et al. (2010). For the synthesis of 2-amino­thio­phenes, see: Gewald et al. (1966). For a related structure, see: Larson & Simonsen (1988). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2360-scheme1.jpg

Experimental  

Crystal data  

  • C17H18N2O2S2

  • M r = 346.45

  • Triclinic, Inline graphic

  • a = 5.0755 (2) Å

  • b = 12.5088 (6) Å

  • c = 13.3304 (5) Å

  • α = 90.562 (3)°

  • β = 95.711 (3)°

  • γ = 94.378 (2)°

  • V = 839.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.32 × 0.17 × 0.11 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 9172 measured reflections

  • 3876 independent reflections

  • 2727 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.129

  • S = 1.04

  • 3876 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029893/lr2068sup1.cif

e-68-o2360-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029893/lr2068Isup2.hkl

e-68-o2360-Isup2.hkl (179.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029893/lr2068Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.61 3.415 (2) 157
N1—H1⋯O1 0.86 2.04 2.719 (2) 136

Symmetry code: (i) Inline graphic.

Acknowledgments

This work has received partial support from CNPq, CAPES, FACEPE and FINEP. CADS thanks the Instituto de Física de São Carlos — USP for allowing the use of the KappaCCD diffractometer.

supplementary crystallographic information

Comment

The various uses and applications of 2-amino thiophene derivatives have been well documented (Puterová et al., 2010). Amongst these appplications, 2-thioureido-thiophene derivatives presents antifungal (Saeed et al., 2010) and antibacterial activities (Arhin et al., 2006). In this work, we report the structure of the title compound prepared by the condensation of 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile with phenyl isothiocyanate.

The angle between the least-squares plane defined by the atoms of the 5,6-dihydro-4H-cyclopenta[b]thiophene moiety (rms deviation=0.19 Å) and the phenyl rings is 72.8°(2). There is an intramolecular N—H···O interaction giving an S(6) ring motif. In the crystal N—H···S hydrogen-bond interactions link the molecules into pairs giving an R22(8) motif which extends parallel to the plane (120). (Table 2, Fig.2).

Experimental

Equimolar amounts of 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (4.19 mmol) and phenyl isothiocyanate (4.19 mmol) were heated under reflux for 16 h, in the presence of dry toluene (10 ml), and 5 drops of trietylamine. The solid product formed was collected by filtration, washed with ethyl acetate (3 x 10 ml) and crystallized from absolute etanol, affording the title compound as pale yellow crystals (1.07 g, 74%), M.p. 185–187 °C. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation at room temperature of a solution of the pure title compound in absolute ethanol. NMR 1H (400 MHz, CDCl3)δ: 1.25 (t, 3H, J = 6.4 Hz), 2.28 (d, 2H, J = 6.0 Hz), 2.76–2.81 (m, 4H), 4.20 (d, 2H, J = 6.0 Hz), 7.24 (s, 1H), 7.39 (d, 2H, J = 6.8 Hz), 7.48 (d, 2H, J = 7.2 Hz), 11.00 (bs, 1H); 11.58 (bs, 1H).

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N).The maximum and minimum residual electron density peaks were located 0.60 and 0.82 Å, from the C2 and S2 atoms respectively.

Figures

Fig. 1.

Fig. 1.

Projection of C17H18N2O2S2, with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

View of the packing along c axis.

Crystal data

C17H18N2O2S2 Z = 2
Mr = 346.45 F(000) = 364
Triclinic, P1 Dx = 1.370 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.0755 (2) Å Cell parameters from 5829 reflections
b = 12.5088 (6) Å θ = 2.6–27.5°
c = 13.3304 (5) Å µ = 0.33 mm1
α = 90.562 (3)° T = 295 K
β = 95.711 (3)° Prism, yellow
γ = 94.378 (2)° 0.32 × 0.17 × 0.11 mm
V = 839.61 (6) Å3

Data collection

Nonius KappaCCD diffractometer 2727 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.041
Horizonally mounted graphite crystal monochromator θmax = 27.5°, θmin = 3.1°
Detector resolution: 9 pixels mm-1 h = −5→6
CCD rotation images,thick slices scans k = −16→16
9172 measured reflections l = −17→17
3876 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.2145P] where P = (Fo2 + 2Fc2)/3
3876 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.55314 (12) 0.02072 (4) 0.67471 (4) 0.05884 (19)
S2 0.35795 (11) 0.09492 (4) 0.87171 (4) 0.05360 (17)
O2 −0.2636 (3) 0.37540 (12) 0.83065 (10) 0.0528 (4)
O1 −0.1299 (3) 0.33086 (13) 0.68141 (10) 0.0607 (4)
N1 0.2196 (3) 0.17647 (13) 0.68280 (11) 0.0469 (4)
H1 0.1318 0.2229 0.6494 0.056*
N2 0.3310 (4) 0.13297 (14) 0.52705 (13) 0.0582 (5)
H2 0.3999 0.0896 0.4885 0.070*
C1 0.1968 (4) 0.17638 (15) 0.78532 (14) 0.0423 (4)
C9 0.1970 (4) 0.21777 (16) 0.47921 (14) 0.0487 (5)
C10 0.3005 (4) 0.32279 (17) 0.49491 (15) 0.0536 (5)
H10 0.4551 0.3384 0.5377 0.064*
C2 0.0363 (4) 0.24425 (15) 0.83011 (13) 0.0425 (4)
C4 −0.0737 (4) 0.2761 (2) 1.02319 (15) 0.0566 (5)
H4A −0.2659 0.2660 1.0134 0.068*
H4B −0.0208 0.3521 1.0313 0.068*
C8 0.3604 (4) 0.11405 (15) 0.62679 (15) 0.0466 (4)
C6 0.2245 (5) 0.1327 (2) 1.07959 (16) 0.0670 (6)
H6A 0.4038 0.1475 1.1117 0.080*
H6B 0.1620 0.0597 1.0934 0.080*
C11 0.1727 (5) 0.40396 (19) 0.44669 (17) 0.0635 (6)
H11 0.2408 0.4748 0.4573 0.076*
C15 −0.1225 (4) 0.31881 (16) 0.77266 (14) 0.0459 (4)
C3 0.0489 (4) 0.22821 (16) 0.93666 (14) 0.0468 (4)
C16 −0.4291 (5) 0.45183 (19) 0.77988 (16) 0.0573 (5)
H16A −0.5613 0.4152 0.7313 0.069*
H16B −0.3218 0.5036 0.7446 0.069*
C7 0.2103 (4) 0.15241 (18) 0.96808 (15) 0.0533 (5)
C13 −0.1550 (5) 0.2766 (3) 0.36669 (18) 0.0747 (7)
H13 −0.3081 0.2614 0.3229 0.090*
C14 −0.0298 (5) 0.1938 (2) 0.41490 (17) 0.0635 (6)
H14 −0.0979 0.1230 0.4040 0.076*
C12 −0.0536 (5) 0.3809 (2) 0.38337 (18) 0.0704 (7)
H12 −0.1395 0.4362 0.3514 0.084*
C17 −0.5609 (5) 0.5069 (2) 0.85914 (18) 0.0677 (6)
H17A −0.6727 0.5584 0.8282 0.102*
H17B −0.4280 0.5428 0.9067 0.102*
H17C −0.6665 0.4548 0.8934 0.102*
C5 0.0370 (7) 0.2135 (3) 1.11409 (18) 0.0839 (8)
H5A −0.1079 0.1758 1.1448 0.101*
H5B 0.1328 0.2628 1.1640 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0707 (4) 0.0530 (3) 0.0557 (3) 0.0257 (3) 0.0055 (3) −0.0062 (2)
S2 0.0602 (3) 0.0550 (3) 0.0490 (3) 0.0214 (2) 0.0087 (2) 0.0070 (2)
O2 0.0585 (8) 0.0617 (9) 0.0428 (7) 0.0272 (7) 0.0098 (6) 0.0028 (6)
O1 0.0755 (10) 0.0716 (10) 0.0404 (7) 0.0340 (8) 0.0104 (7) 0.0052 (7)
N1 0.0571 (10) 0.0472 (9) 0.0395 (8) 0.0183 (7) 0.0090 (7) −0.0002 (7)
N2 0.0839 (13) 0.0522 (10) 0.0443 (9) 0.0294 (9) 0.0165 (9) −0.0042 (7)
C1 0.0445 (10) 0.0414 (9) 0.0419 (9) 0.0075 (8) 0.0061 (8) 0.0001 (7)
C9 0.0612 (12) 0.0511 (11) 0.0376 (9) 0.0169 (9) 0.0151 (9) −0.0015 (8)
C10 0.0628 (12) 0.0535 (12) 0.0462 (11) 0.0113 (10) 0.0092 (9) −0.0018 (9)
C2 0.0430 (9) 0.0469 (10) 0.0388 (9) 0.0080 (8) 0.0062 (7) 0.0016 (7)
C4 0.0593 (12) 0.0712 (14) 0.0419 (10) 0.0127 (11) 0.0123 (9) −0.0014 (9)
C8 0.0542 (11) 0.0401 (10) 0.0469 (10) 0.0080 (8) 0.0100 (9) −0.0062 (8)
C6 0.0708 (14) 0.0866 (17) 0.0461 (11) 0.0164 (13) 0.0095 (11) 0.0156 (11)
C11 0.0840 (16) 0.0557 (13) 0.0551 (12) 0.0173 (12) 0.0192 (12) 0.0064 (10)
C15 0.0472 (10) 0.0495 (11) 0.0431 (10) 0.0119 (8) 0.0094 (8) −0.0015 (8)
C3 0.0480 (10) 0.0530 (11) 0.0401 (10) 0.0066 (9) 0.0062 (8) 0.0001 (8)
C16 0.0640 (13) 0.0641 (13) 0.0481 (11) 0.0295 (11) 0.0071 (10) 0.0053 (9)
C7 0.0558 (12) 0.0611 (13) 0.0453 (10) 0.0139 (10) 0.0089 (9) 0.0065 (9)
C13 0.0649 (15) 0.108 (2) 0.0526 (13) 0.0221 (15) 0.0002 (11) −0.0051 (13)
C14 0.0652 (14) 0.0703 (15) 0.0556 (13) 0.0062 (12) 0.0090 (11) −0.0085 (11)
C12 0.0844 (17) 0.0814 (18) 0.0520 (13) 0.0384 (14) 0.0141 (12) 0.0134 (12)
C17 0.0762 (15) 0.0731 (15) 0.0578 (13) 0.0338 (13) 0.0067 (11) −0.0080 (11)
C5 0.109 (2) 0.103 (2) 0.0471 (13) 0.0402 (18) 0.0182 (14) 0.0121 (13)

Geometric parameters (Å, º)

S1—C8 1.671 (2) C4—H4B 0.9700
S2—C7 1.728 (2) C6—C7 1.505 (3)
S2—C1 1.7310 (19) C6—C5 1.537 (4)
O2—C15 1.337 (2) C6—H6A 0.9700
O2—C16 1.449 (2) C6—H6B 0.9700
O1—C15 1.224 (2) C11—C12 1.366 (4)
N1—C8 1.363 (2) C11—H11 0.9300
N1—C1 1.383 (2) C3—C7 1.343 (3)
N1—H1 0.8600 C16—C17 1.495 (3)
N2—C8 1.348 (3) C16—H16A 0.9700
N2—C9 1.425 (3) C16—H16B 0.9700
N2—H2 0.8600 C13—C12 1.374 (4)
C1—C2 1.391 (3) C13—C14 1.386 (4)
C9—C14 1.377 (3) C13—H13 0.9300
C9—C10 1.383 (3) C14—H14 0.9300
C10—C11 1.377 (3) C12—H12 0.9300
C10—H10 0.9300 C17—H17A 0.9600
C2—C3 1.432 (3) C17—H17B 0.9600
C2—C15 1.453 (3) C17—H17C 0.9600
C4—C3 1.504 (3) C5—H5A 0.9700
C4—C5 1.532 (3) C5—H5B 0.9700
C4—H4A 0.9700
C7—S2—C1 90.32 (9) C10—C11—H11 119.9
C15—O2—C16 116.57 (15) O1—C15—O2 122.23 (17)
C8—N1—C1 129.72 (17) O1—C15—C2 125.21 (17)
C8—N1—H1 115.1 O2—C15—C2 112.56 (16)
C1—N1—H1 115.1 C7—C3—C2 112.96 (18)
C8—N2—C9 126.40 (16) C7—C3—C4 111.40 (18)
C8—N2—H2 116.8 C2—C3—C4 135.63 (18)
C9—N2—H2 116.8 O2—C16—C17 107.08 (17)
N1—C1—C2 122.14 (17) O2—C16—H16A 110.3
N1—C1—S2 125.40 (14) C17—C16—H16A 110.3
C2—C1—S2 112.45 (14) O2—C16—H16B 110.3
C14—C9—C10 120.6 (2) C17—C16—H16B 110.3
C14—C9—N2 119.4 (2) H16A—C16—H16B 108.6
C10—C9—N2 119.87 (19) C3—C7—C6 114.13 (19)
C11—C10—C9 119.5 (2) C3—C7—S2 113.40 (16)
C11—C10—H10 120.3 C6—C7—S2 132.46 (17)
C9—C10—H10 120.3 C12—C13—C14 120.2 (2)
C1—C2—C3 110.87 (17) C12—C13—H13 119.9
C1—C2—C15 122.59 (16) C14—C13—H13 119.9
C3—C2—C15 126.54 (17) C9—C14—C13 119.1 (2)
C3—C4—C5 103.25 (18) C9—C14—H14 120.5
C3—C4—H4A 111.1 C13—C14—H14 120.5
C5—C4—H4A 111.1 C11—C12—C13 120.4 (2)
C3—C4—H4B 111.1 C11—C12—H12 119.8
C5—C4—H4B 111.1 C13—C12—H12 119.8
H4A—C4—H4B 109.1 C16—C17—H17A 109.5
N2—C8—N1 114.24 (17) C16—C17—H17B 109.5
N2—C8—S1 121.58 (14) H17A—C17—H17B 109.5
N1—C8—S1 124.18 (15) C16—C17—H17C 109.5
C7—C6—C5 101.64 (19) H17A—C17—H17C 109.5
C7—C6—H6A 111.4 H17B—C17—H17C 109.5
C5—C6—H6A 111.4 C4—C5—C6 109.55 (19)
C7—C6—H6B 111.4 C4—C5—H5A 109.8
C5—C6—H6B 111.4 C6—C5—H5A 109.8
H6A—C6—H6B 109.3 C4—C5—H5B 109.8
C12—C11—C10 120.3 (2) C6—C5—H5B 109.8
C12—C11—H11 119.9 H5A—C5—H5B 108.2

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···S1i 0.86 2.61 3.415 (2) 157
N1—H1···O1 0.86 2.04 2.719 (2) 136

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2068).

References

  1. Arhin, F., et al. (2006). Bioorg. Med. Chem. 14, 5812–5832. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 99–100.
  6. Larson, S. B. & Simonsen, S. H. (1988). Acta Cryst. C44, 2035–2037.
  7. Nonius (1997). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Puterová, Z., Krutošíková, A. & Végh, D. (2010). Arkivoc, i, 209–246.
  10. Saeed, S., Rashid, N., Ali, M., Hussain, R. & Jones, P. (2010). Eur. J. Chem. 1, 221–227. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812029893/lr2068sup1.cif

e-68-o2360-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812029893/lr2068Isup2.hkl

e-68-o2360-Isup2.hkl (179.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812029893/lr2068Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES